
Solving Robust Execution of Multi-Agent Pathfinding Plans
as a Scheduling Problem

David Zahrádka,1,2 Daniel Kubišta, 1 Miroslav Kulich2
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Abstract
Multi-Agent Path Finding (MAPF) is the problem of plan-
ning collision-free trajectories for a team of synchronized
mobile robots. In real-life applications, however, unexpected
delays may occur during the execution of the plans, leading
to desynchronization of the agents and possible collision risk.
State-of-the-art methods are able to ensure safe execution of
MAPF plans in the presence of delays by enforcing the or-
der of agents’ actions as given by the MAPF plan to maintain
synchronization. This increases execution time, since it re-
quires all agents scheduled to visit a vertex after the agent
that is delayed to wait, accumulating the same delay. We
propose a scheduling-based approach based on the Job Shop
Scheduling Problem (JSSP) as a method for robust execution
of MAPF plans. Our proposed approach is able to re-order
agents visits to vertices, reducing the impact a delayed agent
has on the plan’s execution cost. Furthermore, we present a
Variable Neighborhood Search method with a newly designed
random operator to solve the proposed scheduling problem.

1 Introduction
Multi-Agent Pathfinding (MAPF) is the problem of plan-
ning collision-free trajectories for a team of mobile robots
(agents) such that each agent moves from its starting posi-
tion to its given goal position. The agents are assumed to be
synchronized, meaning that all the agents move at the same
time, and are commonly assumed to be homogeneous. In
real-life applications, however, it is possible that otherwise
similar robots may behave differently due to inaccuracies in
control. This can lead to desynchronization of the agents,
and in turn, the execution of the plan may differ from the
plan itself. The deviation from the original plan can cause
collisions or cause robots to get stuck (Barták et al. 2018).
An overview of the challenges in the real-life application of
MAPF is available in (Ma et al. 2017).

A possible solution is to re-plan the trajectories whenever
a delay of an agent is detected. The problem can be solved
optimally using, e.g., Conflict Based Search (CBS) (Sharon
et al. 2015), which however may be both time and memory
consuming. Therefore, bounded suboptimal solvers, such as
Enhanced CBS (ECBS) (Barer et al. 2014), which guaran-
tee that the returned solution is within a constant factor of
the optimal solution, are often used. However, even when
using faster solvers, replanning is time consuming and of-
ten ineffective, since a delay of one agent might not require

replanning all agents. Therefore, in order to deal with possi-
ble delays during execution, robust planning and execution
methods that guarantee safe execution even in the presence
of delayed agents are of interest.

Robust planning methods, such as k-robust MAPF meth-
ods (Atzmon et al. 2020), guarantee robustness to delays up
to some length. For example, in case of k-robust planning,
the length of the maximum safe delay is k time steps. This is
achieved by ensuring safety distances between agents such
that if any agent is delayed, the plan remains collision-free.
However, this negatively affects solution cost and when the
delay of any agent becomes too large, safe execution is no
longer guaranteed.

The state-of-the-art methods for robust execution are able
to ensure safe execution of MAPF plans for delays of any
duration. They do so by enforcing the order of agents’ ac-
tions as they were determined by the MAPF plan. However,
delays of agents during execution negatively impact the re-
sulting cost of the solution, such as the time when the plan
execution is finished.

Consider an example where two agents need to move
through a crossroad, but only one agent fits at a time. One
agent will necessarily move through earlier than the other.
The order in which the agents move through the crossroad is
given by the MAPF plan, and the second agent may not en-
ter the crossroad before the first agent leaves it. However, by
enforcing the originally planned order in which the agents
cross it, a delay of the agent scheduled earlier causes the
second agent to accumulate the same delay. Meanwhile, if
the earlier-scheduled agent is sufficiently delayed, the sec-
ond agent may safely pass through the crossroad, inverting
their scheduled order of visits. The state-of-the-art methods
are unable to perform this, as they are unable to modify the
plan that is being executed. This is detrimental to the result-
ing execution time. By developing methods which are able
to divert from the order of agents’ visits to vertices as given
by the original plan, better execution can be achieved. This
can increase the efficiency of the mobile robot fleet applica-
tion.

We propose formulating the problem of robust execution
as a scheduling problem inspired by the Job Shop Schedul-
ing Problem (JSSP). The newly proposed formulation is ca-
pable of reordering the agents’ visits to vertices while en-
suring robust execution by expressing each visited cell as a



shared resource. In case of the crossroad example, our pro-
posed problem formulation is able to let the second agent
pass the crossroad if the first agent is delayed. Furthermore,
we propose a method based on the Variable Neighborhood
Search (VNS) (Mladenović and Hansen 1997) to solve the
resulting scheduling problem. We show that it outperforms
current state-of-the-art robust execution methods regarding
the resulting cost of the solution after execution by mini-
mizing the impact the agents’ delays have.

2 Related Works
There are several methods that address the problem of ro-
bustness by incorporating information about possible delays
during execution into path planning itself (Ma, Kumar, and
Koenig 2017; Atzmon et al. 2020). A method to plan the
paths for agents centrally while considering the possibility
of delays was presented in (Ma, Kumar, and Koenig 2017).
It combines a new problem formulation of MAPF with delay
probabilities, which restricts agents moving into vertices that
were occupied by another agent in the previous time step,
together with two decentralized robust execution policies,
which rely on agent-to-agent communication. The concept
of k-robust MAPF exists, in which a plan is robust as long
as no agent is delayed by more than k time steps (Atzmon
et al. 2020). As such, it preempts execution issues due to
imperfect agent synchronization by adding additional con-
straints on the agents. However, this is reflected in the cost
of the solution.

