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Abstract

In this paper we introduce the mobipick labs environment,
which represents an effort to bring the robotics and planning
and acting research communities closer together by releas-
ing a physics-based single robot simulator that closely resem-
bles a real-life setup. This tool is designed for non-robotics
experts, providing a user-friendly high-level Python API for
easily interacting with a complex robotic system. The frame-
work additionally includes a basic semantic and numeric en-
vironment representation that provides real-time knowledge
in the form of “facts” that can be used to react to the execu-
tion status.

Introduction
Mobile robots and the typical environments in which they
operate offer a variety of interesting challenges for AI plan-
ning and acting algorithms. These environments are often
dynamic, involving other actors such as humans or other
robots who may be acting in them. Moreover, they are par-
tially observable and even when an object is within the cam-
era’s field of view, it can be occluded by other objects. Ad-
ditionally, robot action outcomes are temporal, stochastic,
with continuous action parametrization, and consume re-
sources when executed. This results in a high uncertainty
about the environment state, which is increased by errors in-
herent to noisy sensor data.
Note that many of those properties violate assumptions
made by classical planners (Ghallab, Nau, and Traverso
2004). Dealing with those properties requires to relax some
of those assumptions or to use sophisticated plan execution
and monitoring algorithms. In recent years, the focus on de-
liberative acting has received more attention (Ghallab, Nau,
and Traverso 2016) and workshops and robotics tracks at
ICAPS have put this into focus. Nevertheless, there is still
a relatively high entry barrier for planning researchers who
find such applications interesting and would like to test their
algorithms on real robots.

ROS (Quigley et al. 2009) is the de facto standard mid-
dleware in robotics. However, its multiple dependencies and
its complexity require developers to spend several months
to master its features. Researchers from the planning com-
munity typically have a background in AI and rarely have
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the necessary robotics knowledge to grasp the complexity
of a robot acting in a real setup. Therefore, planning re-
search sometimes uses idealized ad hoc simulations that ab-
stract away many features of real robot domains. We argue
that these simulators are too abstract, leaving a big gap be-
tween the output of a planner and execution on a real robot.
To help reduce the gap between the planning and robotics
community, we release a software contribution called mo-
bipick labs1 that is suitable for researchers with little to no
experience in robotics or ROS who want to work on plan-
ning, acting and monitoring problems in robotic domains.

The Mobipick robot is an indoor mobile manipulator (see
Fig. 1) suitable for pick and place tasks with object percep-
tion in the loop due to a depth camera attached to the end
effector. We have created a physics-based simulation of this
robot using Gazebo2 (Koenig and Howard 2004) and pro-
vide this along with other key software components, includ-

Figure 1: The Mobipick custom robotic mobile manipulator,
consisting of a MiR base, UR5 arm and Robotiq gripper.

1https://github.com/DFKI-NI/mobipick labs
2https://gazebosim.org/



ing a custom Mobipick Robot API in Python that allows a
Linux user to easily control the robot at a high level with-
out the need of expert knowledge in robotics or ROS. An-
other provided module converts real-time sensor data into
facts that can be used to reason about the situation at hand.
The installation requires only a few steps before the user
can begin using the system. Additionally, we provide a con-
venient GUI interface which allows the user to interact with
the robot before commanding it via code.

While this paper focuses on the simulation aspect, we
would like to stress that we use the same software stack in
our labs for execution on the real robot. This ensures a close
match between the simulated and real robot, and code that
runs in the simulator can often run with little or no changes
on the real robot.

Therefore, the main contribution of this paper is a sim-
ulated robotic mobile manipulator software stack, which is
very close to a real robot and enables non-robotics expert
users to test their AI planning and acting algorithms with
simple Python commands.

Related Work
CraftBots (Nemiro et al. 2021) is a lightweight multi-agent
team simulator to evaluate and benchmark integrated plan-
ning and execution algorithms. The simulation, while not
physics-based, is focused on the high-level aspects suitable
for complex planning and execution tasks.

In contrast, the task in our Mobipick simulation environ-
ment is much more detailed and close to the real world. Al-
though our environment may at first glance mistakenly seem
simple from a pure planning perspective, there exist many
complexities in our robotic pick and place task due to par-
tial observability, faulty sensor data, external events that can
happen during execution, interaction with humans and cop-
ing with action failure.

