
Capability-Aware Task Assignment for Human-Robot Teams
for Empowering People with Disabilities

Carlo Weidemann,1 Hyun-Ji Choi,1 Ritesh Yadav,1
Stefan-Octavian Bezrucav,1 Burkhard Corves1

1 Institute of Mechanism Theory, Machine Dynamics and Robotics, RWTH Aachen University
lastname@igmr.rwth-aachen.de

Abstract

This paper presents a novel approach for task planning in in-
clusive assembly tasks employing human-robot collaboration
for people with disabilities. The motivation for this work is
to enable people with disabilities to participate in the first
labor market by leveraging collaborative robots to support
or enhance physical abilities. The proposed method encodes
agents’ capabilities in the Planning Domain Definition Lan-
guage (PDDL) and facilitates task planning within the ROS-
Plan framework. A real-world scenario of human-robot col-
laboration in a laboratory environment validates our novel ap-
proach. It shows that task planning for individual and collabo-
rative tasks is possible. In the validation, a human and a robot
assemble a product consisting of five cylinders and a rectan-
gular plate.

Introduction
In 2008, the United Nations passed the Convention on the
Rights of Persons with Disabilities (CRPD). Ever since the
right of participation in society for people with disabilities
(PwD) on an equal basis is supported. “The purpose of the
present Convention is to promote, protect and ensure the full
and equal enjoyment of all human rights and fundamental
freedoms by all persons with disabilities, and to promote re-
spect for their inherent dignity.” (United Nations 2006)

In addition to CRPD on an international level, national
legislation promotes active support for the inclusion of PwD
in the first labor market. For example, the Code of Social
Law IX (Sozialgesetzbuch Neuntes Buch - SGB IX) rein-
forces the rights of PwD in Germany. Despite legal support,
people with disabilities are still disadvantaged in society.
The unemployment rate of PwD reflects this situation. At
11.8 percent, the unemployment rate of PwD in Germany
is significantly higher than the rate of the general German
population at 7.3 percent (as of 2020) (Institut Arbeit und
Qualifikation der Universität Duisburg-Essen 2023).

Human-robot collaboration (HRC) workstations enable
the inclusion of PwD in the first labor. The assistance of
collaborative robots makes activities possible that otherwise
cannot be performed independently by humans with severe
disabilities. HRC is versatile and flexible in its application

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and has been integrated into several use cases in the indus-
try. For the organization of HRC appropriate task planning
modules are required, especially for PwD.

A task planning module allocates tasks of an overall pro-
cess to agents to reach an overall goal. There are several
approaches to task planning, e.g., cost-oriented (Roncone,
Mangin, and Scassellati 2017; Takata and Hirano 2011;
Tsarouchi et al. 2017), process-oriented (Müller, Vette, and
Mailahn 2016), and capability-based approach (Ranz, Hum-
mel, and Sihn 2017). However, existing HRC planning
methods are not applicable for inclusive workstations and
assume collaboration between robots and humans without
physical impairments. Established task planning approaches
do not respect the individuality of humans. In this regard,
particularly the individual physical capabilities of PwD are
significant. The allocation of a task must respect physical
impairments. Additionally, in HRC scenarios, robots do not
have all the capabilities to perform complex tasks indepen-
dently and replace all capabilities of a human. Exemplary,
the gripping of different objects is difficult to achieve with
a single gripper. Therefore, a new task planning module is
required that allocates tasks according to the agents’ capa-
bilities.

The main contributions of this work are:

• Development of a capability-based task planning module
for PwD in HRC assembly scenarios, and

• validation of the proposed module using a real test sce-
nario.

State of the Art
Task planning for inclusive workstations is a critical re-
search area that aims to provide equal opportunities for
individuals with different abilities such that they perform
their work effectively and efficiently. In recent years, sev-
eral task planning methods were developed that consider the
needs of diverse user groups, such as people with disabili-
ties or aging-related impairments. This section presents an
overview of the latest advancements by focusing on rele-
vant task planning methods for inclusive workstations and
on methods for determining the level of challenge of people.

This section also briefly introduces automated plan-
ning methods, the Planning Domain Definition Language
(PDDL), and the ROSPlan framework (Cashmore et al.



2015) with its extensions. ROSPlan is an automated state-
of-the-art task planning and execution framework that is de-
ployed in several industrial applications, but not yet for the
scenarios targeted in this work.