Another approach is to use robust execution methods,
which are able to ensure safe execution of MAPF plans even
in the presence of delays and kinematic constraints, which
would otherwise cause desynchronization and possible col-
lision risk. Current state-of-the-art robust execution meth-
ods include MAPF-POST (Hönig et al. 2016) and Action
Dependency Graphs (Hönig et al. 2019). Both methods en-
force synchronization by detecting dependencies between
the agents actions and allowing the agents to start moving
into a vertex (location) only after all preceding actions re-
lating to the vertex are finished. In other words, agents enter
locations in the order that is given by the MAPF plan. An
example of this can be delaying an agent that needs to tra-
verse a crossroad until another agent, which was scheduled
to enter the crossroad earlier in the plan, finishes leaving
it. The difference between the two methods is that MAPF-
POST constructs a Simple Temporal Network and encodes
the precedence constraints for the agents’ states, whereas the
Action Dependency Graph encodes them for agents’ actions
instead, requiring less communication at runtime, since the
agents only report finishing an action in contrast to reporting
their current state.

3 Problem Formulation
3.1 MAPF
MAPF with n agents A1, . . . , An is specified by a triple
(G, s, g), where G = (V,E) is an undirected graph, s :
[A1, . . . , An] → V is a function mapping an agent to the
source vertex, and g : [A1, . . . , An] → V maps an agent to

the goal vertex. Each vertex represents a location in a dis-
cretized space. Time is discretized into time steps, and in
every time step, each agent is situated in one of the graph
vertices and performs a single action. An action is a function
a : V → V that maps a vertex where an agent is currently
located to the vertex where the agent will be in the next time
step. An agent located in a vertex v ∈ V can perform two
types of actions: move to another vertex v′, (v, v′) ∈ E, or
wait to remain in v. Both actions have uniform time cost. For
a sequence of actions π = (a1, . . . , ak) and an agent Aj , we
denote by πj [x] the location of the agent after executing the
first x actions (Stern et al. 2019; Felner et al. 2017). The lo-
cations of the agents are assumed to be known at all times,
and the agents are assumed to be synchronized – that is, all
agents move at the same time and perform exactly one ac-
tion per time step. The goal is to find a set of collision-free
paths (paths without conflicts) such that each agent starts at
its starting location and ends at its goal location.

There are two main types of conflicts that can occur: (i)
vertex conflict, and (ii) swapping conflict. A vertex conflict
occurs when two or more agents occupy the same vertex
at the same time. Two agents have a swapping conflict if
they swap their location over the same edge at the same
time. In some cases, two more types of conflicts are rec-
ognized (Stern et al. 2019): (iii) following conflict, where
an agent is planned to enter a vertex in time t + 1 that an-
other agent occupies in time i, and (iv) cycle conflict, where
a group of agents plans to move at the same time in a circular
pattern.

3.2 Robust Execution
The problem of robust execution of MAPF plans deals with
the problem of safely executing the collision-free plans in
the presence of unexpected delays. A formulation for robust
execution was presented in (Hönig et al. 2019), where an ex-
ecution is considered robust if no collision occurs even in the
event of varying execution times of robot actions. We use an
equivalent problem formulation: we consider an execution
of a MAPF plan robust if an unexpected delay of an agent
during execution does not cause a collision (conflict).

4 Robust Execution as a Scheduling Problem
The vertices which the agents occupy can be viewed as
shared resources. An agent that is visiting a vertex consumes
the resource, and until the resource is released, no other
agent can be scheduled to visit it. Therefore, the problem of
robust execution can be formulated as a scheduling problem,
such as a variant of JSSP.

In Section 4.1, we present a problem formulation of JSSP.
Afterwards, in Section 4.2, we present an extension to JSSP
that allows to formulate the problem of robust execution of
MAPF plans as a scheduling problem, and in Section 4.3 we
detail how to represent a MAPF execution schedule. Finally,
in Section 4.4, we formulate the plan repair problem in the
context of robust execution.

4.1 JSSP
A JSSP instance consists of a set of m machines
M1, . . . ,Mm, and a set of n jobs J1, . . . , Jn. Since JSSP



is a multi-operation machine scheduling problem, each job
j ∈ J consists of a sequence of µ(j) operations O(j) =
{O1,j , . . . , Oµ(j),j}. An operation Oi,k is identified by two
indices. The index k specifies the job it belongs to, and the
index i specifies that an operation Oi,k must be completed
before every operation Ou,k, u > i. Each operation is as-
signed to a machine: Mλ(i,j)(λ(i, j) ∈ 1, . . . ,m), where it
consumes the resource for the duration of its processing time
pi,j . A single machine can process multiple jobs, but only
one at a time. These parameters are the input parameters of
a JSSP instance.

For each operation Oi,j with processing requirement pi,j
we define start time Ri,j and completion time Ci,j . These
variables satisfy equation Ci,j = Ri,j + pi,j . The feasible
solution is a solution that complies with the following rules.

1. There is at most one operation scheduled on each ma-
chine at any given time. For operations Oi,j , Ok,l as-
signed to the same machine (λ(i, j) = λ(k, l)), the fol-
lowing must stand:

(Ri,j , Ci,j) ∩ (Rk,l, Ck,l) = ∅ (1)

2. No two time intervals allocated to the same job overlap
and operations of each job are scheduled in the prede-
termined order. For operations Oi,j , Ok,j from job Jj ,
where i < k:

Ci,j ≤ Rk,j (2)

3. The minimum allowed start time is 0. For every operation
Oi,j :

Ri,j ≥ 0 (3)

The goal of JSSP is to find an operation processing sched-
ule that satisfies Constraints 1-3 and minimizes a selected
objective function. There are multiple possible objective
functions, such as makespan, which is the time required to
finish processing all jobs. In other words, makespan corre-
sponds to the time it takes to finish the job with longest pro-
cessing time.