VirtualHome (Puig et al. 2018) is a household simulator
that features interactive objects, humanoid agents, multiple

camera views, and concurrent multi-agent simulation. Pre-
vious research such as ProgPrompt (Singh et al. 2022) use
it for experimentation with decision making using large lan-
guage models (e.g. GPT-3). To our knowledge, robot simu-
lation is not supported in VirtualHome although the aim of
the MIT researchers behind it is to teach chores to robots.

While there are many other robotic simulations available
in Gazebo, they rarely provide a high level wrapper to easily
access functionalities with simple Python commands. Ex-
amples of easily accessible Gazebo simulations can be found
on websites like The Construct or Amazon AWS Robo-
Maker, where one can run them via web browser and with-
out the need of a local installation. Unlike these simulations,
ours does require installation on a Linux based computer.
However, we do provide automated scripts to ease the pro-
cess.

The mobipick labs System
The Mobipick robot can perform the tasks of autonomous
navigation, 6DoF object detection and pose estimation, ob-
ject anchoring (which assigns a persistent unique ID to all
perceived objects), arm trajectory motion planning and exe-
cution, pick, place and insertion of objects including grasp
planning, collision detection, and free space place sampling.

The software components of our system can be roughly
grouped into three layers (see Fig. 2): the components that
only run on either the real robot or in simulation; the higher-
level components that are agnostic of which underlying sys-
tem (real or sim) they run on as both underlying systems
present the same ROS interfaces; and the deliberative layer,
which controls the robot via an abstract robot API.

While all software components are in principle reusable
for your own ROS system, the ones written for specific
hardware components, e.g. the manipulation module, obvi-
ously only make sense with the according component being
present in your system. A different skill set of your robot
might require additions from your side to the robot api – we
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Figure 2: Simplified overview of the software architecture. Blue: Components that are described in the remainder of the paper.
Note: Some connections between components have been omitted for clarity of presentation.



will go into more detail about this in its own section. Like-
wise, where we configured our scenario and robotic skills for
the generic planning component, you will need to write such
a configuration for your own scenario and robot, potentially
by expanding our provided software components.

The following gives a high-level overview of the interplay
between the different components, each of which will be de-
scribed in more detail in the remainder of this paper. The
internal onboard PC of the real robot’s MiR100 base runs a
customized ROS navigation, localization and mapping stack
that we re-use in our system. In simulation, we replicate this
functionality using the standard ROS navigation stack.

On the real robot, images from the robot’s camera are pro-
cessed by the object recognition and pose estimation com-
ponent. The detected objects and their poses are passed to
the anchoring component, which will track the objects over
time and re-identify objects when they re-enter the robot’s
field of view in order to assign a persistent unique ID to each
object. In simulation, the combined function of these two
components is performed by the logical camera. The last
known poses of each unique object are stored in the obser-
vation buffer and processed (together with other data) by the
semantic environment representation, which provides sym-
bolic facts about the current world state for use by a planner.

The final set of robot capabilities (pick, place, insert and
generic arm movements) is provided by the manipulation
component.

All robot capabilities are bundled by the Mobipick Robot
API, which provides a ROS-independent Python library for
easy control of the robot.

Finally, the overall control of the robot happens in the de-
liberative layer, which usually contains a planner that pro-
cesses the symbolic facts about the current world state and
generates a plan that is executed by the executor by calling
functions of the robot api. While we expect most users of
the mobipick labs system to bring their own planner and ex-
ecutor, we also provide an example implementation of both
components.

Gazebo Simulation
Our simulation is based on a custom real robot called Mo-
bipick, which was built in a previous project at DFKI.3 It
consists of several commercially available parts, including
a MiR100 base, a UR5 arm, Robotiq 2F-140 gripper and
Orbbec Astra Mini S RGB-D camera, as well as two in-
dustrial PCs. The real and simulated setups are presented
in Fig. 3.

There are five available objects as shown in Fig. 4. The
blue box can be used to store and carry multiple objects at
once except for the power drill, as this object makes the box
too heavy to be carried by the robot in real life.

Navigation
The navigation action allows the robot to autonomously
drive from its current location to a destination given by
(x, y, θ) with respect to a global reference frame. The be-
havior automatically avoids dynamic obstacles that might

3https://robotik.dfki-bremen.de/de/forschung/projekte/hybr-it/

Figure 3: Example of one of the provided pick and place
environments. Top: real environment, bottom: simulated en-
vironment in Gazebo.

