
Informed Steiner Trees: Sampling and Pruning for Multi-Goal Path Finding in
High Dimensions

Anonymous submission

Abstract
We interleave sampling based motion planning methods with
pruning ideas from minimum spanning tree algorithms to de-
velop a new approach for solving a Multi-Goal Path Finding
(MGPF) problem in high dimensional spaces. The approach
alternates between sampling points from selected regions in
the search space and de-emphasizing regions that may not
lead to good solutions for MGPF. Our approach provides an
asymptotic, 2-approximation guarantee for MGPF. We also
present extensive simulation results to illustrate the advan-
tages of our proposed approach over prior works and a base-
line using uniform sampling in terms of the quality of the
solutions found and computation speed.

Introduction
Multi-Goal Path Finding (MGPF) problems aim to find a
least-cost path for a robot to travel from an origin (s) to a
destination (d) such that the path visits each node in a given
set of goals (T̄ ) at least once. In the process of finding a
least-cost path, MGPF algorithms also find an optimal se-
quence in which the goals must be visited. When the search
space is discrete (i.e., a finite graph), the cost of traveling
between any two nodes can be computed using an all-pairs
shortest paths algorithm. In this case, the MGPF encodes a
variant of the Steinera Traveling Salesman Problem (TSP)
and is NP-Hard (Kou, Markowsky, and Berman 1981). In
the general case, the search space is continuous and the least
cost to travel between any two nodes is not known a-priori.
This least-cost path computation between any two nodes in
the presence of obstacles, in itself, is one of the most widely
studied problems in robot motion planning (Kavraki et al.
1996; Kuffner and LaValle 2000). We address the general
case of MGPF as it naturally arises in active perception
(Best, Faigl, and Fitch 2016; McMahon and Plaku 2015),
surface inspection (Edelkamp, Secim, and Plaku 2017) and
logistical applications (Janoš, Vonásek, and Pěnička 2021;
Otto et al. 2018; Macharet and Campos 2018).

MGPF is notoriously hard as it combines the challenges
in Steiner TSP and the least-cost path computations in the
presence of obstacles; hence, we are interested in finding ap-
proximate solutions for MGPF. Irrespective of whether the

aAny node that is not required to be visited is referred to as a
Steiner node. A path may choose to visit a Steiner node if it helps
in either finding feasible solutions or reducing the cost of travel.

search space is discrete or continuous, Steiner trees span-
ning the origin, goals and the destination play a critical role
in the development of approximation algorithms for MGPF.
In the discrete case, doubling the edges in a suitable Steiner
tree, and finding a feasible path in the resulting Eulerian
graph leads to 2-approximation algorithms for MGPF (Kou,
Markowsky, and Berman 1981; Mehlhorn 1988; Chour,
Rathinam, and Ravi 2021). This approach doesn’t read-
ily extend to the continuous case because we do not a-
priori know the travel cost between any two nodes in T :=
{s, t}

⋃
T̄ . One can appeal to the well-known sampling-

based methods (Karaman and Frazzoli 2011; Kavraki et al.
1996; Gammell, Srinivasa, and Barfoot 2014, 2015) to es-
timate the costs between the nodes, but the following key
questions remain: 1) How to sample the space so that the
costs of the edges joining the nodes in T can be estimated
quickly so that we can get a desired Steiner tree? 2) Should
we estimate the cost of all the edges or can we ignore some
edges and focus our effort on edges we think will likely end
up in the Steiner tree?

We call our approach Informed Steiner Tree∗ ( IST*).
IST* iteratively alternates between sampling points in the
search space and pruning edges. Throughout its execution, a
Steiner tree is maintained which is initially empty but even-
tually spans the nodes in T , possibly including a subset of
sampled points. IST* relies on two key ideas. First, find-
ing a Steiner tree spanning T commonly involves finding a
Minimum Spanning Tree (MST) in the metric completionb

of the nodes in T . For any two distinct terminals u, v, we
maintain a lower bound and an upper boundc on the cost
of the edge (u, v). Using these bounds and cycle properties
of an MST, we identify edges which will never be part of
the MST. This allows us to sample regions corresponding to
only those edges that can be part of the MST. We further bias
our sampling by assigning a suitable probability distribution
over the search space based on the bounds on the cost of the
edges (See Fig. 1). Second, as the algorithm progresses, a
new set of points are added to the search graph in each it-
eration. Each new sample added may facilitate a lower-cost
feasible path between terminals requiring us to frequently

bThe metric completion here is a complete weighted graph on
all the nodes in T where the cost of an edge between a pair of nodes
in T is the minimum cost of a path between them.

cUpper bound is the cost of a feasible path from u to v.



