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Abstract
Variants of the well-known Hamiltonian Cycle and Travelling
Salesperson problems have been studied for decades. Exist-
ing formulations assume either a static graph or a temporal
graph in which edges are available based on some function of
time. In this paper, we introduce a new variant of these prob-
lems inspired by applications such as open-pit mining, har-
vesting and painting, in which some edges become deleted or
untraversable depending on the vertices that are visited. We
formally define these problems and provide both a theoreti-
cal and experimental analysis of them in comparison with the
conventional versions. We also propose two solvers, based
on an exact backward search and a meta-heuristic solver, and
provide an extensive experimental evaluation.

1 Introduction
Finding a closed loop on a graph where every vertex is vis-
ited exactly once is a Hamiltonian Cycle Problem (HCP),
and its corresponding optimization problem in a weighted
graph is a Travelling Salesperson Problem (TSP). Variants
of the HCP and the TSP have been studied for decades.
However, the wealth of research on this topic does not cover
problems where the availability of an edge in a graph de-
pends on the vertices already visited. This specific type of
dynamic graph is relevant to many real-world applications,
such as open-pit mining, harvesting and painting.

For instance, consider the mining inspired example shown
in Figure 1, where the graph depicts a representation of a
mining field and each vertex is a place to be drilled by a
drilling machine. The problem is to find a route such that
each vertex is visited and drilled exactly once, i.e., an in-
stance of a HCP/TSP. However, in this problem, drilling at a
vertex creates a pile of rubble, which not only makes travers-
ing that vertex again impossible but also affects the availabil-
ity of some edges around it. For example, as depicted in Fig-
ure 1(a), when vertex C is drilled, indicated by a red circle,
the rubble obstructs three edges, BD, CD and DA, which
are all deleted, whereas a different traversal only results in
the removal of edge DA, as shown in Figure 1(b).

To model a graph that changes due to the path of already
visited vertices, as exemplified in the scenario above, we in-
troduce a new class of graphs, called Self-Deleting (SD). Us-
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Figure 1: Representation of a mining example, where due to
different traversals, indicated with thicker edges, in (a) and
(b) different edges are deleted.

ing this class, we formally define two new problem variants:
the Hamiltonian Cycle Problem with Self-Deleting graphs
(HCP-SD), and the Travelling Salesperson Problem with
Self-Deleting graphs (TSP-SD). We then compare, both the-
oretically and experimentally, HCP-SD and TSP-SD with
the conventional versions. In particular, we identify how a
self-deleting graph compares to a standard graph in terms of
shortest paths, and determine where HCP and HCP-SD are
equivalent. We also statistically analyse, using the graph’s
average vertex degree, the threshold point near which the
most expensive instances of HCP and HCP-SD are located.
Finally, we propose two solvers, based on an exact backward
search and a meta-heuristic solver. The performance of each
is extensively evaluated through experiments with a dataset
based on standard TSPLIB instances as well as randomly
generated datasets catering for the specificity of these new
variants.

2 Related Work
There is a large body of research on the HCP, the TSP and
their variants. As mentioned, this paper focuses on a partic-
ular type of HCP and TSP where the edges become deleted
or untraversable depending on the vertices visited. None of
the existing variants of these problems with dynamic graphs
has this property. In a TSP on temporal networks, an edge’s
weight and/or availability changes with respect to some no-
tion of time (Aaron, Krizanc, and Meyerson 2014; Michail
and Spirakis 2016), and the unavailable edges can reappear
again, as opposed to HCP-SD where the deleted edges are
never re-enabled. The other difference is that the weight or
availability of an edge in a temporal network changes with
time and not due to the way the graph is traversed.



The Covering Canadian Traveller Problem (CCTP) (Liao
and Huang 2014) is to find the shortest tour visiting all ver-
tices where the availability of an edge is not known in ad-
vance. The traveller only discovers whether an edge is avail-
able once reaching one of its end vertices. The availability of
an edge is set in advance and not dependent on the traversal.

The Sequential Ordering Problem (SOP), sometimes
known as precedence constraint TSP (Chan 1993), is the
problem of finding a minimal cost tour through a graph
subject to certain precedence constraints (Escudero 1988).
These constraints are given as a separate acyclic-directed
graph. In the SOP, the precedence relation is solely between
vertices, however, in our problem we have precedence rela-
tions between vertices and edges. Therefore, SOP is a spe-
cial case of our problem, and we prove this formally in
Lemma 4.

The Minimum Latency Problem (MLP) (Blum et al. 1994;
Mikula and Kulich 2022) is a variant of the TSP where the
cost of visiting a node depends on the path that a traveller
takes. Given a weighted graph and a path, the latency of a
vertex v on that path is defined as the distance travelled on
that path until arriving at v for the first time. The goal of
the MLP is to find a tour over all vertices such that the total
latencies are minimal. Similarly, in our problem the avail-
ability of an edge depends on the path taken. However, in a
MLP, the graph never changes and the latencies are the result
of a simple sum.

On the HCP, some theoretical analysis focuses on in-
vestigating conditions, e.g., vertex degree (Dirac 1952; Ore
1960), under which a graph contains a Hamiltonian cy-
cle. For instance, Pósa (Pósa 1976) and Komlós and Sze-
merédi (Komlós and Szemerédi 1983) proved that there is
a sharp threshold for Hamiltonicity in random graphs as
the edge density increases. An intuitive approach to finding
a Hamilton cycle is to use a depth-first-search (DFS). Ru-
bin (Rubin 1974) introduced some rules to prune the search
tree. His rules do not improve the worst-case computation
time O(n!), where n is the number of vertices, however sta-
tistical analysis has shown that using such criteria improves
the average computation time (Vandegriend 1999; Sleegers
and Berg 2021).