4.2 Extending JSSP for MAPF
Consider a path p1 for a single agent seen in Fig. 1, p1 =
{(0, 1), (1, 1), (2, 1), (2, 1), (2, 2)}. In each time step, the
agent can move to the center of a neighboring cell that is
free, or wait in place. Since the cells have equal sizes, we can
simplify the movement of the agent and assume that starting
at the center of the origin cell, the agent takes half of the
time step to reach its border, and the remaining half to reach
the center of the destination cell. The agent’s path can then
be represented as positions in different time intervals as seen
in 2. For simplicity, we assume that the agent occupies ex-
actly one cell at all times. During a wait action, the agent
occupies a single cell during the whole time step, whereas
during a move action, the occupied cell changes in the mid-
dle of the time step.

The representation of the agent’s path from Fig. 2 can then
be easily translated into a job shop schedule. Each cell will
be a JSSP machine, each agent will be a job and each of
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Figure 1: Example path.

0 1 2 3 4

Figure 2: Time intervals of example path.

the job’s operations will correspond to the agent occupying
a cell during some time interval. The constraints of JSSP
are also directly applicable in MAPF: at most one agent can
occupy each cell in any distinct time step, the order an agent
occupies the cells is fixed and minimum start time is also 0.
The job shop schedule representing the path p1 can be seen
in Fig. 3.

0 1 2 3 4

Figure 3: Job shop schedule of the example path.

However, a feasible JSSP solution may not necessarily be
a feasible MAPF schedule. One key difference is that unlike
jobs in JSSP, an agent may block a machine even after the
scheduled operation is processed. This is due to the ability
of agents to wait in place to avoid collisions. Therefore, we
need to define the occupancy time interval as:

Ωi,j =

{
(Ri,j , Ri+1,j), if i < µ(j)

(Ri,j ,∞), if i = µ(j)
(4)

Additionally, in JSSP, two jobs may swap machines. In
MAPF, this would correspond to two agents swapping cells
during one time step, or in other words, a swapping conflict.
Therefore, it is necessary to extend the constraints of JSSP
with MAPF-specific constraints:

1. First operation O1,j of every job Jj must start at time 0.
2. Each machine can be occupied up to one operation at

every moment. For operations Oi,j , Ok,l assigned to the
same machine, i.e. λ(i, j) = λ(k, l), must stand:

Ωi,j ∩ Ωk,l = ∅ (5)



3. Two jobs must not exchange/swap machines they oc-
cupy. For operations Oi,j , Ok+1,l that are assigned to
the same machine Mλ(i,j) = Mλ(k+1,l), and opera-
tions Oi+1,j , Ok,l assigned to the machine Mλ(i+1,j) =
Mλ(k,l):

Ωi,j ∩ Ωk,l 6= ∅ =⇒ Ωi+1,j ∩ Ωk+1,l = ∅ (6)

The first additional constraint ensures that all agents are
present in their start cells at time 0. The second constraint
ensures that there is no vertex conflict in any cell, i.e., in any
given moment and any given cell, there is at most one agent
occupying the cell. The last constraint ensures that there is
no swapping conflict.

4.3 Solution Representation
After formulating robust MAPF plan execution scheduling
as a JSSP-based scheduling problem, it is necessary to de-
fine a representation of the schedule. The first option is to
use operation-based encoding (Cheng, Gen, and Tsujimura
1996). An operation of a job is represented by a symbol
called gene. A sequence of multiple genes forms a chro-
mosome. While a gene only carries information about the
job it belongs to, it is possible to decode which operation
each gene represents using the rule that there is a fixed or-
der of operations for each job. The sequence is read left-
to-right with the leftmost gene having the highest priority
(being scheduled first).

However, operation-based encoding can encode only ac-
tive schedules (schedules where all operations are scheduled
as soon as possible). This makes it a bad fit for encoding
MAPF schedules, since an agent may have to wait before
entering a vertex even before the vertex is blocked to let an-
other agent pass. Scheduling the visit to the vertex as soon as
possible could block the other agent, leading to a deadlock.

The second option is to use the preference list-based rep-
resentation (Davis et al. 1985). The chromosome of this
representation is formed by a list of operation sequences,
one for each machine. The genes in the chromosome then
encode the schedule of the operations for the given ma-
chine. Consider an example problem shown in Table 1.
Its schedule, seen Fig. 4, can be encoded as the chromo-
some [1, 2, 2, 3, 4, 3, 4, 4, 1, 1]. However, this representation
may be ambiguous, meaning that the same schedule can
be encoded by multiple different chromosomes (such as
[2, 2, 1, 3, 4, 3, 4, 4, 1, 1] in this case). Therefore, we modify
the preference list-based representation to be unambiguous.
This modification encodes the same example schedule as
the chromosome [O2,2, O1,4, O2,1], [O1,2, O1,3, O2,4, O3,1]
and [O1,1, O2,3, O3,4], containing schedules for machines
M1,M2 and M3, respectively.

Table 1: Example problem.

Job Operations Assigned machine Processing time
J1 O1,1 O2,1 O3,1 M3 M1 M2 3 2 3
J2 O1,2 O2,2 - M2 M1 - 2 2 -
J3 O1,3 O2,3 - M2 M3 - 3 2 -
J4 O1,4 O2,4 O3,4 M1 M1 M3 4 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4: Decoded schedule.

Recognizing infeasible chromosomes In order to verify
whether a chromosome produces a feasible schedule or not,
it must be decoded, which generates computational over-
head. Therefore, predicting feasibility without decoding is
beneficial. We achieve this by leveraging our unambiguous
schedule representation. An unambiguous representation not
only encodes preference of operations, but completely de-
termines their order. This means that each solution can be
encoded by exactly one chromosome. However, this comes
at a cost: some chromosomes cannot be decoded into any
feasible schedule.