Task Planning Methods
For the task allocation between humans and robots, scien-
tists use decisive criteria. In the methods of Roncone, Man-
gin, and Scassellati (2017) and Takata and Hirano (2011),
the focus is set on the economic aspect of time in the form
of costs. The collaborative work is measured and evalu-
ated according to the total execution time. Another research
work by Tsarouchi et al. (2017) additionally considers the
changeover and waiting times. The orientation towards an
economic cost analysis aims at minimizing cycle times and
thus increasing production.

Another approach is process-oriented task planning by
Müller, Vette, and Mailahn (2016). For this purpose, the ex-
ecution of individual manufacturing steps by humans and
robots are weighted, compared, and evaluated, whereby the
evaluation is based on product and manufacturing require-
ments. Furthermore, Ranz, Hummel, and Sihn (2017) intro-
duce a capability-based task scheduling. In doing so, they
consider the universal capabilities of humans and robots and
evaluate them according to executability. This approach con-
siders the individual capabilities of humans and robots and
divides tasks with a focus on human work quality and satis-
faction. The Methods-Time-Measurement-Analysis (MTM-
Analysis) breaks down the overall process into fundamen-
tal motions and divide it into variable and invariable tasks
(Bokranz, Landau, and Becks 2006). Invariable tasks are
fixedly assigned to an agent and variable tasks are flexibly
assigned to the human or robot.

The latter approaches demonstrate the diversity and tech-
nological progress of the task planning of HRC. They
have in common that the individuality between humans and
robots is recognized and evaluated based on different crite-
ria. However, in the case of HRC in inclusive workstations,
it is not adequate to solely address the differences between
humans and robots. Regarding PwD, considering individ-
ual capabilities is decisive, as these vary greatly depending
on different impairments and the individuality of humans.
Thus, a generalization of human capabilities is not expedi-
ent for the development of inclusive workstations (Hüsing
et al. 2021).

Determining Level of Challenge
Weidemann et al. (2022) present an approach for determin-
ing the level of challenge of humans. On this basis, they de-
velop inclusive human-robot workstations using static task
allocation. To consider the individual capabilities of PwD,
they define 87 assessable capabilities f = (f1, f2, ..., fn)

T .
These capabilities are evaluated based on defined criteria. It
applies:

fi = [−3, 3] ∈ Z. (1)

The higher the value, the higher the level of capability fi.
The approach is divided into three steps. First, the over-
all task is divided into a sequence of standard processes

T = {SP1, SP2, ..., SPm}. Each standard process consists
of a sequence of basic elements bk,j , called required capa-
bility profiles (e.g., SP1 = {b1,1,b2,1,b3,1} for the basic
elements reaching, grasping, and bringing). Second, the ca-
pabilities are assessed and specified in the capability profile
p, which includes all capabilities in f but assessed for a spe-
cific person. Finally, the level of challenge ∆bk,j is obtained
by:

∆bk,j = bk,j − (p ∩ bk), (2)

where (p ∩ bk) is the sub-set of the person’s capability pro-
file p that includes the relevant capabilities for the required
capability profile bk. An element value of ∆bk,j < 0 in-
dicates an underchallenge, and an element value > 0 is an
overchallenge.

Weidemann et al. (2022) further develop this methodol-
ogy and implement a capability-based software tool called
RAMB (translated from German: Robotic Assistance for
Manufacturing including people with disaBilities). The
RAMB tool enables the implementation of the previously
explained method. It performs the comparison and the anal-
ysis automatically. Based on the analysis results, they dis-
tribute tasks between humans and robots: The robot takes
over all standard processes where the PwD is overchal-
lenged. The methodology is validated using a visual quality
inspection task. Based on the analysis, the robot manipulates
the parts while the human visually checks for defects and de-
cides whether a part is OK or not OK. The validation shows
that the capability-based approach is feasible. PwD can com-
plete tasks with the assistance of a collaborative robot, which
they could not perform without the robot’s assistance. Wei-
demann et al. (2022) allocate tasks statically. The overall se-
quence of standard processes is predefined. Therefore, the
focus of this work is the development of an adaptive task
planning module that respects the individual capabilities of
participating agents.

Automated Planning and the Planning Domain
Definition Language (PDDL)
A propositional automated planning problem can be repre-
sented as the tuple Π = (F,A, I,G) (Kambhampati and Sri-
vastava 1996), where:

• F is a set of Boolean propositions that describe the state
of the world;

• A is a set of actions, for each of which a set of precondi-
tions, a set of effects, and a cost are defined;

• I is the initial state of the system, represented by instan-
tiations, as true or false, of all propositions from F ; and

• G is the goal state of the system, represented by other
instantiations, as true or false, of all propositions from
F .