Figure 4: Available objects in mobipick labs, left to right:
multimeter, screwdriver, relay, power drill, blue box. NOTE:
objects are not to scale.



appear in the scene at any point in time. For example, a robot
serving drinks at a restaurant needs to avoid customers that
step into the robot’s path. Fortunately, this is all handled by
standard software4 by using the laser scanners of the mobile
base. However, they have partial observability of the envi-
ronment and can only detect obstacles which are at the same
height of the LiDAR sensor. This means, e.g., that only the
legs of the table in Fig. 5 are visible but not its main surface.
To solve this problem, the map of the environment is man-
ually annotated with forbidden zones that the robot cannot
enter. Forbidden zones are created for all obstacles that can-
not be detected by the laser scanners, specifically all kinds
of overhangs (e.g., table surfaces, areas under stairs) and
drops (e.g., descending stairways). For the scenario shown
in Fig. 3, we additionally attached tape as barriers to the ta-
ble legs, so the environment perceived by the lasers and the
annotated map match more closely.

Perception
Object recognition and pose estimation. The robot is
equipped with an RGB-D camera attached to the end effec-
tor, allowing the robot to point the camera using its arm to
observe different parts of the environment. On the real Mo-
bipick robot, the perception is done via the deep learning ap-
proach DOPE (Tremblay et al. 2018), which performs object
recognition and 6DoF (degree-of-freedom) pose estimation
(i.e., the detection of the object’s position and orientation in
3D space).

Anchoring. Anchoring is the process of “creating and
maintaining the correspondence between symbols and sen-
sor data that refer to the same physical objects” (Corade-
schi and Saffiotti 2003). The anchoring problem refers to
the situation where we have multiple objects of the same
class, e.g., many blue boxes, but we need to assign persis-
tent unique IDs to each of them, e.g., box 1, box 2, so that a

Figure 5: A partially observable table where only the legs
are visible to the laser scanner.

4https://github.com/DFKI-NI/mir robot

planner can refer to these objects symbolically. The problem
is far from trivial and it involves tracking of the objects (as
long as the objects are within the camera’s field of view),
re-identifying individual objects over a longer time horizon
when they reappear in the camera’s field of view, recogniz-
ing unique features on them, and possibly employing do-
main knowledge to restrict the possible object-symbol as-
signments. We are currently in the process of integrating the
anchoring module from the CoPDA project (Günther et al.
2020; Dittmer et al. 2023) into our system. As a temporary
workaround, our demos on the real robot are restricted to
only one instance of each object type, which avoids the need
for proper anchoring.

Logical camera. A Gazebo “logical camera” sensor is uti-
lized to emulate object recognition, pose estimation, and
object anchoring functionalities in simulation. Instead of
outputting a 2D image as a typical Gazebo camera sensor
would, the logical camera sensor produces the class identi-
fication, instance identification, 6D pose, and bounding box
dimensions for each object that is inside the camera’s frus-
tum (see Fig. 6), using the same output interface as the an-
choring module. The class and instance IDs are obtained
from the object’s name (e.g., box 1), if such a naming struc-
ture is adhered to when adding objects to the simulation
environment. The bounding box of the object is the axis
aligned bounding box (AABB) of the object model. The ob-
ject’s 6D pose is with respect to the logical camera’s refer-
ence frame but may be transformed into a global reference
frame. The plugin5 for the logical camera allows for adjust-
ing parameters such as the sensor’s field of view, clipping
planes, and aspect ratio.

One benefit of using the logical camera sensor to simu-
late the object recognition and pose estimation components
is that a GPU is not needed, whereas the deep learning pose
estimation approach used on the real robot requires a GPU.
The logical camera therefore allows for a fast simulation of
ground truth object data on a wider range of hardware, en-
abling one to focus on evaluating other framework compo-
nents. However, if desired, one can apply object recognition
and pose estimation approaches (e.g., the aforementioned

Figure 6: Left: Simulated camera image, Right: Mobipick
frustum, field of view of the camera.

5https://github.com/DFKI-NI/gazebo logical camera plugin
ros



DOPE) directly to the simulated images instead of using the
logical camera.

Objects within the logical camera’s frustum are fully ob-
servable, even if an object may be visually occluded by the
environment or another object. In addition, if an object’s
bounding box partially intersects the camera frustum, the ob-
ject will be reported as being in the camera’s field of view. In
such cases, the object’s geometry leads to this false positive
output as the object is not visually in the field of view. One
should be aware of both the lack of occlusion and false pos-
itives in the logical camera, as these behaviors differ greatly
from the real-world scenario.