In terms of applications of TSP in automated plan-
ning, different variants have been used in coverage route
planning (Applegate et al. 2011), e.g., for an autonomous
lawnmower (Arkin, Fekete, and Mitchell 2000), or for au-
tonomous drilling of a PCB (Grötschel, Jünger, and Reinelt
1991). Those most relevant to this paper are coverage plan-
ning problems whose environments change due to the cover-
age actions by agents, e.g., robots, that operate within them.
The open-pit mining scenario described earlier is an exam-
ple of such a coverage planning problem for which a spe-
cialised solver for the mining case is proposed by (Mansouri,
Lagriffoul, and Pecora 2017). Autonomous harvesting is an-
other instance where heavy vehicles should not pass through
the areas already harvested to avoid soil compaction. The
harvested areas also limit the mobility of harvesting ma-
chines, hence affecting the reachability among the nodes
representing areas to be harvested. Ullrich, Hertzberg, and
Stiene (Ullrich, Hertzberg, and Stiene 2014) formulate this

application as an optimization problem for which a spe-
cialised solver is also proposed. In both cases described
above, the authors did not study the theoretical underpinning
of the problem, nor provide a general solution that can easily
be employed for other instances of problems with traversal-
dependent edge deletion.

3 Problem statement
In this section, we formally define self-deleting graphs and
introduce the corresponding notions of walks and paths. We
then proceed to give a formal definition of the HCP-SD and
the TSP-SD problems.
Definition 1. A self-deleting graph S is a tuple S = (G, f)
where G = (V,E) is a simple, undirected graph and f :
V → 2E . The function f specifies for every vertex v ∈
V which edges f(v) are deleted from E if the vertex v is
processed. We refer to f as the delete-function.

If a vertex v is processed, we delete edges f(v) from G.
For a self-deleting graph S and set X ⊂ V of vertices, the
residual graph GX of S after processing X is defined as:

GX = G \
⋃
v∈X

f(v).

We call a simple path p = (v1, ..., vx) in a self-deleting
graph f -conforming if for every 1 ≤ i < x the edge
ei = {vi, vi+1} is in the residual graph G{v1,...,vi}. An f -
conforming simple path p traverses the graph G while pro-
cessing every vertex on p when it is visited.

In contrast to a path, vertices on a walk can be visited
more than once. For a walk on a self-deleting graph, a vertex
is processed when it is visited for the last time. Formally,
we call a walk w = (v1, ..., vx) f -conforming if for every
1 ≤ i < x the edge ei = {vi, vi+1} is in the residual graph
G{v1,...,vi}\{vi+1,...,vx}.

Following standard terminology we call a sequence of
vertices c = (v1, ..., vx, v1) an f -conforming cycle if
(v1, ..., vx) is an f - conforming path and the edge {vx, v1}
exists in the residual graph Gc. Then, a Hamiltonian cycle of
self-deleting graph S is an f -conforming cycle that contains
all vertices of S exactly once.
Problem 1. Given a self-deleting graph S = (G, f), the
Hamiltonian Cycle Problem on Self-Deleting graphs (HCP-
SD) is to find a Hamiltonian cycle on S.
Problem 2. Given a self-deleting graph S = (G, f), the
weak Hamiltonian Cycle Problem on Self-Deleting graphs
(weak HCP-SD) is to find an (f -conforming) closed walk
on S that contains every vertex at least once.
Observation 1. Every Hamiltonian cycle of S is a Hamilto-
nian cycle of G.

This implies that the HCP-SD is at least as hard as finding
a Hamiltonian path.

Using a weighted graph as the underlying graph of a self-
deleting graph we can define optimization problems on self-
deleting graphs as follows.
Problem 3. Given a self-deleting graph S = (G, f), where
G is a weighted graph, the Travelling Salesperson Problem



on self-deleting graphs (TSP-SD) is to find a shortest Hamil-
tonian cycle on S.

Problem 4. Given a self-deleting graph S = (G, f),
the weak Travelling Salesperson Problem on self-deleting
graphs (weak TSP-SD) is to find a shortest (f -conforming)
closed walk on S that contains every vertex at least once.

4 Properties of self-deleting graphs
In this section, we provide some formal analysis of self-
deleting graphs, in comparison to static graphs. First, we
analyse path segments in self-deleting graphs.

Lemma 1. Let S = (G, f) be a self-deleting graph and p =
(v1, ..., vx) be an f -conforming path of S. For every 1 ≤
i < j ≤ x it holds that the path segment pi,j = (vi, ..., vj)
is an f -conforming path of Si,j = (G′, f) where G′ is the
induced subgraph of G on the vertices (vi, ..., vj).

Proof. Let p = (v1, ..., vx) be an f -conforming path of S
and let 1 ≤ i < j ≤ x. By definition, the path segment
pi,j = (vi, ..., vj) is an f -conforming path of Si,j = (G′, f)
if for every i ≤ k < j it holds that the edge ek = {vk, vk+1}
is in the residual graph G′

{vi,...,vk}. We now show that, for
every i ≤ k < j, the edge ek = {vk, vk+1} is in the residual
graph G′

{vi,...,vk}.
Assume for a contradiction there is a k with i ≤ k < j

where ek /∈ G′
{vi,...,vk}. There are two possible reasons for

this.

1. ek /∈ E(G′): Since ek is in E(G), G′ cannot be an in-
duced subgraph of G and we have a contradiction.

2. ek gets deleted by some f(vy), i ≤ y ≤ k: If ek ∈
∪i≤y≤kf(vy) then ek ∈ ∪1≤y≤kf(vy) and therefore
ek /∈ G{v1,...,vk}. Since ek /∈ G{p1,...,pk} the path p is
not f -conforming and we again arrive at a contradiction.

Since both cases yield a contradiction, the lemma holds.