The order of the operation Oi,j on the preference list of
machine Mλ(i,j) is given by the preference number ρ(i, j).
As an example, consider a problem with one machine, three
jobs J1, J2, J3, three operations O1,1, O1,2, O1,3 and a pref-
erence list [O1,3, O1,1, O1,2]. The preference number ρ(i, j)
expresses an order in which Oi,j occurs in the preference
list, therefore ρ(1, 1) = 2, ρ(1, 2) = 3, ρ(1, 3) = 1.

A chromosome that encodes a feasible schedule then sat-
isfies the following set of conditions:

1. The first operation O1,j of the job Jj must be the first
item in the preference list of the corresponding machine
Mλ(i,j), i.e., ρ(1, j) = 1.

2. The last operation Oµ(j),j of the job Jj must be the last
item in the preference list of the corresponding machine
Mλ(i,j), i.e., ρ(µ(j), j) is equal to the length of the pref-
erence list.

3. For operations Oi,j and Ok,j of the job Jj on the same
machine, where Oi,j precedes Okj (i < k), prefer-
ence number ρ(i, j) must be less that preference number
ρ(k, j).

4. For operations Oi,j , Ok,l assigned to the same machine
Mλ(i,j), and operations Oi+1,j , Ok+1,l assigned to the
same machine, it must stand:

ρ(i, j) < ρ(k, l) ⇐⇒ ρ(i+ 1, j) < ρ(k + 1, l) (7)

5. For operations Oi,j , Ok,l assigned to the same machine
Mλ(i,j), and operations Oi+1,j , Ok−1,l assigned to the
same machine, it must stand:

ρ(i, j) < ρ(k, l) ⇐⇒ ρ(i+ 1, j) < ρ(k − 1, l) (8)

Condition 1 means that each agent must start in a unique
starting position. Condition 2 means that each agent remains
occupying its goal position after reaching it. Condition 3 ap-
plies in order to preserve the precedence constraint of oper-
ations within a job.

Consider agents Aj and Al sharing two cells that occur
consecutively on both paths. The agents traverse from one



cell to another in the same direction. The violation of Con-
dition 4 would mean that the agent Aj visits the first cell
earlier than the agent Al, but visits the second cell after Al
does.

Violation of Condition 5 corresponds to two agents swap-
ping their locations over the same edge, leading to either
a swapping conflict or a vertex conflict. This depends on
whether the swap takes place in one time step or more.

Figures 5 and 6 show a useful visual representation, using
which it is possible to detect violations of Conditions 1-5.
For each job Jj (agent Aj), we can show preference lists
of machines Mλ(1,j), . . . ,Mλ(µ(j),j). This sequence corre-
sponds to the path of the agent Aj . The sequence of ma-
chines is shown on the horizontal axis, whereas the verti-
cal axis shows the preference of operations. Lower opera-
tions have higher preference. To visually verify that Con-
ditions 4 and 5 are satisfied, we can connect all successive
operationsOi,j andOi+1,j of each job Jj by an arrow point-
ing from Oi,j towards Oi+1,j and determine if any of the
two arrows cross each other or not. If they do, either Con-
dition 4 and 5 is not satisfied. If we label each operation as
Oi,j , it is even possible to verify Conditions 1-3. To com-
pletely check a chromosome, we must examine the path of
each agent.

Figure 5: Preference list lined up in order of agent’sA1 path.

Condition 4 violation. Consider the sequence of ma-
chines corresponding to the path of the agentA1 in Figure 5.
The preference number of the operation O2,1 is equal to 1,
while the other operationO3,2 on the same machineMλ(2,1)

has preference number equal to 2 – therefore, ρ(2, 1) <
ρ(3, 2). The operation O3,1, following the operation O2,1,
belongs to the machine Mλ(3,1). Mλ(3,1) also contains oper-
ation O4,2, which follows the operation O3,2 and has pref-
erence number equal to 1. Therefore ρ(3, 1) > ρ(4, 2). The
two given inequalities do not satisfy Condition 4.

Figure 6: Preference list lined up in order of agent’sA1 path.

Condition 5 violation. Consider the sequence of ma-
chines corresponding to the path of the agent A1 in Fig-
ure 6. The preference number of the operation O2,1 is

equal to 1, while the other operation O4,2 on the same ma-
chine Mλ(2,1) has preference number equal to 2. Therefore
ρ(2, 1) < ρ(4, 2). The operation O3,1, following the oper-
ation O2,1, belongs to the machine Mλ(3,1). The machine
Mλ(3,1) contains operation O3,2, which precedes the opera-
tion O3,2 and has preference number equal to 1. Therefore
ρ(3, 1) > ρ(3, 2). The two given inequalities do not satisfy
Condition 5.

Cycle Conflict In addition to the Conditions 1-5 described
previously, it is necessary to deal with the so-called cycle
conflicts: situations where four or more agents mutually ex-
change their positions in one time step. Such situations can
occur in plans generated by state-of-the-art solvers, such
as CBS or ECBS. A dependency operation OD(M) of a
machine M is the operation Ok+1,l, where Ok,l is the last
scheduled operation on the machine M = Mλ(k,l). In other
words, it is an operation whose starting time Rk+1,l is the
earliest time we can schedule a new operation on machine
M . However, in the situation of cycle conflict, there are
operations situated in the cycle which cannot be scheduled
this way. Consider the chromosome described in Table 2.
Agent A1 is delayed by one time step, and agent A3 is de-
layed by two time steps. This problem can be solved only
by allowing a cycle conflict. After scheduling the first op-
eration of each job, the dependency operation of the ma-
chines are as follows: OD(2, 2) = O2,4; OD(1, 2) = O2,3;
OD(1, 1) = O2,2 and OD(2, 1) = O2,1. As we can see,
neither dependency operation is scheduled, so we cannot
schedule any other operation in the usual way. However,
if we identify a cycle and determine the minimal start time
Tmin = 2.5, that would not violate the constraints of the fea-
sible schedule, we can schedule one of the operations Oi,j
located in the cycle to the time interval (Tmin, Tmin + pi,j)
and then continue with regular scheduling. The paths of the
agents are shown in Figure 7 and a part of the schedule is
shown in Figure 8.
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Figure 7: Paths of four agents leading to a cycle conflict with
delayed agents 1 and 3.