Observation Buffer. The poses of perceived objects are
stored in an observation buffer called the “pose selector”6.
The object information is provided by the logical camera or
by perception components (e.g., DOPE and object anchor-
ing). In addition, other system components may update or
delete the information in the observation buffer as the robot
interacts with and manipulates the objects. Each object in the
observation buffer has its object class name, unique instance
ID, bounding box dimensions, and globally-referenced 6D
pose stored. The saved poses are able to be queried by
unique class and instance ID (e.g., to retrieve the pose of
a specific instance of an object), or by class alone (e.g., to
retrieve all poses of a specific object class, which, for ex-
ample, could be used to find the closest object of a specific
type). The observation buffer ROS node allows for service
calls to execute the query and update processes.

While the user might not need to know this level of detail,
it might be beneficial to discuss some specific details: The
observation buffer stores the last known positions of all per-
ceived objects. Due to the partial observability that the robot
has about the environment, this information can be partly
outdated if objects were moved while the robot was not ob-
serving this part of the scene. The task of tracking and clear-
ing information about a specific object falls to a component
accessing the observation buffer itself. In the general case,
this is performed by object anchoring on the real robot or by
the logical camera in simulation.

Semantic Environment Representation
In order for the robot to plan and solve tasks, it needs the
current state of the environment as symbolic facts. These
facts can be automatically generated by the provided sym-
bolic fact generator7 module. The generated facts include
information about the current arm pose of the robot, the cur-
rent position of the robot as well as the location of objects
on tables, if they have been perceived before. The predefined
symbolic arm poses are used and compared to the current
state of the arm joints within a given threshold to generate
the fact that the robot is in a specific arm pose. Similarly for
the robot location and heading, the predefined waypoints are
used to generate the fact of where the robot currently is and
in which direction it is facing. For the object locations, the
information perceived and saved in the aforementioned ob-
servation buffer is used to determine if objects are on top of

6https://github.com/DFKI-NI/pose selector
7https://github.com/DFKI-NI/symbolic fact generator

the tables present in the environment. To generate these “on”
facts, the bounding boxes and poses of the objects and the
bounding boxes and poses of the tables, which are specified
in a configuration file, are used to perform a collision check
between them using the Separating Axis Theorem. If a col-
lision is detected, a simple comparison of the z-coordinates
gives the answer whether an object is on the table or not.

The symbolic fact generator module provides a ROS
node, which publishes these facts on a specified topic. Alter-
natively, the fact generating Python module can be imported
directly to create these facts on demand.

Manipulation
All robotic manipulation within mobipick labs is based on
MoveIt (Coleman et al. 2014). In a nutshell, MoveIt is
a robotics manipulation framework that integrates motion
planning, collision checking, path parametrization, trajec-
tory execution and monitoring, inverse kinematics, Carte-
sian control, pick and place, and more. Here is a description
of the functionality that we expose to the planning commu-
nity:

Move Arm in Joint Space. Mobipick has a UR5 arm from
Universal Robots with 6 degrees of freedom and 5 kg pay-
load. Each joint can be controlled separately by command-
ing it to a desired target angle that is constrained by custom
joint limits.

We can also control all joints at once by sending a list of
target angles. This is called a joint space goal configuration.
In Fig. 7 we show some pre-recorded arm configurations that
are used in some of our demos.

Our API allows to easily send the arm to a named goal
configuration, which maps to 6 numeric target joint angles.
The use of existing arm configurations or the recording of
new ones is a choice to be made by the end user. Under the
hood, the MoveIt framework will perform several computa-
tions, including collision checking with the environment as
well as with the robot itself, plan a path from the start con-
figuration to the desired one, parameterize the previous path
to obtain a trajectory and execute-monitor in real-time. As
input, MoveIt requires a spatial description of the environ-
ment, which is shown in Fig. 8.

Such hand-coded collision boxes are provided and trans-
parent to the end user, however it is important to know that
every movement of the arm via MoveIt relies on simplified
collision models where also objects need to be included.

Figure 7: Some pre-recorded named arm configurations:
home, observe100cm right, transport, handover; e.g., trans-
port = [-0.89, -1.87, 2.13, -1.82, -1.57, 3.80]



Object Grasping. In order for the robot to be able to grasp
an object, a grasp planner is required. Given the 6DoF pose
estimate of an object, the job of the grasp planner is to gen-
erate possible end effector poses such that when the grip-
per is closed, the object is firmly attached to the arm. While
generic grasp planning for unknown objects is an open re-
search problem in robotics, we can manually define multi-
ple grasp configurations specific to a gripper and object (see
Fig. 9).