Let p = (v1, ..., vx) be an f -conforming path from vertex
v1 to vertex vx and let |p| denote the length of the path p.
We call p a shortest f -conforming path from v1 to vx if for
every other f -conforming path p̂ = (v1, ..., vx) from v1 to
vx it holds that |p| ≤ |p̂|.
Lemma 2. Let p = (v1, ..., vk) be a shortest f -conforming
path from v1 to vk on a self-deleting graph S = (G, f). The
the following two statements hold:

1. For every 1 < i < k it holds that the path pi =
(v1, ..., vi) is not necessarily a shortest f -conforming
path in S.

2. It further holds that the path p̂i = (vi, ..., vk) is a short-
est f -conforming path from vi to vk in the self-deleting
graph S′ = (G{v1,...,vi}, f).

Proof. Let p = (v1, ..., vk) be a shortest f -conforming path
from v1 to vk on a self-deleting graph S = (G, f). For any
1 < i < k we denote the path segment of p from v1 to
vi by pi and the path segment from vi to vk by p̂i. Due to
Lemma 1, the path segments pi and p̂i are f -conforming.
We now prove the two statements separately.

1. A shortest f -conforming path from v1 to vi could contain
a vertex vj for which f(vj) deletes an edge needed in the
second part p̂i of the f -conforming path p. So, pi is not
necessarily a shortest f -conforming path from v1 to vi.

2. We now prove that the path p̂i = (vi, ..., vk) is a short-
est f -conforming path from vi to vk in the self-deleting
graph S′ = (G{v1,...,vi}, f). For a contradiction, assume
there is a 1 < i < k with a shortest f -conforming path w
from vi to vk with |w| < |p̂i| in S′. We then consider the
following two cases.

(a) w and pi do not share a vertex, as depicted in Fig. 2(a).
If this is the case, then the path from v1 to vk that con-
sists of the path pi and the path w is shorter than the
path p. This is a contradiction.

(b) w = (vi, w1, ..., wl, vk) and pi share a vertex
vx = wy , as depicted in Fig. 2(b). Then the path
(v1, ..., vx, wy+1, ..., vk) is shorter than p. This is a
contradiction.

Lemma 2 indicates the inherent difference between static
and self-deleting graphs. In static graphs, every segment of a
shortest path is a shortest path. This fact is exploited by dif-
ferent algorithms, often based on dynamic programming, for
path finding in static graphs, e.g. Dijkstra’s algorithm (Di-
jkstra 1959). As a consequence, these types of algorithms
cannot easily be applied to self-deleting graphs.

Lemma 3. Let S = (G, f) be a self-deleting graph where,
for every vertex v ∈ V (G), f(v) deletes only edges that are
incident to v, then the Hamiltonian path problem on self-
deleting graphs is equivalent to the Hamiltonian path prob-
lem on directed graphs.

Proof. We construct a corresponding directed graph D =
(V,A), to a self-deleting graph S = (G, f), where f(v)
deletes only edges incident to v, as follows.

V (D) = V (G),

A(D) = {(v, w) | {v, w} ∈ E(G) ∧ {v, w} /∈ f(v)}

(Here (v, w) describes the directed arc from v to w, while
{v, w} describes the undirected edge between v and w.)

Another way to explain this construction is as follows. We
make G a directed graph in which each edge is replaced by
two arcs in opposite directions. For every vertex v we then
delete all outgoing arcs corresponding to an edge in f(v).

We now prove that a path p is f -conforming in S if and
only if p is a path in D.

(a) (b)

Figure 2: Illustrations for the proof of Lemma 2: If the path
w is shorter than the path p̂i then p was not a shortest path.



⇒: If the path p = (v1, ..., vk) is f -conforming, it holds
by definition that for every 1 ≤ i < k the edge {vi, vi+1}
is in the residual graph G{v1,...,vi}. Since {vi, vi+1} ∈
G{v1,...,vi} it holds that {vi, vi+1} ∈ E(G). Also since
{vi, vi+1} ∈ G{v1,...,vi} it holds that the edge {vi, vi+1} /∈
f(vx) with 1 ≤ x ≤ i, so the edge {vi, vi+1} is in particular
not in f(vi). Therefore the arc (vi, vi+1) is in A(D).
⇐: Now, let p = (v1, ..., vk) be a simple path in D. So,

for every 1 ≤ i < k the arc (vi, vi+1) is in A(D). For every
arc a = (v, w) ∈ A(D) it holds that the edge e = {v, w}
is in E(G) and e /∈ f(v). Since (vi, vi+1) is in A(D), it
follows that {vi, vi+1} /∈ f(vi). Since no other vertex vn
with n < i is incident to e it follows that {vi, vi+1} /∈ f(vm)
for every m ≤ i. So {vi, vi+1} ∈ Gv1,...,vi . Therefore p is
f -conforming in S.

Every path through D is an f -conforming path through
S and vice-versa. So the Hamiltonian path problem on S is
equivalent to the Hamiltonian path problem on D.

A sequential ordering problem (SOP) is defined as a
graph G = (V,E) accompanied by a precedence graph P .
The precedence graph P is a directed graph defined on the
same set of vertices V . It represents the precedence relation
between the vertices of G. An edge from vi to vj in P im-
plies that vi must precede vj in any path through G. The
problem is to find a Hamiltonian path in G that does not
violate the precedence relation given by P .

Lemma 4. To every sequential ordering problem SOP
there is a corresponding self-deleting graph SSOP such that
a path p is a solution to SOP if and only if p is a Hamilto-
nian path of SSOP .

Proof. Let a SOP be given by the graph H and the prece-
dence graph P . Let pre(v) ⊆ V (H) be the set of vertices
that precede v in P , formally pre(v) = {w | (w, v) ∈
A(P )}. We construct the corresponding self-deleting graph
SSOP = (G, f) as follows.