Table 2: Preference lists of cycle problem (Fig. 7).

Machine Operation order Machine Operation order
(0, 1) [O3,1] (1, 1) [O2,1, O1,2]
(2, 0) [O3,4] (2, 1) [O1,1, O2,4]
(1, 3) [O3,2] (1, 2) [O1,3, O2,2]
(3, 2) [O3,3] (2, 2) [O1,4, O3,2]
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Figure 8: Part of the schedule in the example with cycle con-
flict.

Cycle detection algorithm. The detection of a cycle and
the computation of the minimum start time is described in
Algorithm 1.

Algorithm 1: Cycle detection
INPUT: Oinput
1: Oi,j ← Oinput
2: Tmin ← 0
3: k ← 0
4: do
5: Odep ← dependency operation of Mλ(i,j)

6: Onext ← nextOperation(Mλ(i,j))
7: Olast ← lastOperation(Mλ(i,j))
8: if Onext = Oi,j and Odep exists and is not scheduled then
9: Oi,j ← Odep

10: Tmin ← max(Tmin, Clast)
11: k ← k + 1
12: else
13: return (false, -1)
14: end if
15: while Oi,j 6= Oinput
16: return (k ≥ 4, Tmin)

Function nextOperation takes a machine as input and
returns the next operation that should be scheduled accord-
ing to the corresponding preference list; in other words, it
returns the operation Oi,j , which has the lowest preference
number ρ(i, j) of all unscheduled operations belonging to
the machineMλ(i,j). The function lastOperation takes
a machine as input and returns the last scheduled operation
on that machine.

The input of Algorithm 1 is the operation Oi,j that is the
next operation that should be scheduled according to the
precedence constraints of the job Jj . Algorithm 1 gradually
checks whether the operationOi,j is next to be scheduled ac-
cording to the preference list, and whether the dependency
operation of machine Mλ(i,j) is not scheduled. The opera-
tion Oi,j is either the input operation or the dependency op-
eration of some machine, therefore it is implicitly checked
that the operation Oi,j is also next operation that should be
scheduled based on the precedence constraints of the job Jj .
If all the conditions are satisfied, Oi,j is redefined to be the
dependency operation of the machine that contains the cur-
rent operation Oi,j . In the case where the chromosome con-
tains a cycle, the process is successfully repeated until the
input operation is reached again. To separate the swap and

cycle conflict, it is checked that the cycle consists of at least
four operations.

4.4 Plan Repair
In the context of this work, the plan repair problem means
having a feasible solution that cannot be executed as planned
due to one or more delayed agents. These delays in execu-
tion may cause collisions. We assume that each agentAj has
accumulated some delay dj ∈ N.

In the plan repair problem, we have a MAPF plan, which
consists of a sequence of vertices for each agent. This se-
quence contains information about the order the agent must
visit the vertices, but does not contain timing. The goal is to
add timing that would result in a feasible solution that mini-
mizes the cost function.

We can look at assigning the timing to each item of a path
as a scheduling problem. Processing time pi,j of each oper-
ation Oi,j is used to separate occupancy time interval into
fixed and optional disjoint subintervals, where (Ri,j , Ci,j)
is fixed subinterval and Ωi,j \ (Ri,j , Ci,j) is optional subin-
terval. The size of the fixed interval |Ci,j − Ri,j | = pi,j
is known prior to the scheduling and is a property of the
problem. The size of the optional interval |Ωi,j | − pi,j is de-
termined by scheduling procedure and is a property of the
solution.

Proposed processing requirements are as follows: first op-
eration O1,j of each job Jj has a processing time equal to
waiting in the center of start cell for dj time steps plus go-
ing from the center to the border of start cell, i.e. p1,j =
dj + 0.5. Processing requirement of last operation Oµ(j),j is
equal to traveling from border of goal cell to its center, i.e.
pµ(j),j = 0.5. Other operations Oi,j , 1 < i < µ(j), have
processing requirements pi,j = 1 that correspond to going
from the border of current cell to its center and then going
to border that links current cell and the next cell.

Consider the plan in Fig. 3 delayed by two time steps.
This example would have properties shown in Table 3.

Table 3: Properties of example problem.

agent plan processing times
A1 (0,1) (1,1) (2,1) (2,2) 2.5 1 1 0.5

5 Method
In this section, we propose a VNS optimization method for
optimization of MAPF execution schedules. First, in Sec-
tion 5.1, we describe the shake and local search procedures
of the proposed method. Next, in Section 5.2, we present a
procedure to decode chromosomes representing a schedule
for a MAPF solution. Afterwards, in Section 5.3, we pro-
pose an initial solution generation procedure, and in Sec-
tion 5.4 we describe our proposed random operator for the
VNS method.

5.1 Shake and Local Search
The VNS has two alternating phases that are used to grad-
ually optimize the initial solution: shake and local search.