A solution for the planning problem is a plan π =
[a1, ..., an], an ordered sequence of actions.

The propositional temporal AI planning formulation ex-
tends the one presented above through a more complex rep-
resentation of actions. The set F , the initial state I and the
goal state G remain the same, while the new set A con-
tains new type of actions. For each action ai, conditions



at the start, at the end, or during its entire execution; ef-
fects at the start, or at the end of the execution; and a du-
ration are defined. With this formulation time is introduced.
Therefore, more realistic problems can be modelled. Action
synchronizations and actions concurrences are only some of
the new aspects that can be considered. The solution of a
propositional temporal AI planning problem is a schedule
σ = [⟨a1, t1, d1⟩, ..., ⟨an, tn, dn⟩], which integrates not only
a correct logical sequence of the conditions and effects, but
also the time ti when the action ai should start and its dura-
tion di.

Planning Domain Definition Language (PDDL) (Ghallab
et al. 1998) has become the standard language for the repre-
sentation of such planning problems. Beside its characteris-
tic syntax it imposes the splitting of the planning instance in
two parts, the domain and the problem. In the domain part,
the used propositions, in PDDL named predicates, the func-
tions, and the available actions are defined. The problem part
contains the definition of the used types, the initial and goals
state.

The ROSPlan Framework and its Extensions
The ROSPlan framework (Cashmore et al. 2015) handles
planning situations that are formulated as PDDL planning
problems and that must be executed within the ROS mid-
dleware (Quigley et al. 2009). This framework contains sev-
eral modules that first read PDDL files, translate their con-
tent into machine format, and save this in a database. The
database functions as a knowledge base because it gathers all
information about a planning situation: the definition of the
PDDL types, predicates, and actions; grounded PDDL pred-
icates describing the actual and final state of the planning
environment. The information from the knowledge base is
passed by another module of the ROSPlan framework to a
PDDL planner that generates a plan. In the next step, each
action of the plan can be sent for execution. During the exe-
cution of each action, the state of the world changes. These
changes are tracked by the knowledge base where the values
of the predicates are correspondingly updated.

The ROSPlan framework was extended with more mod-
ules like the Supervisor (Bezrucav and Corves 2020) or the
Action Interface Manager (Bezrucav et al. 2021). The Su-
pervisor enables a continuous sense-plan-act loop. Based on
the actual state of the system, a plan is generated whose ac-
tions are sent for execution. Upon execution failure (e.g.,
determined by specific sensing modules) or change of goals,
the Supervisor automatically triggers corresponding re-plan
procedures. Once a new plan is available, the sense-plan-act
loop is continued with the execution of the planned actions.

The Action Interface Manager (AIM) contains a descrip-
tion of planned actions that must be accomplished. For each
type of PDDL action, an Executor Finite State Machine
(EFSM) is saved as part of the AIM. Each state of the EFSM
contains a call to a specific ROS module (e.g., for trajectory
planning or navigation). The transitions between the states
are triggered by the outputs, success or fail (e.g., of the nav-
igation algorithm). For each planned action, the AIM first
reads the corresponding EFSM from a database. Afterward,
the manager instantiates the EFSM with the parameters of

Figure 1: Part of the EFSM Action Interface for a move
PDDL action represented as a graph.

the planned action (e.g., move goals) and calls the underly-
ing ROS modules based on the states of the EFSM and their
transitions. Exemplary, Figure 1 presents the EFSM action
interface of a move PDDL action for a planning problem
with mobile robots. The states of this EFSM contain calls to
the MoveBase Framework in which navigation goals are set
or the clearance of the map is triggered.

Methodology
In this paper, we develop a capability-based task planning
module, which is operated in ROSPlan. For this, the method-
ological approach of the RAMB tool is applied and trans-
ferred into PDDL. As already presented in section Deter-
mining Level of Challenge, a capability-based task plan-
ning module called RAMB is proposed by Weidemann et al.
(2022).