From the available grasp configuration set, MoveIt iter-
ates over each of them and queries inverse kinematics to
find a feasible motion plan that moves the robotic arm from
the current configuration to the target one without colliding
with the environment. Such a planning process is time con-
suming; the main bottleneck is the collision checking step.
From a high-level perspective, the parametrization of the be-
havior is relevant: assuming the 6DoF pose estimate of the
object is available in the observation buffer and the object is
within reach, we can pick an object from a known class and
ID, within a deadline and with the option of ignoring speci-
fied objects from collision checking. This is necessary when
picking a box with objects inside, e.g., pick blue box 1 from
table 1 with a timeout of 50 sec, ignoring collisions with re-
lay 1 (assuming that relay 1 is inside the box).

Object Placing. Assuming the robot is holding an object,
using the object place action will place the object on a de-
sired target table. The algorithm for placing looks for free
space on the table and samples multiple random configura-
tions until a collision-free motion plan is found. An example
of this action is shown in Fig. 10.

Object Insertion. One or more objects can be placed in-
side the blue box by calling this action, allowing the robot to

Figure 8: Planning scene: a spatial description of the envi-
ronment, used for collision avoidance.

Figure 9: Recorded grasp configurations per object.

Figure 10: Mobipick placing a multimeter on a cluttered
target table by finding free space. Right: sampling possible
placements of the multimeter. Left: Result after placing the
multimeter.

carry several items at once and therefore save time. The be-
havior is almost identical to the place action, but the object
is dropped above the blue box instead of being placed on a
table.

Mobipick Robot API
For the actions of the Mobipick robot, we have created a

Python library called robot api8 that allows the user to con-
trol all capabilities of the robot via simple Python function
calls. It uses ROS underneath and supports ROS message
types at its interface but does not require them. This way the
user doesn’t have to be knowledgeable about ROS to con-
trol the Mobipick robot. The small example in Listing 1,
taken from the robot api documentation, demonstrates its
overall idea. This code can be run as a Python script or via
an interactive Python console. After importing the robot api
module, a Robot representation from robot api is obtained
through its namespace.
mobipick = robot_api.Robot("mobipick")

Listing 1: Robot API basic functionality

import robot_api
# Get a Robot object using the robot's ROS

topic namespace.↪→
mobipick = robot_api.Robot("mobipick")

# Get the robot's 2D pose using
localization.↪→

robot_pose = mobipick.base.get_2d_pose()

# Move the robot's arm using MoveIt.
mobipick.arm.move("transport")

# Move the robot's base using move_base.
mobipick.base.move(21.0, 7.0, 3.141592)

8https://github.com/DFKI-NI/robot api



Components supported by the robot api can then be ac-
cessed on this Robot instance mobipick via simple func-
tion calls. The following three calls in Listing 1 all use ROS
components at the back-end without exposing this to the
user.

While the idea of creating a high-level abstract robot API
is not new (Diprose et al. 2017; Angerer et al. 2010), we be-
lieve it could be helpful to the planning community to encap-
sulate the complexity of a mobile manipulator behind sim-
ple Python commands. In comparison to related work, we
intentionally make use of Python 3’s type annotation system
at all of the robot api’s interfaces with the intent of flexible
yet well-defined interfaces. In our opinion, this abstraction
helps to keep robotic functionalities and their implementa-
tion details hidden as simple actions usable for planning.

The robot api’s design aims at being generic but tries
to support many optional robot components. In the pre-
vious example we showed that it can make use of the
move base and MoveIt ROS components but it does
not have a dependency on these ROS packages, only
on their message definitions. By using discovery mech-
anisms at runtime on the available ROS topics and ser-
vices, the robot api can make use of existing ROS com-
ponents of a system dynamically. For example, calling
robot api.find namespace() will return the de-
tected robot namespaces and thus the supported robot rep-
resentation obtained from robot api.Robot(). In our
Mobipick environment, ["/mobipick"] would be re-
turned. Where one would typically set up a ROS sub-
scriber or ROS service client first to establish the connec-
tion and communicate with other ROS components, the
robot api performs this in the background. It also calls
rospy.init node() on demand, i.e., if there is no ROS
node already running in the current process, a new node will
be initialized the first time it is needed.

The robot api is still in development and supports only
basic functionality assuming you have a mobile robot.
By default, it thus only supports localization through tf
and navigation using move base by providing methods
like get 2d pose() and move() or similar variants.
Its extensions.py module assumes a robot arm to be
present, which can be controlled using MoveIt.