Figure 1: The Steiner tree (thick-blue lines) computed in three consecutive iterations of IST*, showing the advantage of
pruning. The environment has 2 U-shaped obstacles with tiny openings. The numbered green circles denote the terminals in
T that must be connected. A yellow-shade ellipse denotes an edge’s informed set while its color intensity is the probability
of that edge being sampled. Sampled points in free space are part of the roadmap (shown in grey). Left: The thin solid red
lines are the actual paths corresponding to active non-MST edges under consideration (their edge costs act as upper bounds
on the corresponding optimal costs of the edges). Until any pruning, these edges are also sampled in addition to the edges
in the MST. Middle: Dashed red lines show the edges that have been discarded (pruned) from further consideration as they
will not contribute to the optimal MST. Consequently, their regions will be not be sampled any further. Right: After pruning,
strategic densification of the roadmap happens (for example, the region around the edge between nodes 2 and 5) based on the
probabilities at the end of the previous iteration. We observe that the roadmap is further densified around active edges leading
to an optimal MST faster.

update the Steiner tree. To address this efficiently, we de-
velop an incremental version of the Steiner tree algorithm
while maintaining its properties. Since this incremental ap-
proach correctly finds a Steiner tree, as the number of sam-
pled points tends to infinity, IST* provides an asymptotic
2-approximation guarantee for MGPF.

We use the sampling procedure developed in Informed
RRT* (Gammell, Barfoot, and Srinivasa 2018) to choose
points from selected regions in our approach. Informed sam-
pling in synergy with pruning enables faster convergence to
the optimal solution than uniform sampling. After describ-
ing IST∗ with its theoretical properties, we provide exten-
sive computational results on high-dimensional problem in-
stances.

Related Work
The MGPF and several variants of it have been addressed
in the literature. Here, we discuss the most relevant work in
continuous domains (detailed literature review present in the
appendix). Un-supervised learning approachesd(Faigl et al.
2011; Faigl 2016) using Self Organizing Maps (SOMs) have
been used to solve MGPF. In (Faigl 2016), SOM is com-
bined with a rapidly exploring random graph algorithm to
find feasible solutions for the MGPF.

In (Devaurs, Siméon, and Cortés 2014), a meta-heuristic
similar to simulated annealing is combined with multiple

dSince, the code for these learning approaches were not avail-
able, we could not directly test them on the problem instances con-
sidered in this paper.

Rapidly-exploring Random Tree (RRT) expansions to solve
MGPF. In (Englot and Hover 2013), LazyTSP was intro-
duced for efficient path planning that combines RRT-based
planning with TSP (Jünger, Reinelt, and Rinaldi 1995). It
starts with TSP to compute an initial tour and then verifies
the connections using RRT-based planning, iteratively refin-
ing the tour until a valid trajectory is found. In (Vonásek and
Pěnička 2019), a method called Space Filling Forests (SFF)
is proposed to solve MGPF. Multiple trees are grown from
the nodes in T and unlike the approach in (Devaurs, Siméon,
and Cortés 2014) where any two close enough (or neighbor-
ing) trees are merged into a single tree, in SFF, multiple vir-
tual connections are allowed between two neighboring trees
leading to multiple paths between any two nodes in T . Re-
cently, in (Janoš, Vonásek, and Pěnička 2021), a generaliza-
tion of SFF (called SFF*) has been proposed to also include
rewiring of the edges in the trees similar to RRT*. Compu-
tational results show that SFF* performed the best among
several previously known solvers for the simulation envi-
ronments considered in (Janoš, Vonásek, and Pěnička 2021).
We evaluated all the above methods with our proposed ap-
proach and report our findings in the results section.