G = H,

f(v) =
⋃

w∈pre(v)

{e ∈ E(G) | e incident to w}

⇒: Let p = (v1, ..., vk) be a path in H that satisfies the
precedence relations given in P . So, for every 1 ≤ i ≤
j < k the vertices vj and vj+1 are not required to pre-
cede vi. Thus, the edges (vj , vi) and (vj+1, vi) are not in
P and vj , vj+1 /∈ pre(vi). So by construction of f the edge
(vj , vj+1) does not get deleted by any f(vi) for 1 ≤ i ≤ j.
This implies that the edge (vj , vj+1) is in the residual graph
G{v1,...,vj}. Thus, p is f -conforming in SSOP .
⇐: If the path p = (v1, ..., vk) is f -conforming in SSOP

it holds per definition that for every 1 ≤ i < k the edge
(vi, vi+1) is in the residual graph G{v1,...,vi}. Thus, it holds
that the edge (vi, vi+1) has not been deleted by any vertex vx
with 1 ≤ x ≤ i. It follows that vi and vi+1 are not in pre(vx)
with 1 ≤ x ≤ i. Thus, vi and vi+1 are not required to be
visited before vx with 1 ≤ x ≤ i and the path p satisfies the
precedence conditions in P . It is therefore a valid path in H .

We proved that any valid path in a SOP is f -conforming
in the corresponding self-deleting graph and vice-versa. This
holds in particular for Hamiltonian paths.

5 Exact and heuristic solvers
Next, we describe two solvers for the HCP-SD and TSP-SD
problems: one that produces an exact solution and one which
relies on heuristics.

Exact solvers
An intuitive approach to solving the HCP on a self-deleting
graph S is to employ a DFS in a forward-search manner:
starting with some vertex p1, we delete all edges in f(p1) in
G, then choose a neighbour p2 of p1 as the next vertex on
the path and repeat until the path is a Hamiltonian cycle or
the current path cannot be extended, in which case we back-
track. This approach can be improved with methods used in
algorithms for Hamiltonian cycles in conventional graphs,
namely graph/search-tree pruning, as introduced by (Rubin
1974; Vandegriend and Culberson 1998). Their algorithms
identify edges that must be in a Hamiltonian cycle, e.g.,
edges incident to a vertex of degree 2, and employ these re-
quired edges to improve the average runtime of a forward
DFS. However, even with these pruning rules, the algorithm
fails to detect paths that cannot be extended to a Hamilto-
nian cycle early. This is due to the fact that the edge deletion
is traversal dependent.

Since failures occurring at a late stage are often due to the
choices at an earlier stage of the search, we propose a back-
ward search algorithm, shown in Algorithm 1. This takes
advantage of the late failures to greatly reduce the size of
the search tree. Instead of exploring the path from a start
vertex and deleting edges subsequently, Algorithm 1 starts
by deleting all edges that would get deleted at some point. It
then explores the graph in a backward fashion, adding edges
according to visited vertices as follows. During this back-
ward exploration of the graph, edges are added, so searching
for required edges, as is done in conventional forward DFS
for Hamiltonian cycles, is not possible.

The first call of backwardSearch receives a single start
vertex as the path and the self-deleting graph. During the
repeated calls of backwardSearch, the path grows back-
wards, so the first call will be with path = (v1), the next
with path = (vn, v1), then path = (vn−1, vn, v1) and so
forth. During each call of backwardSearch the residual
graph R with respect to path is calculated (line 1). In line
2 follows a goal check where it is first verified whether the
path has the correct length and if so, whether the missing
edge between both end vertices exists (line 3). If the initial
check fails, the algorithm calculates the set SV of vertices
that are candidates for the second vertex in the Hamiltonian
path in line 9. If all the candidates are already on path the
path cannot be extended to a Hamiltonian cycle. We check
this condition in line 10. In line 13 the set N of neighbours of
the first vertex of the current path in R is calculated. For ev-
ery neighbour, backwardSearch is called with an extended
path until one of them returns a Hamiltonian cycle.

Lemma 5. Let S = (G, f) be a self-deleting graph. If there



Algorithm 1: Backward search algorithm for finding a
Hamiltonian cycle in a self-deleting graph
Input: Current path, the self-deleting graph
Output: Hamiltonian cycle of S or failure
Function: backwardSearch (path, S = (G, f))

1: R← G \ {e ∈ f(v) | v /∈ (path \ path.last)}
2: if |path| = |V (G)| then
3: if (path.last, path.first) ∈ E(R) then
4: return [path.last] + path
5: else
6: return failure
7: end if
8: else
9: SV ← {v ∈ V (G)|(path.last, v) ∈ E(G) ∧

(path.last, v) /∈ f(path.last)}
10: if SV \ path = ∅ then
11: return failure
12: else
13: N ← {v | (path.first, v) ∈ E(R) ∧ v /∈ path}
14: for v ∈ N do
15: result← backwardSearch([v] + path, S)
16: if result ̸= failure then
17: return result
18: end if
19: end for
20: return failure
21: end if
22: end if

exists at least one Hamiltonian cycle in S, then the backward
search finds a Hamilton cycle.

Proof. We prove by contradiction: Assume there exists a
Hamiltonian self-deleting graph S = (G, f), where the
algorithm returns failure. Let n = |V (G)| and P =
(p1, ..., pn+1) with p1 = pn+1 a Hamilton cycle of S. We
analyse certain function calls to prove the lemma.

If backwardSearch((p2, ..., pn+1), S) is called, line 1
calculates the residual graph R = G \ f(p1). Since
|(p2, ..., pn+1)| = n, line 3 triggers. The algorithm then
checks whether the edge (p1, p2) exists in R. If so, P is re-
turned, which is a contradiction since we assumed failure
is returned. However, if there is no edge (p1, p2) in R then p
is not a Hamiltonian cycle, contradicting the assumption.