Modifications are required to implement this methodol-
ogy in PDDL. RAMB employs a process-oriented require-
ment profile. This step includes the breakdown of an overall
task into a sequence of standard processes. Then, each stan-
dard process is split into a sequence of basic elements. In
contrast to that, the requirement profile in PDDL is part-
oriented. In the part-oriented requirement profile, the rel-
evant capabilities are directly assigned to a certain part of
a given task. 87 assessable capabilities are used in RAMB,
whereas in PDDL the number of capabilities is reduced. We
only use relevant capabilities of the underlying task. There-
fore, the profiles become more compact. Through this ap-
proach, the requirements for each single part of a task can
be set and is respected by the task planning module.

The capability profiles in PDDL are extended by a pro-



file for a collaborative robot. Thus, robotic restrictions and
human capabilities can be considered. Thereby, technical re-
strictions for the robot are defined. For example, the limited
gripping width of the applied gripper is a technical restric-
tion that is described in the capability profile of the robot.
This modification expands the task planning module, con-
sidering the capabilities of all agents participating in the
HRC. In contrast, the RAMB tool only analyzes the level of
challenge of a person and allocates subtasks that represent
an overchallenge for the human to the robot.

The third modification is enforced due to technical lim-
itations in PDDL. Ratings with negative numbers have to
be avoided. Therefore, the rating limits of capabilities are
changed. In RAMB, each capability in the requirement and
capability profile is rated on a discrete scale from -3 to 3.
The capabilities in PDDL are rated analog to the guideline
in RAMB from 0 to 7. A minimum rating of 0 corresponds to
the rating -3 in RAMB, which means that a capability is not
required or that a capability is non-existent for an agent. The
maximum rating of 7 corresponds to a value of 3 in RAMB
and indicates that a capability is maximally manifested or
fully given by an agent.

With these modifications, the planning problem is formu-
lated in PDDL 2.1. Additionally, temporal and numerical as-
pects are regarded in the planning problem. The numerical
aspect enables the formulation and solving of the capability-
based planning problem by using mathematical expressions.

Capability and requirement profiles are set up with PDDL
functions. Figure 2 shows an example of a requirement pro-
file. Two required capabilities cap1 and cap2 are defined for
an assembly task of two parts p1 and p2 by assigning values
to the PDDL function req value. According to this example,
capability cap1 is required with a value of 1 to assemble p1,
while for p2 capability cap2 is required with a value of 5.
Capabilities cap2 and cap1 are not required for the assem-
bly of respectively part p1 or p2.

1 (= (req_value p1 cap1) 1)
2 (= (req_value p1 cap2) 0)
3
4 (= (req_value p2 cap1) 0)
5 (= (req_value p2 cap2) 5)

Figure 2: Requirement profile represented as functions in a
PDDL problem file.

The capabilities in the capability profiles are rated and
represented for each agent by using the function cap value.
Figure 3 shows an example of two profiles. These are inter-
preted as follows: agent1 possesses the capability cap1 with
a value of 1 and none in cap2; agent2 has no capability in
cap1, but has the capability cap2 with a value of 6.

The analysis determining the agent that fulfills the re-
quirement to manipulate a part is located in PDDL durative
actions. It is found in the definition of the action conditions.
Conditions describe an exact state before executing an ac-
tion. It is necessary to fulfill this state. Otherwise, the ac-
tion cannot be executed. The analysis step is given in lines
6-7 of Figure 4. For all declared capabilities, the capability

1 (= (cap_value agent1 cap1) 1)
2 (= (cap_value agent1 cap2) 0)
3
4 (= (cap_value agent2 cap1) 0)
5 (= (cap_value agent2 cap2) 6)

Figure 3: Capability profile represented as functions in a
PDDL problem file.

value for each agent is compared with the value of required
capabilities for each part. The agent whose capabilities are
greater than or equal to the required capabilities is allowed to
execute the action. Based on this comparison, a task plan is
generated. According to the examples in Figure 2 and 3, the
capability-based task plan would show that p1 is allocated
to agent1 and agent2 would take over p2.

1 (:durative-action action1
2 :parameters (?agent - agent ?part -

part)
3 :duration (= ?duration 1)
4 :condition (and
5 (at start (not_acting ?agent)) [...])
6 (at start (forall (?c - cap)
7 (>= (cap_value ?agent ?c) (req_value ?

part ?c))))
8 :effect (and
9 (at start (not (not_acting ?agent)))

10 [...]))

Figure 4: PDDL durative action in a PDDL domain file.