A generalization of MGPF was considered in (Saha et al.
2006) where all the goals were partitioned into groups and
the aim is to also visit one goal from each partition. They
work under the assumption that a path between two nodes
is computed at most once which may, in reality, be far from
the optimal path. Their planner stops the instant it has found
a feasible path connecting all the goals unlike our approach
which keeps refining the paths.



Background and Preliminaries
Let X ⊆ Rn be the n-dimensional configuration space of
a robot, and let Xf ⊂ X be the set of obstacle-free config-
urations. Let σ : [0, 1] → Xf be a collision free, feasible
path such that the path starts at the origin (σ(0) = s), visits
each of the goals in T̄ at least once and ends at the destina-
tion (σ(1) = d). Let c(σ) ∈ R≥0 denote the cost of the path
σ. The objective of MGPF is to find a collision-free feasible
path σ such that c(σ) is minimized.

Let S ⊆ Xf be a set of sampled points (also referred
to as nodes) from Xf . Let V := S

⋃
T . We refer to all

the nodes in T as terminalse. Nodes which are within a ra-
dius of ρ of each other are treated as neighbors. Further, let
NV (u) denote the set of nodes which are neighbors to the
node u. Edges are formed between neighbors if a feasible
path is found between them using a local planner (for ex-
ample, straight-line connection). Let G = (V,E) denote the
undirected graph thus formed where E denotes all the edges
joining any pair of neighbors in V . Henceforth, we refer to
G as the roadmap. Given a graph G, we use E(G) to refer
to all the edges present in G.

Let e := (u, v) be an edge joining two distinct nodes
u, v in G. Edge e represents a feasible path between u and
v found by the local planner. The costf of a feasible path
joining vertices u and v is denoted as dist(e). Let h(e) be
a lower bound on the length of any feasible path between
u and v; typically, we set h(e) to be the Euclidean distance
between nodes u and v.

One approach for solving the MGPF is to sample as many
points uniformly as possible from the obstacle-free space
and form a roadmap spanning the terminals and the sampled
points. At the end of the search process, the recently devel-
oped A∗ based approach (Chour, Rathinam, and Ravi 2021)
for discrete version of MGPF can be used to find a suitable
Steiner tree. In this article, we consider this approach as the
baseline against which IST∗ is compared.

Informed Steiner Trees
An overview of IST* is presented in Algorithm 1. At any
iteration, IST* maintains three graphs to enable the search
process:

1. Roadmap graph: G = (V,E) includes all the termi-
nals and the sampled points, and the edges between its
neighboring nodes. Two nodes u, v are neighboring if
dist(u, v) ≤ ρ, where ρ is the connection radius. We pro-
vide a discussion on the role (and implementation) of ρ
in the Appendix. Initially, G includes only the terminals
and the edges between any pair of neighboring terminals.

2. Shortest-path graph: This graph is denoted as Ḡ :=
(V, Ē) and is a subgraph of the roadmap. It is a forest
which contains a tree rooted at each terminal and main-
tains all the shortest paths from a terminal to each sam-
pled point in its component. The shortest-path graph is

eThis is a commonly used term in the optimization literature.
fWe assume the costs are symmetric, i.e., cost of traveling a

given path from node u to node v is the same as the cost of traveling
the path from v to u.

Algorithm 1: IST*

1 Input:
2 Xf ⊂ X // Collision free space
3 T ⊂ Xf // Discrete set of terminals
4 h(e) for any e = (u, v), u, v ∈ Xf // Heuristic

cost between terminals u and v
5 ns // Samples per batch
6 nb // Number of batches
7 Output:
8 ST // Steiner tree spanning the

terminals in T
9 Initialization:

10 V ← T // Add terminals to the
roadmap

11 NV (u) := {v : dist(v, u) ≤ ρ, v ̸= u, v ∈ V } for
any u ∈ V // nearest neighbors of u
in V

12 E ← {(u, v) : v ∈ NV (u), u ∈ V }
13 cost(e) = dist(u, v) for any e = (u, v) ∈ E
14 G← (V,E)
15 A = {(u, v) : u, v ∈ T, u ̸= v} // Set of

active edges joining terminals
16 costT (u, v) =∞ for any (u, v) ∈ A
17 Prob(e) = h(e)∑

e′∈A h(e′) for all e ∈ A // Initial

probabilities using lower bounds
18 ST ← ∅

// Note: G, Ḡ, cost, costT are global variables.