Therefore backwardSearch((p2, ..., pn+1), S) is never
called. So there is a largest number 2 ≤ x ≤ n for
which backwardSearch((px, ..., pn+1), S) is never called.
We analyse the call backwardSearch((px+1, ..., pn+1), S).

In line 1 the residual graph R = GV (G)\{px+1,...,pn} is
calculated. Since |(px+1, ..., pn+1)| < |V (G)|, the algo-
rithm continues in line 8. In line 9 the set SV of candidates
for the second vertex on the Hamiltonian cycle starting in
p1 is calculated. Since P is a Hamiltonian cycle the set con-
tains at least p2. And since the current path is px+1, ..., pn
with x ≥ 2, p2 is not in path and the if-condition in line 10
fails.

We continue in line 13. Here, the list of neighbours N of
current first vertex in R that are not already on the path is

calculated. We now consider two cases:
(a) px /∈ N : N contains all neighbours of px+1 in R. So

if px /∈ R then there is no edge between px and px+1 in the
residual graph after processing p1, ..., px. Thus, p is is no
Hamiltonian cycle, a contradiction. So (b) must hold.

(b) px ∈ N : The only reason for not calling
backwardSearch((px, ..., pn+1), S) is that another call like
backwardSearch((y, px+1, ..., pn+1), S) with y ∈ N does
not return failure. Thus the algorithm finds another Hamilton
cycle, this again is a contradiction.

Since we always arrive at a contradiction, the assumption
does not hold. Thus, if S is Hamiltonian the algorithm finds
a Hamiltonian cycle.
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Figure 3: Explored nodes in the forward-DFS and backward-
DFS on the dataset random24-100

In order to investigate the behaviour of both exact algo-
rithms, we first need to define the Average Vertex Degree
(AVD) for a self-deleting graph. AVD is a metric commonly
used in the analysis of static graphs for the HCP. Let k be
the number of times an edge e appears in the delete func-
tion f . The probability that the edge will be deleted after
processing any l vertices from V in arbitrary order is given
by p(e, l) = 1−

∏k−1
i=0

(n−l)−i
n−i . Then, the expected “static”

AVD of S after processing any l vertices can be determined
as δ(l) = (n − 1) − 2

n

∑
e∈E p(e, l). From here, we can

define the AVD of S as 1
n

∑n
l=1 δ(l).

A dataset random24-100 of 14400 random self-deleting
graphs with 24 vertices was generated in order to compare
both exact algorithms. The delete function f was sampled
uniformly randomly with overlapping of f(v) for two dis-
tinct v allowed. I terms of AVD, the dataset uniformly cov-
ers the interval from 0 to 12. In an experimental compari-
son between backward and forward search, both solving the
same dataset random24-100 and capped at 10000 expanded
search nodes, the backward search performs much better. It
was able to solve all instances and on average was able to



identify a Hamiltonian instance after 27.9 explored nodes
and a non-Hamiltonian instance after 1.6 explored nodes.
The forward search failed to find a solution within the limit
for most instances. The diagrams in Figure 3 show the av-
erage explored nodes by which either algorithm was able to
decide the instance or the limit was reached.

Figure 4(a) shows the percentage of infeasible instances
decided by the backward search at various search depths
while using the same random24-100 dataset. Infeasible in-
stances with AVD less than 3 are detected instantly at depth
1. The hardest instances to detect are located between AVDs
6 and 7. Above 7, the dataset does not contain any infeasible
instances. Finally, more than 80% of infeasible instances are
detected at depth 10, less than half of |V |.

Figure 4(b) illustrates how the percentage of detected in-
feasible instances at various depths depends on |V |. At a
fixed depth, the percentage unsurprisingly decreases with in-
creasing |V |, but even for |V | = 200 about 50% instances
are detected at depth 10. Interestingly, the percentage in-
creases when using a relative depth and close to 100% in-
feasible instances are detected at depth 0.2|V |, when |V | >
100. This experiment indicates that the backward search al-
gorithm’s ability to detect infeasible instances of HCP-SD
early on in the search improves with increasing |V | and,
consequently, the algorithm may be scalable enough to find
feasible solutions even for instances with |V | of practical in-
terest.
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(b) random datasets with 10-200 vertices
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Figure 4: Backward search behaviour

Heuristic solver
The proposed exact solver is likely to provide limited scala-
bility when addressing optimization problems due to its ex-
haustive nature. Also, finding near-optimal solutions is often
sufficient in practical applications, therefore, heuristic algo-
rithms may be the only computationally feasible approach to
obtain them. A common procedure is to design a problem-
specific metaheuristic algorithm, that is tailored to a par-
ticular application. Various heuristic approaches were suc-
cessfully applied to problems related to the TSP-SD, such
as metaheuristics based on local search (Helsgaun 2017),
evolutionary optimization (Sabar et al. 2019) or swarm opti-
mization (Xiang et al. 2020).

In this paper, we use a generic metaheuristic solver for
problems with permutative representation (Woller, Hrazdı́ra,
and Kulich 2022), so that we can remain application agnos-
tic regarding multiple variants of TSP-SD. The solver im-
plements several high-level metaheuristics and also a bank
of low-level local search operators, perturbations and con-
struction procedures. These can be readily applied to vari-
ous problems, whose solution can be encoded as a sequence
of potentially recurring nodes. The only user requirement is
to specify a set of nodes A, lower and upper bounds L,U
of the frequency of their occurrence in a solution sequence
x = (x1, x2, ..., xn), where xi ∈ A; a fitness function f(x)
and an aggregation of penalty functions g(x). The bounds
are always respected by the solver, whereas the penalty func-
tions are treated as soft constraints. Their purpose is to direct
the search process towards valid solutions. TSP-SD can be
described in the solver formalism as follows:

A = {v1, v2, ..., vn} = V (G),

L = (1, 1, ..., 1) = U,

f(x) =

n∑
i=1

∥ei∥,

g(x) =

n∑
i=1

gi(x), where

gi(x) =

{
0, if ei ∈ E(G{x1,x2,...,xi}),

M, otherwise.