The concept of the robot api is not limited to these
few functions we implemented here, though. Along with
it we provide the mobipick api package as a robot spe-
cific extension, which may serve you as a template for
your own robots. Our Mobipick robot has a parallel grip-
per attached to its robot arm and a depth camera next
to it. To make use of them we implemented the grasplan
module for manipulation actions and the pose selector and
symbolic fact generation modules for storing perceived ob-
jects and generating symbolic facts for planning. The mo-
bipick api imports robot api, thus extending the few generic
methods by more specific ones related to our Mobipick
robot.

As a teaser, Listing 2 demonstrates how to navigate to a
location, perceive the objects with the camera mounted on
the robot arm, pick an object from the table and then place it
again on the same table.

Listing 2: Mobipick API usage example

import mobipick_api
mobipick = mobipick_api.Robot('mobipick')

# autonomous navigation
mobipick.base.move(21.0, 7.0, 3.141592)

# estimate 6D pose estimate of an object
mobipick.arm_cam.perceive()

# pick a previously perceived object
mobipick.arm.pick_object('relay_1',

'table_3',
planning_scene_ignore_list=[],
timeout=50.0)

↪→
↪→
↪→

# assuming that mobipick has an object in
# its gripper, place it on a surface
mobipick.arm.place_object('table_3',

observe_before_place=False,
timeout=50.0)

↪→
↪→

Making use of the robot api for your own robot is a two-
stage process. As a developer you first need to make sure
that the assumptions made in the robot api with regard to
namespaces, ROS services and actions, etc. are fulfilled in
your ROS system. While these aspects have been developed
with genericity in mind, our templates might just not fit to
your individual system architecture. In this case, and also in
the general case if you intend to expand the API to specific
skills of your robot, you would need to write your own API
extension first, just as the mobipick api is built on top of the
robot api. Once this is ensured, any user of your robot can
as a second step access the robot api or your custom API
extension just as easily as shown in the code examples of
Listings 1 and 2.

Planning and Acting Interfaces
We aim to make mobipick labs suitable for task planning
and provide implementation examples in which we use task
planning ourselves. Planning requires very descriptive and
precise state and action definitions, which potentially differ
from the requirements for execution. In the action interface
of
def move_base(self, _: Pose, pose: Pose) ->

bool:↪→

for example, we see two pose parameters – but the first one
is actually not used within the method. The robot and thus its
move base component does not need to be informed about
its current pose to move somewhere else. It has to and will
rely on its own localization and navigation components to
find a path to a given new pose. Task planning in the gen-
eral case, however, will possibly calculate long sequences of
different actions into the future when the robot is at an arbi-
trary pose from which it should move. Therefore, an action
definition which is suitable for both planning and execution
needs to accept a current pose parameter together with the
target pose parameter.



It is out of scope of this contribution to describe our work
on task planning in detail. On this topic we just like to em-
phasize that we in fact use such action interface definitions
in the robotics application domain to automatically generate
the problem description in the planning domain.

Example Planner and Executor
While we expect many potential users of our mobipick labs
testbed to implement their own planner or executor and inte-
grate it using the provided interfaces, we include an example
implementation of the planner and executor that runs a sim-
ple demo scenario in which the robot has to find a certain
object (a multimeter) and a blue box, place the multimeter
into the box and bring the box with the multimeter inside
to a given target table. The scenario is simple but flexible
enough to demonstrate the use of a task planner in a robotics
application (as opposed to, e.g., a state machine or behavior
tree, which are popular alternatives in robotics). For exam-
ple, the robot could first bring the box to the table where the
multimeter is, set it down, insert the multimeter, and trans-
port the now filled box to the target table; or, it could bring
the empty box to the target table, get the multimeter, and in-
sert it directly at the target table. Also, there are a several
interesting cases of execution failures that have to be dealt
with, especially if the demo takes place in a dynamic envi-
ronment where humans move some of the objects while the
robot is currently not observing the scene. The Mobipick
robot is able to detect changes in the scene, react to them,
and to some degree adapt to the situation to still fulfill the
given goal.