Validation
This section presents an experiment that validates the pro-
posed methodology. The experimental setup consists of two
agents (a robot and a human), in a laboratory environment.
The robot is a serial manipulator with a gripper. Besides the
agents, a working bench, five cylindrical parts, and a rectan-
gular plate are located in this environment.

In the selected planning situation, the human-robot team
should assemble a product from the five cylinders and the
rectangular plate. The allocation process of the actions to
the agents should consider the specific capabilities of each of
the agents and ensure a minimal execution time. The follow-
ing subsections present the planning problem that encodes
the considered planning situation and the extended ROSPlan
framework that enables the planning and execution of the ac-
tions.

Planning Situation Formulated in PDDL
The planning situation is formulated as a planning problem
in PDDL 2.1. The PDDL domain file contains the definition
of types, functions, predicates, and actions. Figure 5 presents
these definitions. For the selected scenario, the types repre-
sent the entities that are part of the experiment: the agents,
the physical parts, and the part poses (lines 1-4). Further-
more, predicates define the properties of these entities (lines
5-11), while the capabilities of the agents are modeled as
PDDL functions (lines 12-15).



1 (:types
2 agent part - object
3 robot human - agent
4 partpose - location)
5 (:predicates
6 (at ?obj - object ?partpose - partpose)
7 (on ?parent - object ?child - object)
8 (not_acting ?agent - agent)
9 (placed ?part - part)

10 (empty ?empty_partpose - partpose)
11 (magnet_part ?magnet_part - part))
12 (:functions
13 (req_joint_action ?part - part)
14 (cap_value ?agent - agent ?cap - cap)
15 (req_value ?part - part ?cap - cap))

Figure 5: PDDL types and predicates for the selected plan-
ning situation.

In the second part of the PDDL domain file, the ac-
tions are defined. Figure 6 shows exemplary the definition
of the pick and place two agents action. This action can be
planned if a set of conditions holds. Most of these condi-
tions are verified at the start of the action and are related
to: the positioning of the pieces (lines 5-7), the requirement
for collaborative action (line 8), and the verification of the
capabilities-requirements match (lines 9-12). The effects of
the pick and place two agents action describe how the posi-
tioning of the handled pieces has changed (line 13). Besides
this action, the PDDL domain file of the selected scenario
contains the definitions of five more actions.

1 (:durative-action
pick_and_place_two_agents

2 :parameters (?agent1 - agent ?agent2 -
agent ?part_above - part ?part_below
- part ...)

3 :duration (= ?duration 1)
4 :condition (and (at start (at ?

part_below ?start))
5 (at start (on ?part_above ?part_below))
6 (at start (placed ?parent1))
7 (at start (not (= ?parent1 ?parent2)))
8 (at start (= (req_joint_action ?

part_below) 1))
9 (at start (and (forall (?c - cap)

10 (>= (cap_value ?agent1 ?c) (req_value
?part_above ?c)))))

11 (at start (forall (?c - cap)
12 (>= (cap_value ?agent2 ?c) (req_value

?part_above ?c))))...)
13 :effect (and (at end (on ?part_below

?parent1)) ...))

Figure 6: Snippet of the definition of the
pick and place two agents PDDL action.

To fully described the planning situation, an initial state
and a set of goals must be set. This information is encoded in
the PDDL problem file. Figure 7 shows the PDDL problem
file for the selected scenario. This file starts with the instan-
tiation of the types to objects. Two agents, different parts,

and corresponding poses in the environment are introduced
in lines 2-5. In the second part of the PDDL problem file,
the initial state is defined. This state contains on one side
the initial positioning of the parts in the environment at the
part-poses (lines 7-8) and on the other side the definition of
the capabilities for the agents (lines 11-14), of the require-
ments for the parts (lines 16-17), and of the requirements
for joint actions (lines 19-20). The PDDL problem file is fi-
nalized with the goal state that describes how the different
parts should be positioned at the end relative to each other,
such that the final product is obtained. The formulation of
the PDDL problem file completes the formulation of the se-
lected planning situation in the PDDL format.

1 (:objects
2 human1 - human
3 robot1 - robot
4 p1 p2 p3 p4 p5 plate1 - part
5 pp1 pp2 pp3 ... - partpose)
6 (:init
7 (at p1 pp1)
8 (at p2 pp2)
9 ...