Here, the set of nodes to visit A corresponds to the set of ver-
tices V (G). Each node vi has to be processed exactly once,
thus Li = Ui = 1. Then, ei is the edge {xi, xi+1 mod n}
and G{x1,x2,...,xi} is the residual graph after processing first
i nodes in x. The goal is to minimize the total length of the
cycle given by x. A large constant M is added to the penalty
g(x) via gi(x) for attempting to use an already deleted edge.

For the weak TSP-SD, both the set of nodes A and the
respective bounds L,U are defined in the same way as in
the TSP-SD, but the definition of f(x) and gi(x) differs:

f(x) =

n∑
i=1

∥pi∥,

gi(x) =

{
0, if pi exists in G{x1,x2,...,xi},

M, otherwise.



Here, pi is the shortest path from xi to xi+1 mod n in
the residual graph G{x1,x2,...,xi}, which is found using A*.
Thus, the time complexity of weak TSP-SD fitness evalu-
ation is higher than TSP-SD by O(|E|). Only the first and
last vertex of pi are processed. If pi does not exist, a large
constant M is added to the penalty g(x) via gi(x). The goal
is to minimize the total length of the closed walk given by x.

6 Statistical analysis of HCP-SD
In this section, we investigate properties analogous to those
previously studied in the literature for HCP, since they are
crucial for understanding behaviour and evaluating the per-
formance of the proposed solvers. For the HCP, the proba-
bility density function of a randomly generated graph being
Hamiltonian was experimentally shown to be sigmoidally
shaped around a certain threshold point (Sleegers and Berg
2021). This threshold corresponds to the graph’s AVD, for
which the probability is approximately 0.5. Their experi-
ments indicate that HCP instances close to this boundary
are the most expensive to decide for various exact algo-
rithms in terms of computational cost, although isolated
clusters of hard instances were also identified far away from
it. The location of this threshold has been proved to be
ln(V ) + ln(ln(V )), which is called the Komlós-Szemerédi
bound (Komlós and Szemerédi 1983).

First, we replicated the experiment from (Sleegers and
Berg 2021), showing the probability density function of
Hamiltonicity for a randomly generated graph with 24 ver-
tices. For this purpose, we generated a dataset of 100 ran-
dom graphs for every number of edges from 1 to 144, re-
sulting in 14400 graphs with AVD ranging from 0 to 12.
The HCP was decided for the whole dataset using the Con-
corde TSP solver and the result of the experiment is shown
in Figure 5(a) - HCP (exact). The dataset random24-100
of 14400 random self-deleting graphs with 24 vertices was
created analogously, covering the same range of AVDs. On
this dataset, HCP-SD was decided with both an exact and
heuristic solver and weak HCP-SD with a heuristic solver
described in Section 5. The exact solver was always termi-
nated after successfully deciding the problem, whereas the
heuristic solver was terminated either after finding a feasible
solution, or reaching a time budget of |V | seconds. There-
fore, the heuristic solver’s results are suitable for assessing
the solver’s properties, rather than reasoning about the prob-
lem itself. Figure 5(a) indicates that the probability density
function of HCP-SD is shaped similarly to that of HCP but is
steeper and the threshold point is located further to the right.

The weak HCP-SD appears to have similar properties,
but there is no exact solver available, and using the heuris-
tic solver may affect the location of the threshold point, as
it may label a feasible instance as infeasible. We can see
that instances with AVD less than 3 that were shown to be
easy to decide for the exact solver in Figure 4(a), actually
have zero probability of being Hamiltonian. Instances with
AVD between 6 and 7, which were shown to be the hardest
to decide, are located close to the HCP-SD Hamiltonicity
threshold point. Thus, in a similar fashion to HCP, HCP-SD
instances close to the threshold point are computationally
harder for the exact solver.

Second, 12 more datasets of random self-deleting graphs
with 10 to 200 vertices and uniformly randomly sampled f
were generated to investigate the Hamiltonicity bound w.r.t.
to |V | for both variants of HCP-SD. Each of these datasets
was generated to cover an interval that contains the thresh-
old point of both problems and consisted of 2500 instances,
evenly distributed across the interval into groups of 50 in-
stances with the same AVD. Again, the HCP-SD was de-
cided with an exact and heuristic solver and the weak HCP-
SD with a heuristic solver, and the location of the thresh-
old point was determined for each dataset and problem. The
locations of the threshold points are shown in Figure 5(b),
thus showing a bound analogous to the Komlós-Szemerédi
bound. The bound HCP-SD (exact) follows a sublinear, pre-
sumably logarithmic trend, similar to the Komlós-Szemerédi
bound but faster growing. As for the weak HCP-SD, the
heuristic data evidently do not provide an accurate estimate
of the bound.
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Figure 5: Comparison of Hamiltonicity bounds

The threshold points should never be higher than for the
HCP-SD because all self-deleting graphs feasible in HCP-
SD are also feasible in weak HCP-SD. The bound HCP-SD
(heuristic) illustrates that the heuristic solver consistently
struggles with finding feasible solutions close to the real
Hamiltonicity bound, found by the exact solver.