Our example planner and executor builds on the follow-
ing interfaces and capabilities that we have presented so far,
mainly: the semantic environment representation for pro-
viding the current state of the world as symbolic facts for
the planner; and the robot api and its specialization mo-
bipick api to execute the planned actions on the robot. For
planning, we use the Unified Planning9 (UP) library together
with the Embedded Systems Bridge (ESB) (Hastam Sathiya
Satchi Sadanandam et al. 2023) which are both developed in
the project AIPlan4EU. Unified Planning provides a Python
interface for creating planning problems and using differ-
ent integrated planners of various kinds. Using this allows to
easily switch between a wide variety of planners; currently,
we use Fast Downward (Helmert 2006). The ESB connects
our robotic system with Unified Planning in two ways: First,
it provides means for connecting the existing Python func-
tions for calculating the symbolic facts that represent the
world state and the executable actions of the robot api with
their counterparts in the problem specification of Unified
Planning. Second, it executes and monitors the resulting
plans. More details about the ESB as well as code examples
are given in the referenced publication.

Planning experts can use and integrate their own plan-
ners in different ways. The first option is to integrate the
planner with the Unified Planning library. It is out of the
scope of this paper to describe how this can be done in prac-
tice as it depends on the individual planner’s programming

9https://github.com/aiplan4eu/unified-planning

language and domain format. For example, if the planner
already supports the domain description languages PDDL
(Ghallab et al. 1998), ANML (Smith, Frank, and Cushing
2008) or HDDL (Höller et al. 2020) the integration into UP
could be achieved with a small Python wrapper that uses
UP’s functions for exporting the problem in that format, ex-
ecute the planner and give the results back to UP. For details
we refer to the documentation of the Unified Planning li-
brary. This approach has the advantage that the Mobipick
system including the domain representation and execution
system does not need to be adapted and the planner can
be directly compared to the other planners that are already
available in UP by just telling it in one line of code to use an-
other planner. The second option for using another planner
in our system is to replace the use of the Unified Planning
library completely and replace it with the new planner. It re-
quires the user to generate the planning problem on its own.
This can be based on the semantic environment represen-
tation or even by processing the robot’s sensor data directly.
Furthermore, the user needs to dispatch the plan’s actions by
calling the functions of the robot api at the appropriate time.
The third option lies between between the former two op-
tions. The user could re-use the example planning problem
formulation that we provide with UP and use UP’s export
functionalities to export it into one of the aforementioned
domain description languages. Afterwards, the new planner
can be triggered, e.g., with a system call, to plan the problem
given in the exported representation.

In addition to the task planners, the execution algorithms
can be changed as well. For this the user can take the result-
ing plan from UP and execute it with its own execution sys-
tem and dispatch actions by calling the respective robot api
functions.

ROSPlan Integration
An example of how to use the Mobipick labs system with
ROSPlan is available under rosplan demos Github repos-
itory10. We created a task planning model using temporal
PDDL and solved a sample problem using the popf planner
in combination with the standard esterel plan dispatcher. The
integration details are out of scope of this paper, for more
information please refer to the online documentation of the
demo.

Tools
To easily interact with the robot capabilities we provide a
GUI interface. It is based on Qt5 and can access the high-
level functionality described in this paper (see Fig. 11).

The GUI is ideal for a first interaction with the system to
get an intuition on how the robot behaves in the scenario and
understanding how actions are parameterized.

Another important introspection tool that is available in
the robotics community is RViz.11 We provide a configura-
tion that allows for the visualization of various aspects of the

10https://github.com/kcl-planning/rosplan demos/
rosplan mobipick labs demo

11http://wiki.ros.org/rviz



demo, such as candidate grasp poses, place sampling alter-
natives, the navigation map and more. By using this tool,
real-time visual feedback about specific execution details
from the robotics perspective can be easily obtained.

Discussion
Robotic actions require sub-symbolic numeric parametriza-
tion, e.g., navigate to coordinates (x, y, θ), or move the arm
to a 6D float tuple. However, in planning (and with humans
in general), it is often preferred to work with symbolic pa-
rameters instead, e.g., navigate to kitchen or move the arm
to home pose, where the symbols kitchen, home need to be
mapped to their correspondent tensors to generate a com-
plete execution specification. Our API supports this mapping
as the user can specify custom waypoints in a configuration
file and call the actions in a symbolic or sub-symbolic way
as preferred.

Regarding extensibility, the Robot API is not specific to
the Mobipick robotic platform and can be used on different
mobile manipulators as long as they provide the standard
ROS interfaces (e.g., move base for navigation and MoveIt
for manipulation). Also, the software framework is modu-
lar in the sense that the separate components (simulation,
logical camera, object recognition and pose estimation, an-
choring, observation buffer, and semantic environment rep-
resentation) are separate ROS packages. They can be used
independently of each other and be integrated into differ-
ent robotic platforms through their ROS interfaces. The
only parts that are specific to the Mobipick robotic platform
are the configurations of the hardware drivers (on the real

Figure 11: Provided GUI interface to interact with the high-
level robot actions.

robot), the navigation and manipulation configurations and
the URDF description of the robot.