10 ;Capabilitites
11 (= (cap_value robot1 cap1) 0)
12 (= (cap_value robot1 cap2) 2)
13 (= (cap_value human1 cap1) 1)
14 (= (cap_value human1 cap2) 1)
15 ;Requirements
16 (= (req_value p1 cap1) 0)
17 (= (req_value p2 cap1) 1)
18 ...
19 (=(req_joint_action p1) 0)
20 (=(req_joint_action plate1) 1)
21 ...
22 (:goal
23 (and
24 (at p4 pp4)
25 (on plate1 p4)...))

Figure 7: Snippet of the initial state and the goals formulated
in the PDDL problem file.

Real-World Planning and Execution
In the following step, the extended ROSPlan framework is
set up. The framework receives the formulated PDDL files,
loads them in its Knowledge Base, and interfaces them to the
automated planner called Partial Order Planning Forwards
(POPF) (Fox and Long 2010). The planner computes the
plan represented in Figure 8.

The obtained actions are then sent for execution over the
Action Interface Manager module. This module triggers, su-
pervises, and interprets the real-world execution of each ac-
tion of the plan, based on the EFSMs formulated for each
PDDL action of the domain. Each EFSM describes which
underlying execution modules must be called and how the
results of these modules should be interpreted.

For the considered scenario, four different EFSMs are
formulated. Figure 9 depicts the second half of the
EFSM for the pick and place two agents action, in which



1 0.00000: (
pick_and_place_part_with_magnet
human1 p3 pp3 plate1 plate1_m)
[1.00000]

2 0.00000: (pick_and_place robot1 p4 tpp1
pp4) [1.00000]

3 1.00100: (pick_and_place robot1 p5 tpp2
pp5) [1.00000]

4 2.00200: (pick_and_place_two_agents
robot1 human1 p3 plate1 wbp1 p5 p4)
[1.00000]

5 3.00300: (pick_and_place_on_part robot1
p1 pp1 plate1 plate1_l) [1.00000]

6 3.00300: (pick_and_place_on_part human1
p2 pp2 plate1 plate1_r) [1.00000]

Figure 8: The generated plan for the selected planning situ-
ation.

the two agents collaborate. The EFSM of the action
pick and place two agents has been subdivided into three
distinct sections. The first section represents the retrieval of
the plate, which is carried out by the robot. This section is
not represented in Figure 9. Once the robot has grasped the
plate, it should move to the home pose and afterwards posi-
tion the plate for human manipulation. The positioning ba-
sic actions are depicted by the first two states from Figure 9.
Each of these states represent a call to the MoveIt frame-
work (Sucan and Chitta 2020) that implements the trajectory
planning and execution on the real robot. Once these two ba-
sic actions of the second part of the EFSM are successfully
executed, the human action state is triggered. This state is
implemented by a basic module that prints on a screen what
the human should do. If the human returns success, the ex-
ecution of the planned action is continued with the follow-
ing steps of the last section that imply further calls to the
MoveIt framework and to the robot’s gripper. If all states
of the EFSM are correctly executed, the Action Interface
Manager return success to the ROSPlan framework that dis-
patches the next planned action.

The formulation of the EFSMs completes the configu-
ration process for the planning and execution framework.
With this configuration, the experiment was conducted sev-
eral times with 100% success rate. The final product was
successfully assembled each time. Figure 10 presents six dif-
ferent steps during the execution. For example, Step 3 rep-
resents the collaborative action.

Summary and Conclusion
This work presents a methodology that enables PwD to be
included in the first labor market by solving the challenge
of a correct task allocation procedure. Our approach con-
siders the agent capabilities as part of the planning situa-
tion and determines planning problems that encode these ca-
pabilities. Further, a self-contained planning and execution
framework is developed based on the ROSPlan framework.
Finally, we have validated the proposed methodology with a
real-world experiment involving a serial manipulator and a
human that cooperate in an assembly task.

Figure 9: Part of the EFSM Action Interface for a
pick and place two agents PDDL action represented as a
graph.

In future work, the methodology will be validated with
further scenarios. In this sense, new planning situations will
be encoded as planning problems in PDDL. The robustness
and resilience of the planning and execution framework will
also be tested with planning situations in which changing
capabilities of the PwD enforce the generation of new plans,
or when PwD fail in executing their assigned tasks. For such
situations, external sensors will track the execution of the
actions and inform the Supervisor about any anomalies.

Acknowledgement
We would like to express our sincere gratitude to the Federal
Ministry of Labour and Social Affairs for their generous sup-
port of the project IIDEA - Inklusion und Integration durch
Cobots auf dem ersten Arbeitsmarkt (AGF.00.00009.22),
which is funded from resources of the Ausgleichsfond.