7 TSP-SD solvers evaluation
So far, we have focused only on the results relevant to de-
cision problems, but both proposed solvers are designed to
address the formulated optimization problems as well. Each
solver has unique properties that are investigated in a series
of eight experiments on a newly created dataset1. The dataset
consists of 11 instances of self-deleting graphs with a size
ranging from 14 to 1084 vertices. The instances are selected
from the TSPLIB library (Reinelt 1991), but a uniformly
randomly generated delete function f is added. In terms of
the AVD, most of the instances are generated close to the
HCP-SD Hamiltonicity bound of the heuristic solver, so that
they could be solved by the heuristic solver alone. The fol-
lowing naming format is used: original name|V |-AVD.

The heuristic solver offers a portfolio of alternative com-
ponents, each suitable for a different set of problems with
permutative representation. The solver must be tuned to
achieve the best performance for a specific problem. The
tuning was carried out using the irace package (López-
Ibáñez et al. 2016) with a tuning budget of 2500 ex-
periments. The configuration obtained is shown in Ta-
ble 1. The tuner selected the Basic Variable Neighborhood
Search (VNS) (Hansen et al. 2019) to use as a high-level
metaheuristic and the Pipe Variable Neighborhood Descent
(VND) (Duarte et al. 2018) to control the local search. The
results of the exact solver were generated on a dedicated ma-
chine with Ubuntu 18.04 OS, Intel Core i7-7700 CPU. Ex-
periments using the heuristic solver were generated on an
AMD EPYC 7543 CPU cluster. Each instance was solved
once by the exact solver and 50 times by the heuristic solver,
since it is stochastic. The heuristic solver always had a time
budget of 10|V | seconds per single run. We present the re-
sults in Tables 2, 3 and 4. Individual experiments are referred
to by the column letter of the corresponding table. Finally,
the relative improvement brought by an experiment B rela-
tive to an earlier experiment A in a particular instance i is
calculated as 100× (1− obji(B)

obji(A) ), where obji(A) is the ob-
jective value on i in A. This value is eventually averaged
across the entire dataset.

The proposed backward search is introduced as a decision
algorithm for the HCP-SD in Algorithm 1. To address the
optimization problem TSP-SD, only a slight modification is
required. The algorithm does not stop when the first valid so-
lution is found (line 4). Instead, it continues to search until
a given time limit is reached while storing the best solution
found so far. Another minor modification is the order of ex-
pansion at line 14. In the default variant, the nodes v ∈ N
are traversed in arbitrary order, determined by the iterator
implementation of the set N . In the following experiments, a
greedy expansion is also tested. In this variant, nodes v ∈ N
are sorted according to their distance from path.first and
expanded from closest to farthest.

Table 2 documents the performance of the exact TSP-SD
solver. The backward search performs the path expansion in
default order in experiments in columns A and B, whereas
greedy expansion is used in experiments in columns C and

1All datasets and codes are publicly available at blinded

D. Column A presents the objective values and computation
times needed to find the first valid solution of TSP-SD while
using the default expansion. A solution is found within one
second for instances with up to |V | = 202 and within one
minute for all instances in the dataset. The dataset contains
two variants of the berlin52 instance with different values of
AVD, from which the berlin52-10.4 instance is closer to the
Hamiltonicity bound. Finding a valid solution for berlin52-
10.4 requires 10 times more time than berlin52-13.2. Thus,
AVD seems to be an important factor playing against the
backward search. The scalability of the exact solver in this
experiment is surprisingly good, as was already indicated in
Figure 4(b).

In Table 2, column B, the exact solver was given a bud-
get of 12 hours to solve the TSP-SD for each instance.
The first three were solved to optimality, but the remain-
ing eight reached the time limit. On average, the first valid
solution was improved by 9.75%, but the improvement de-
creases with increasing instance size. In the case of the three
largest instances, the improvement is only 1%. This experi-
ment only confirms the expectation of poor scalability when
using an exact approach in an optimization problem due to
its exhaustive nature. Unlike in the previous experiment, the
berlin52-10.4 variant was actually easier to solve when ad-
dressing the optimization problem, as the backward search
tree is presumably pruned more with a lower AVD.

Table 2, column C, depicts the benefit of using the greedy
expansion in the backward search. The computation times
needed to find the first valid solution are slightly, but con-
sistently better than with the default expansion. More im-
portantly, the objective values are frequently more than ten
times better than with the default expansion, which is a con-
siderable improvement brought by a simple heuristic rule.
On average, the first valid solutions found with the greedy
expansion are better by 56% than with the default expan-
sion. The improvement increases with increasing instance
size and is around 90% for the four largest instances. As
shown in Table 2, column D, increasing the time budget to
12 hours further improves the objective by 6% on average
relative to the first valid greedy solutions. Similarly to ran-
dom expansion, this improvement decreases with increasing
instance size and is less than 1% for the largest instance.

Table 3, column A, presents the results of the heuristic
solver alone on the TSP-SD. Each instance was solved 50
times with a time budget of 10|V | seconds, e.g. 140 sec-
onds for the burma14-3.1 instance. The optimal solution was
found for the two smallest instances. However, the solver
cannot find a valid solution every time and fails entirely to
provide any valid solutions in all 50 runs for the berlin52-
10.4 instance. In terms of solution quality, the best solutions
found by the heuristic solver alone are worse by 26% on
average than the first valid solutions found by the greedy ex-
act solver. Furthermore, the mean success rate is only 62%.
The heuristic solver is expected to converge faster than the
exact solver, but presumably spends a large portion of the
time budget on finding a valid initial solution instead. This
assumption is confirmed in Table 3, column B, where the
heuristic solver is initialized with the first valid solution
found by the exact solver (Table 2, column C). Here, the