Shake is used to escape local minima, and local search op-
timizes attempts to reach a local minimum. Implementation
of VNS proposed in (Sevkli and Aydin 2006) used functions
insert and exchange for the local search, and used a se-
quence of random applications of the operators in the shake
procedure. Therefore, we need an operator for local seach
and shake. We will use only one operator, and thus, the shake
procedure will call the same operator N times, where N is
an input parameter of the method.

5.2 Decoding
The decoding Algorithm 2 takes a chromosome as an in-
put and outputs a schedule. It uses functions schedule,
and function forceSchedule. The function schedule
takes an operation Oi,j as an input. Then it finds the opera-
tion Ok,l with the greatest completion time that is scheduled
to the same machine as operation Oi,j . If Ok,l is the last
operation of its job, the procedure terminates with failure,
since it is impossible to schedule another operation into the
partial schedule. If it is not, it checks whether Ok+1,l has
been allocated. In such case, Oi,j is allocated to the earli-
est possible feasible time interval – a time interval that does
not violate the constraints defined in Sections 4.1 and 4.2.
Otherwise the procedure does not schedule Oi,j . The func-
tion forceSchedule schedules the input operation Oi,j
to time interval (T, T + pi,j), where T is the second input
argument.

Algorithm 2: Decoding procedure
INPUT: Chromosome
1: do
2: counters← {0, . . . , 0}
3: scheduleChanged← false
4: for j ∈ {1, . . . , n} do
5: i← counters[j]
6: Ok,l ← nextOperation(Mλ(i,j))
7: if Oi,j 6= Ok,l then continue
8: else
9: success← schedule(Oi,j)

10: if success then
11: scheduleChanged← true
12: counters[j]← counters[j] + 1
13: else
14: cycleDetected, Tmin ← detectCycle(Oi,j)
15: if cycleDetected then
16: forceSchedule(Oi,j , Tmin)
17: scheduleChanged← true
18: counters[j]← counters[j] + 1
19: end if
20: end if
21: end if
22: end for
23: if scheduleChanged = false then,
24: terminate decoding . decoding not successful
25: end if
26: while counters 6= {µ(1), . . . , µ(n)}
27: return Schedule

Algorithm 2 attempts to schedule the operations of a job
one by one. It checks whether the operation satisfies the con-
straints of the corresponding preference list and attempts to

to schedule it. If the operation is scheduled successfully,
we move on to the next operation of the job. Otherwise, it
checks whether the failure was because a cycle conflict oc-
curred. If it had, the operation is scheduled into the calcu-
lated time interval and the algorithm moves on to the next
operation of the job. In the event that the operation cannot be
scheduled, we move on to another job. Chromosomes that do
not produce any schedule are detected when it is not possible
to add any other decoded operation.

5.3 Initial Solution Construction
At the start, VNS needs an initial feasible solution. A triv-
ial solution is to use the original collision-free plan with-
out delays. The original plan consists of a sequence of time
steps, where each time step contains information about the
current position of each agent. First, we create a list of jobs
J1, . . . , Jn for the team of agents A1, . . . , An. The original
plan can then be translated into a chromosome by iterating
over each time step. Then we perform the following two ac-
tions for each agent:
1. If the machine corresponding to the current position is

not in the list of machines, add it to the list.
2. If the current time step is not equal to 0 and the agent

moved since the last time step, add a new operation as-
signed to the current machine to the job representing the
agent.

After the chromosome is encoded, it is necessary to add
processing requirements to each operation. The last opera-
tion Oµ(j),j of each job Jj has processing time pµ(j),j =
0.5. The first operation O1,j of each job has processing time
p1,j = 0.5 + dj , where dj denotes the initial delay of agent
Aj . All the other operations have processing requirements
equal to 1. Afterwards, we can obtain the initial feasible
schedule by decoding the chromosome.

5.4 MAPF-JSSP Operator
The idea of the proposed operator is to randomly select one
agent and change its preference number on the machines it
visits while satisfying all necessary Conditions 1-5. The op-
erator starts from the first cell of the agent’s path and iterates
over all visited cells in the predetermined order.

To satisfy Constraints 1 and 2, the first operationO1j must
necessarily have ρ(1, j) = 1 for any j ∈ J . In the same
manner, the last operation Oi,j , i = µ(j) must have ρ(i, j)
equal to the length of the corresponding preference list. If
there is any operation O1l of job Jl on the machine, then
ρ(1, l) is the lower bound. Vice versa, if there is any oper-
ation Oµ(l),l which is the last operation of the job Jl, then
ρ(µ(l), l) serves as an upper bound.

The Condition 3 is enforced by tightening the upper
bound. When determining the preference number ρ(i, j) for
the operation Oi,j on a preference list that contains another
operation of the same job Okj , where i > k (Oi,j precedes
Okj) then ρ(i, j) acts as an upper bound. Note that if i < k,
ρ(i, j) is not used as a lower bound. This is to allow tempo-
rary violation of the constraint by reordering on the prefer-
ence list. Feasibility is then ensured by consistently applying
the rule for i < k.



In order to satisfy Constraint 4, when selecting the pref-
erence number for operation Oi,j , we must take a look at
the other operationsOk,l on the same machine. If there is an
operation Ok−1,l where Mλ(k−1,l) = Mλ(i−1,l), then the
preference number ρ(k, l) serves as a lower bound (when
ρ(k − 1, l) < ρ(i − 1, l)) or an upper bound (when ρ(k −
1, l) > ρ(i−1, l)). Constraint 5 is then satisfied by using the
ρ(k, l) if there isOk+1,l such that Mλ(k+1,l) = Mλ(i−1,l) as
a lower bound (when ρ(k + 1, l) < ρ(i − 1, l)) or an upper
bound (when ρ(k + 1, l) > ρ(i− 1, l)).