References
Bezrucav, S.-O.; Canal, G.; Cashmore, M.; and Corves, B.
2021. An Action Interface Manager for ROSPlan. In Awaad,
I.; Finzi, A.; and Orlandini, A., eds., 9th ICAPS Workshop on
Planning and Robotics (PlanRob). Online.
Bezrucav, S.-O.; and Corves, B. 2020. Improved AI Plan-
ning for Cooperating Teams of Humans and Robots. In



(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

Figure 10: Six steps of the real-world human-robot collaboration scenario used to validate the proposed methodology.

Cashmore, M.; Orlandini, A.; and Finzi, A., eds., Proceed-
ings of the 8th ICAPS Workshop on Planning and Robotics
(PlanRob). Nancy, France.

Bokranz, R.; Landau, K.; and Becks, C., eds. 2006. Produk-
tivitätsmanagement von Arbeitssystemen: MTM-Handbuch.
Stuttgart: Schäffer-Poeschel.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. ROSPlan: Planning in the Robot Operating System.
In Brafman, R., ed., Proceedings of the 25th International
Conference on Automated Planning and Scheduling, 333–
341. Jerusalem, Israel: AAAI Press. ISBN 9781577357315.

Fox, M.; and Long, D. 2010. Forward-Chaining Partial-
Order Planning. In Brafman, R., ed., Proceedings of the
20th International Conference on Automated Planning and
Scheduling, 42–49. Menlo Park, Calif.: AAAI Press. ISBN
978-1-57735-449-9.

Ghallab, M.; Knoblock, C.; Wilkins, D.; Barrett, A.; Chris-
tianson, D.; Friedman, M.; Kwok, C.; Golden, K.; Pen-
berthy, S.; Smith, D.; Sun, Y.; and Weld, D. 1998. PDDL
- The Planning Domain Definition Language.

Hüsing, E.; Weidemann, C.; Lorenz, M.; Corves, B.; and
Hüsing, M. 2021. Determining Robotic Assistance for In-
clusive Workplaces for People with Disabilities. Robotics,
10(1).

Institut Arbeit und Qualifikation der Universität Duisburg-
Essen. 2023. Arbeitslosenquote von Menschen mit Schwer-
behinderungen 2012 - 2020. Accessed on March 3, 2023.

Kambhampati, S.; and Srivastava, B. 1996. Universal Clas-
sical Planner: An algorithm for unifying State-Space and
Plan-Space planning.

Müller, R.; Vette, M.; and Mailahn, O. 2016. Process-
oriented Task Assignment for Assembly Processes with
Human-robot Interaction. Procedia CIRP, 44: 210–215.

Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009. ROS:
an open-source Robot Operating System. In Matsuoka, Y.;
Laschi, C.; and Kaneko, M., eds., International Conference
on Robotics and Automation Workshop on Open Source Soft-
ware, volume 3. Kobe,Japan.
Ranz, F.; Hummel, V.; and Sihn, W. 2017. Capability-based
Task Allocation in Human-robot Collaboration. Procedia
Manuf., 9: 182–189.
Roncone, A.; Mangin, O.; and Scassellati, B. 2017. Trans-
parent role assignment and task allocation in human robot
collaboration. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), 1014–1021. Marina Bay
Sands, Singapore: IEEE.
Sucan, I. A.; and Chitta, S. 2020. MoveIt Motion Planning
Framework.
Takata, S.; and Hirano, T. 2011. Human and robot allocation
method for hybrid assembly systems. CIRP Ann., 60(1): 9–
12.
Tsarouchi, P.; Matthaiakis, A.-S.; Makris, S.; and Chrys-
solouris, G. 2017. On a human-robot collaboration in an
assembly cell. Int. J. Computer Integr. Manuf., 30(6): 580–
589.
United Nations. 2006. Convention on the Rights
of Persons with Disabilities. Available at: https:
//www.un.org/development/desa/disabilities/convention-
on-the-rights-of-persons-with-disabilities.html (Accessed
on: 1st March 2023).
Weidemann, C.; Hüsing, E.; Freischlad, Y.; Mandischer, N.;
Corves, B.; and Hüsing, M. 2022. RAMB: Validation of a
Software Tool for Determining Robotic Assistance for Peo-
ple with Disabilities in First Labor Market Manufacturing
Applications. 2022 IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC), 1: 2269–2274.