Component Value
metaheuristic basicVNS (kmin = 7, kmax = 10)
construction nearestNeighbor
perturbation randomMoveAll (allowInfeasible = true)
local search pipeVND (firstImprove = true)
operators centeredExchange (p ∈ {1, 2, 3, 5}), moveAll (p ∈ {2, 10})

relocate(p ∈ {1, 2, 3, 4, 5}), exchangeIds
exchange(p, q ∈ {(1, 2), (2, 4), (3, 4)})
reverseExchange(p, q ∈ {(1, 2), (2, 2), (3, 3), (3, 4), (4, 4)})

Table 1: Heuristic solver - tuned configuration

Expansion default greedy
Stop condition first valid 12 hours first valid 12 hours
Instance ↓ obj. time (s) obj. time (s) obj. time (s) obj. time (s)
burma14-3.1 55 <0.01 52 <0.01 52 <0.01 52 <0.01
ulysses22-5.5 174 <0.01 141 0.02 173 <0.01 141 0.02
berlin52-10.4 33388 0.37 23866 2942 29302 0.16 23866 2858
berlin52-13.2 28470 0.03 19417 43200 18461 <0.01 17938 43200
eil101-27.5 3447 0.10 3128 43200 1715 0.01 1642 43200
gr202-67.3 3073 0.48 2954 43200 934 0.08 862 43200
lin318-99.3 576916 1.43 560322 43200 116719 0.25 115058 43200
fl417-160.6 510858 3.23 493671 43200 31387 1.05 29747 43200
d657-322.7 872446 8.85 860343 43200 98599 4.41 93668 43200
rat783-481.4 174085 14.30 172727 43200 15652 8.39 15300 43200
vm1084-848.9 8616499 45.46 8527195 43200 349923 35.81 348304 43200

A B C D

Table 2: TSP-SD optimization results - exact solver

best solutions found by the warm-started heuristic solver in
10|V | seconds are better by 5% on average than those ob-
tained by the greedy exact solver in 12 hours and by 11.3%
than the first valid solutions. Most importantly, the improve-
ment does not decrease with increasing instance size and is
consistent across the entire dataset. The previous two exper-
iments reveal the drawbacks of both approaches: the exact
solver scales poorly in the optimization problem, whereas
the penalty-based heuristic solver does not provide a valid
solution reliably. On the other hand, the exact solver pro-
vides valid solutions to all instances very fast, and the heuris-
tic solver is much better at refining good-quality solutions.
Therefore, using both solvers sequentially, i.e., implementa-
tion of a warm start optimization, combines the advantages
of both.

Table 4 illustrates the benefit of relaxing TSP-SD to weak
TSP-SD. Every solution to the TSP-SD is also valid for the
weak TSP-SD, but the weak formulation might yield a bet-
ter optimal value. On the other hand, the fitness evaluation
in weak TSP-SD calculates the shortest paths pi instead of
reading the edge weights. Thus, the time complexity of the
evaluation is higher by O(|E|), and the heuristic solver is
drastically slower when solving the weak TSP-SD. The per-
formance of the heuristic alone is shown in Table 4A. Re-
garding the success rate, the heuristic is significantly more
successful than with TSP-SD, as the space of valid solutions
in the weak TSP-SD formulation is much larger. In Table 4,
column B, the best-known TSP-SD solution from the ini-
tialized heuristic solver (Table 3, column B) was used as an

initial solution. The experiment shows that only the TSP-
SD solution of the smallest instance was not improved in
the weak TSP-SD formulation. In the remaining instances,
the weak TSP-SD solution is better by 7% on average than
the best-known TSP-SD solution, so the relaxation is highly
beneficial.

8 Conclusions
We introduce new variants of the Hamiltonian Cycle and the
Travelling Salesperson Problems with self-deleting graphs,
for which formal definitions, theoretical analyses and two
solvers were proposed. In the future, we intend to investi-
gate general heuristics for the proposed backward search.
We also want to develop a new solver which works in the
space of feasible solutions. Finally, we intend to study how
to derive self-deleting graphs using motion planning tech-
niques to determine which edges should be deleted.
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Setup heuristic only, 10|V | seconds exact init., 10|V | seconds
Instance ↓ min mean±stdev valid (%) min mean±stdev
burma14-3.1 52 52±0 100 52 52±0
ulysses22-5.5 141 144±8 47 141 166±5
berlin52-10.4 - - 0 24456 25741±861
berlin52-13.2 18304 19192±648 40 17263 17835±277
eil101-27.5 1532 1728±87 51 1394 1513±55
gr202-67.3 1184 1352±87 78 812 849±11
lin318-99.3 189225 198324±8171 11 110698 110888±355
fl417-160.6 57686 68736±4830 95 27162 27259±140
d657-322.7 141030 150185±5227 100 85054 85347±162
rat783-481.4 21069 22078±619 100 13753 13833±115
vm1084-848.9 489491 513769±9452 100 325218 326067±503

A B

Table 3: TSP-SD optimization results - heuristic solver

Setup heuristic only, 10|V | seconds TSP-SD best init., 10|V | seconds
Instance ↓ min mean±stdev valid (%) min mean±stdev
burma14-3.1 52 52±0 100 52 52±0
ulysses22-5.5 129 129±1 100 129 129±0
berlin52-10.4 18701 20328±1174 100 18354 19740±480
berlin52-13.2 14579 15760±593 100 14838 16320±585
eil101-27.5 1313 1442±69 100 1240 1295±23
gr202-67.3 886 1060±122 100 779 790±2
lin318-99.3 135965 143259±5488 100 104422 104945±204
fl417-160.6 26035 26891±733 100 25976 26001±33
d657-322.7 96213 99730±1527 100 83402 83534±44
rat783-481.4 15072 15409±174 90 13599 13620±5
vm1084-848.9 352794 360779±3296 76 319335 319481±112

A B

Table 4: weak TSP-SD optimization results - heuristic solver
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