19 Main loop:
20 for iteration = 1, . . . , nb do
21 S′ ← AddSamples(Prob,A, costT , ns)

22 Ripple(S′)

23 ST ← UpdateTree(ST ,A)
24 A ← PruneEdges(ST ,A)
25 Prob← UpdateProbability(Prob,A, ST , h)
26 return ST

used to find feasible paths between terminals. Initially, Ḡ
is an empty forest (i.e., contains no edges).

3. Terminal graph: This graph is denoted as GT = (T,A)
and consists of only the terminals and any edges connect-
ing them. Any edge in GT corresponds to a path between
two terminals in the roadmap. Therefore, any spanning
tree ST in the terminal graph corresponds to a feasible
Steiner tree in G. For example, the leftmost subfigure in
Fig. 1 shows the terminal graph. It is used in determining
which regions to sample and in finding feasible Steiner
trees for MGPF. A contains the set of all the edges that
can possibly be part of ST , and hence are currently ac-
tively explored when sampling. Initially, A consists of
all the edges that join any pair of terminals in T . As the
algorithm progresses, edges in A may be pruned. Also,
the cost of an edge connecting any pair of distinct ter-
minals u, v in GT is denoted as costT (u, v). Initially,
costT (u, v) is set to∞ for all u, v ∈ T and ST is empty.



Algorithm 2: AddSamples(Prob,A, costT , ns)

1 S′ ← ∅
2 for 1, . . . , ns do
3 Choose (u, v) ∈ A using Prob
4 xrand ← Sample(u, v, costT (u, v))
5 S′ ← S′ ∪ {xrand}
6 return S′

In each iteration of IST*, the algorithm (i) samples new
points in Xf (line 21 of Algorithm 1), (ii) updates ST based
on a new incremental Steiner tree algorithm called Ripple
(lines 22–23 of Algorithm 1), (iii) prunes edges fromA (line
24 of Algorithm 1), and (iv) updates the probability distri-
bution (line 25 of Algorithm 1). Each of these key steps are
discussed in the following subsections.

Sampling The sampling procedure (Algorithm 2) uses
the routine Sample developed in Informed RRT* (Gam-
mell, Srinivasa, and Barfoot 2014, Algorithm 2). Informally
speaking, that subroutine samples within a prolate hyper-
spheroid with the focal points being the start and goal con-
figurations and the diameters defined by the cost. Any con-
figurations out of this hyperspheroid cannot improve the
current-best solution. In Fig. 1, this corresponds to sampling
within the yellow ellipsoids as shown through the progres-
sions.

In our sampling procedure, a fixed number of samples
ns is added to S′ from Xf in each iteration. First, an edge
e := (u, v) is drawn from the probability distribution over
A (line 3 in Algorithm 2). Initially, until a feasible ST is
obtained, the probability distribution is computed using the
heuristic lower bounds (line 17 in Algorithm 1). Once a
random sample xrand is obtained for the edge (u, v) using
Sample, it is added to S′.