Based on the type of constraint and the direction in which
agents travel the section of their path, it can happen that the
constraints exclude each other and there is no ρ(i, j) that
would satisfy all of them. Such cases can be solved by back-
tracking: the process of iterating over a selected job in a de-
scending order while searching for an assignment of prefer-
ence numbers that satisfies the constraints.

Algorithm 3: Proposed operator

1: j ← randomly select integer from {1, . . . , n}
2: for i ∈ {2, . . . , µ(j)} do
3: P ← preference list corresponding to machine Mλ(i,j)

4: X ← permissible preference numbers
5: if X is empty then
6: i← backtrack()
7: else
8: ρ← randomly select from X
9: P ← reorder(Oi,j , ρ)

10: end if
11: end for

First, a random job Jj (corresponding to the agent Aj)
is chosen. Then, the operator iterates over its operations,
starting from O2,j . Recall that the first operation should al-
ways have the preference number ρ(i, j) = 1 and we can
skip it. For each operation, we determine a list of preference
numbers that would meet all the previously described con-
straints. If the constraints allow us to select a new preference
number ρ(i, j), we randomly select a permissible prefer-
ence number and reorder operations on the machine accord-
ingly. Otherwise, the procedure backtracks until it reaches
the point where it is possible to choose a different, permissi-
ble order in the preference list.

Consider applying the proposed operator to a problem
with at least three agents. In this example, it is enough to dif-
ferentiate jobs (agents) by colours and label the first and last
operations of each job by S andG. In the first step of the op-
erator procedure, the blue agent is chosen. The original path
of the blue agent is shown in Figure 9. The operator then
iterates over the machines corresponding to the blue agent’s
path and reorders the operations in preference lists. One of
the possible outcomes of the application of the operator is
shown in Figure 10. A green background indicates a set of
preference numbers from which the algorithm chooses the
new preference number. The grey background indicates for-
bidden preference numbers. To determine what preference
numbers are forbidden in the preference list corresponding
to the machineMk, the preference list of the machineMk−1
must be known. In this example, the operator made two de-

cisions, first in the cell corresponding to the machine M2,
and then in the cell corresponding to the machine M4.

Figure 9: The original path of the blue agent.

Figure 10: The path of the blue agent after applying the op-
erator.

The following examples illustrate two different situations
that lead to the necessity of applying the backtrack func-
tion:

Example 1. Assume the situation shown in Figure 11. The
operator tries to change the order in which the agents fin-
ish. When the algorithm reaches the third operation of the
job J1 (corresponding to the agent A1), it should exchange
the operations O3,1 and O3,2 on machine (2, 1) in order to
preserve the relations set in the previous machine (1, 1) by
Constraint 4. However, this is not possible because if the op-
erations were exchanged, the last operation of the agent A1

would not be the last operation of the preference list. There-
fore, a violation of Constraint 2 would occur.

0 1 2
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2

1

2

(a) Paths of both agents.

(0,1) (1,1) (2,1)

(b) Path of the agent A1.

Figure 11: First example of necessary backtracking.

Example 2. Consider the situation shown in Figure 12.
When the algorithm reaches the third operation of the job J1,
to preserve the relations set in the previous machine (1, 1)
by Constraint 4, it should exchange the operations O3,1 and
O3,2 on machine (2, 1). However, again that is not possible,
because if the operations were exchanged, there would be a
violation of Constraint 2.
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(a) Paths of both agents.
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(b) Path of the agent A1.

Figure 12: Second example of necessary backtracking.

6 Experimental Results
For the experimental verification, we used the MovingAI
benchmark dataset (Stern et al. 2019). We used three maps
in our experiments: a map with randomly generated obsta-
cles (random-64-64-20), a map resembling rooms in
a building (room-64-64-16), and a warehouse-like map
(warehouse-10-20-10-2-1). For simplicity, we refer
to the maps as random, room and warehouse. First, we
investigate the quality of solutions found by VNS in rela-
tion to the number of iterations. We also evaluate the perfor-
mance of our proposed method in comparison to Action De-
pendency Graph (ADG) (Hönig et al. 2019). Next, we study
the evolution of cost with increasing number of iterations of
the method.

On each map, ten instances, that is, the start and goal
positions of all agents, were randomly generated. Each in-
stance was solved using ECBS (Barer et al. 2014) with
the makespan criterion and suboptimality factor w = 1.05.
We used the ECBS implementation provided in (Okumura,
Tamura, and Défago 2021), available online1.

Model problem that we aim to solve is a situation in which
some of the agents are delayed at their starting position. To
examine the effect of the total delay (a sum of delays of all
agents), we carried out experiments with the following pa-
rameters:

• 100 agents in total
• K random integers, which represent delays in time steps

are selected ∀K ∈ {0, 10, . . . , 390, 400}. Each delay
da ∈ {1, . . . , 10} is assigned to a randomly selected
agent a. Each agent can be selected more than once.

In each run, we recorded the resulting sum of costs and the
computation time.

The VNS takes the shake intensity parameter N as an in-
put, which determines how many times will the shake pro-
cedure call the shake operator. We performed experimental
analysis of the parameter, which showed that N = 1 is the
best-performing value. However, the differences were not
significant.

6.1 VNS Performance
We compare the performance of our proposed VNS method
to results obtained using ADG (Hönig et al. 2019). The ADG

1https://github.com/Kei18/mapf-IR

constructs a graph containing the action-precedence rela-
tions and ensures that actions with dependencies on other
actions are executed in the same order as they were planned
in the original solution. While ADG can deal with cycle con-
flicts, it cannot repair such plans. The success rate of ADG
on each tested map is shown in Table 4.

map success rate (%)
room 70

random 100
warehouse 100

Table 4: Success rate of ADG on different maps.