The simulator can support multi-agent acting scenarios;
currently, only multiple instances of the Mobipick robot are
possible. Additional custom robots could be used provided
they are fully integrated in ROS and provide the standard
ROS interfaces for sensors, actors, navigation and manipu-
lation.

Limitations
The mobipick labs simulation is unfortunately not suitable
to simulate human-robot interaction, e.g., on the real robot
we have a demo where a power drill is handed over to a
person. Such behavior is not possible to replicate in our sim-
ulation accurately. In the simulation we provide, only rigid
body human simulation is available, so as far as we can go
is to simulate one or multiple humans moving around the
environment.

Another limitation of our approach lies in the fact that it
is specific to one particular scenario: an indoor single mo-
bile manipulator with one arm. While multiple robots are
already supported and other extensions such as adding dif-
ferent types of robots are possible, such changes require a
certain level of ROS knowledge.

Physics interactions are difficult to simulate accurately, in
particular friction. One needs to provide accurate informa-
tion about the weight, moment of inertia, and friction coeffi-
cients along with visual and collision models. Unfortunately,
our simulation cannot handle flexible or deformable materi-
als, and is sometimes not very realistic when it comes to
force interaction, e.g., a robot pushing objects into the table,
or multiple objects being put inside a box.

Conclusions
We present a software contribution called “mobipick labs”
which essentially is a Gazebo12 based robot simulation of
an indoor mobile manipulator for a simple pick and place
task of industrial-like objects which are to be transported
between tables. The approach is suitable for researchers in
the intersection between planning and acting that have little
knowledge in robotics but are interested in developing algo-
rithms to control their behavior at the high-level, addressing
relevant real world challenges such as partial observability,
exogenous events, coping with action failure, dealing with
multiple object instances, and knowledge acquisition from
faulty sensor data.

VirtualHome seems to be a good tool for simulating hu-
man behavior and their interactions with the environment,
whereas our work falls short in this aspect with virtually no
human-robot interaction capability available at present and
no future plans to improve it.

Our contribution is well suited for labs that do not have a
complex robot alongside the personnel and the resources re-
quired to keep it up to date and eliminates the need for prior
expert knowledge in robotics or ROS, enabling researchers
to focus on decision making and execution aspects.

12https://gazebosim.org/home



Acknowledgments
This work is supported by the CoPDA project through a
grant of the German Federal Ministry of Education and
Research (BMBF) with Grant Number 01IW19003, and it
is supported by the InCoRAP project through a grant of
the German Federal Ministry of Education and Research
(BMBF) with Grant Number 0IW19002. It is also supported
by the AIPlan4EU project which has received funding from
the European Union’s Horizon 2020 research and innovation
programme under GA no. 101016442. Additionally we ac-
knowledge the support from the APRIL EU project via the
grant from the European Commission 870142. The DFKI
Niedersachsen (DFKI NI) is sponsored by the Ministry of
Science and Culture of Lower Saxony and the Volkswagen-
Stiftung.

References
Angerer, A.; Hoffmann, A.; Schierl, A.; Vistein, M.; and
Reif, W. 2010. The Robotics API: An object-oriented frame-
work for modeling industrial robotics applications. In 2010
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 4036–4041. IEEE.
Coleman, D.; Sucan, I. A.; Chitta, S.; and Correll, N. 2014.
Reducing the Barrier to Entry of Complex Robotic Software:
A MoveIt! Case Study. J. Softw. Eng. Rob., 5(1): 3–16.
Coradeschi, S.; and Saffiotti, A. 2003. An Introduction to the
Anchoring Problem. Robot. Auton. Syst., 43(2-3): 85–96.
Diprose, J.; MacDonald, B.; Hosking, J.; and Plimmer, B.
2017. Designing an API at an appropriate abstraction level
for programming social robot applications. Journal of Visual
Languages & Computing, 39: 22–40.
Dittmer, A.; Stolzmann, T.; Kammler, F.; Günther,
M.; Ferdinand, O.; Thomas, O.; Hertzberg, J.; and
Zielinski, O. 2023. Der Dynamic Anchoring Agent:
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