Our proposed VNS algorithm was run with a total of
10000 iterations, and the SoC of each run was recorded at 0,
1000, 10000 iterations. The solution at 0 iterations is equiv-
alent to the initial feasible solution. The measured data for
both VNS and ADG were fitted using a polynomial and the
results are shown in Figures 13, 14 and 15. The figures show
the absolute SoC values and the improvement relative to the
solution found by ADG, defined as:

RI =
fADG − fVNS

fADG
(9)

where f denotes the objective function (in this case the sum
of costs). The time that each run of VNS took seemed to be
independent of the total delay; therefore, we utilize the aver-
age time of each experiment. The average times are shown
in Table 5.
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Figure 13: Quality of solutions found by VNS and ADG on
map room.

Maps room random warehouse
Iterations Time [ms] Time [ms] Time [ms]

10000 5096.34 3043.92 6186.36
1000 836.56 390.34 825.19

0 78.07 36.25 70.34

Table 5: Measured CPU time of running VNS on maps
room, random and warehouse.

From the results, it is clear that VNS significantly out-
performs ADG on the map room both from the perspective
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Figure 14: Quality of solutions found by VNS and ADG on
map random.
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Figure 15: Quality of solutions found by VNS and ADG on
map warehouse.

of success rate and relative improvement of a solution. On
the other two maps, VNS still outperforms the competing
method, but with a smaller margin.

To evaluate the usability of the VNS algorithm, the com-
putation time should be taken into account. The instances
plans on maps random and warehouse were all calcu-
lated using ECBS in less than a second. However, the time
required to solve problems on map room ranged from 3 sec-
onds up to 300 seconds, and in one case, of the ten tested,
ECBS did not find a sufficient solution in the entire dedi-
cated 300 seconds. From this point of view, the computation
times of VNS on this map seem to be reasonable and VNS
can be considered to be used on maps similar to room. Fur-
thermore, VNS is an anytime algorithm. That means that it
is able to output a solution at any point after initial solu-
tion construction, which is fast. The method can even be
modified to use maximum execution time as a terminating
condition. Our method offers improvement even at lower
runtimes, i.e., 1000 iterations take less than a second, while
still offering improvement of 5% to 8% on the random and
room maps.

6.2 Evolution of Solution’s Quality
The last experiment serves to demonstrate the evolution of
the solution quality with increasing iterations. The experi-
ment was carried out on the map room in a randomly gen-

erated instance. The agents were randomly delayed and the
total delay was 989 time steps. In total, 50000 iterations of
VNS were run and the best solution was recorded in each it-
eration. The result of the experiment is shown in Figure 16.
The graph shows the evolution of the SoC criterion and the
improvement relative to the initial solution. It is clear that
most of the improvement was achieved at the beginning of
the search: approximately 94% of the total improvement was
obtained in the first 10000 iterations.
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Figure 16: Evolution of solution with increasing iterations.

7 Conclusion
We formulated the problem of robust execution of MAPF
plans as a scheduling problem by extending JSSP with
newly designed MAPF-specific constraints. Next, we pre-
sented a method enabling unambiguous representation of
MAPF schedules and their decoding. Furthermore, we pro-
posed an optimization-based VNS method as a solution to
the robust execution scheduling problem, which utilized a
random operator tailored to the problem at hand. The pro-
posed method was evaluated on execution of MAPF solu-
tions of benchmark dataset maps and compared to state-
of-the-art ADG method. Based on experimental results, our
new method outperforms ADG in terms of resulting solution
cost in presence of unexpected delays of agents at the begin-
ning of the plan. This comes at a cost of execution time,
where ADG runs faster. However, our proposed method is
still significantly faster than replanning. Furthermore, our
method was not optimized for execution time, and we ex-
pect that we will be able to decrease its runtime, which is
the subject of future work. For additional future work, we
want to conduct extended experiments on a larger array of
maps and develop more operators for the robust execution
scheduling problem.
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gura, F.; and Rodrı́guez Melquiades, J. A., eds., Advances in
Artificial Intelligence - IBERAMIA 2018, Lecture Notes in
Computer Science, 290–301. Cham: Springer International
Publishing. ISBN 978-3-030-03928-8.
Cheng, R.; Gen, M.; and Tsujimura, Y. 1996. A tutorial
survey of job-shop scheduling problems using genetic al-
gorithms—I. representation. Computers & Industrial En-
gineering, 30(4): 983–997.
Davis, L.; et al. 1985. Job Shop Scheduling with genetic
algorithms. In Proceedings of an international conference
on genetic algorithms and their applications, volume 140.
Felner, A.; Stern, R.; Shimony, S.; Boyarski, E.; Goldenberg,
M.; Sharon, G.; Sturtevant, N.; Wagner, G.; and Surynek,
P. 2017. Search-based optimal solvers for the multi-agent
pathfinding problem: Summary and challenges. In Interna-
tional Symposium on Combinatorial Search, volume 8.
Hönig, W.; Kumar, T. K.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-Agent Path Finding
with Kinematic Constraints. Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
26: 477–485.
Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J. W.; and Aya-
nian, N. 2019. Persistent and Robust Execution of MAPF
Schedules in Warehouses. IEEE Robotics and Automation
Letters, 4(2): 1125–1131.
Ma, H.; Koenig, S.; Ayanian, N.; Cohen, L.; Hönig, W.; Ku-
mar, T. K. S.; Uras, T.; Xu, H.; Tovey, C.; and Sharon, G.
2017. Overview: Generalizations of Multi-Agent Path Find-
ing to Real-World Scenarios. arxiv:arXiv:1702.05515.
Ma, H.; Kumar, T. K. S.; and Koenig, S. 2017. Multi-Agent
Path Finding with Delay Probabilities. Proceedings of the
AAAI Conference on Artificial Intelligence, 31(1).
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