Incremental Steiner tree algorithm This procedure is ac-
complished by first finding lower-cost, feasible paths be-
tween the terminals through Ripple (Algorithm 3), and
then updating the spanning tree ST . In Ripple, each
sample is processed individually until S′ becomes empty.
Adding a new point s to the roadmap (consequently to Ḡ)
can facilitate new paths between terminals. If s has a neigh-
bor that is connected to a terminal (or is itself a terminal),
then s and each of its neighbors are expanded in a Dijkstra-
like fashion until the priority queueQ is empty (lines 13–21
of Algorithm 3). The variable g(u) keeps track of the short-
est path from u to its closest terminal which is stored in ru.
The key part of the Ripple algorithm lies in finding new
feasible paths between the terminals. This happens (line 22
of Algorithm 3) during the expansion of a node u∗ to its
neighbor n when g(u∗)+cost(u∗, n) ≥ g(n) and ru∗ ̸= ru,
i.e., n is closer to its root rn than to ru∗ . In this case, a fea-
sible path from ru∗ to rn has been discovered through the
nodes u∗ and n. If the cost of this feasible path is lower than
costT (ru∗ , rn), then costT (ru∗ , rn) is updated accordingly.

After costT (u, v) for any pair of terminals (u, v) is up-
dated, it is relatively straightforward to check if any edge
not in ST should become part of ST . First, we check if ST

Algorithm 3: Ripple(S′)

// For any u ∈ V , let ru denote the
closest terminal to u in G. If u
is a terminal, then ru := u. The
parent of any terminal is itself

1 while S′ ̸= ∅ do
2 s← S′.pop()
3 V ← V ∪ {s}
4 E ← E ∪ {(s, u) : u ∈ NV (s)}
5 parent(s), rs ← NULL
6 n∗ = argmin{g(n) + cost(s, n) : n ∈

NV (s), rn ̸= NULL}
7 if n∗ ̸= NULL then
8 Ē ← Ē ∪ {(s, n∗)}
9 g(s)← g(n∗) + c(s, n∗)

10 rs ← rn∗

11 parent(s)← n∗

12 Q.insert(s, g(s)) // Priority Queue
13 while Q ≠ ∅ do
14 u∗ ← Q.extractMin()
15 foreach n ∈ NV (u

∗) do
16 if g(u∗) + cost(u∗, n) < g(n) then
17 g(n)← g(u∗) + cost(u∗, n)
18 Q.insert(n, g(n))
19 rn ← ru∗

20 Ē ←
Ē\{(n, parent(n))∪{(n, u∗)}}

21 parent(n)← u∗

22 else if rn ̸= ru∗ then
23 d← g(n) + cost(n, u∗) + g(u∗)

if d < costT (rn, ru∗) then
24 costT (rn, ru∗)← d

25 return

is empty or not. If ST is empty, then we just use Kruskal’s
algorithm (Kruskal 1956) to find a spanning tree (if it ex-
ists) for T (line 2 of Algorithm 4). If ST is not empty, we
appeal to the following well-known cycle property of min-
imum spanning trees to see if we should include (u, v) in
ST .

Cycle Property. Suppose that ST is a MST in GT and when
a new edge (u, v) /∈ ST is added to GT , it forms a cycle
C = Ω((u, v), ST ). Consider an edge (u∗, v∗) ∈ C other
than (u, v) that has the maximum of all the edge costs in
C. If costT (u∗, v∗) > costT (u, v), then ST \ {(u∗, v∗)} ∪
{(u, v)} is an MST of the updated GT .

Thus, in our algorithm, if costT (u∗, v∗) > costT (u, v),
then edge (u∗, v∗) is deleted from ST and edge (u, v) is
added to ST (lines 9 of Algorithm 4).

Pruning edges from A The pruning procedure (Algo-
rithm 5) is similar to what we discussed in the previous
tree update procedure except that we now appeal to the
bounds on the cost of the edges. Consider an edge (u∗, v∗) ∈
Ω((u, v), ST ) other than (u, v) that has the maximum of
all the edge costs in C. If costT (u

∗, v∗) < h(u, v), and



Algorithm 4: UpdateTree(ST ,A)
// Notation: Ω((u, v), ST ) is the cycle

induced by adding edge (u, v) to
ST

1 if ST is empty then
2 ST = Kruskal(costT )
3 return ST

4 for (u, v) ∈ A : (u, v) ̸∈ ST do
5 P := {(u′, v′) ∈ Ω((u, v), ST ) \ {u, v}}
6 pathCost←

∑
{costT (u′, v′) : (u′, v′) ∈ P}

7 (u∗, v∗) = argmax{costT (u′, v′) : (u′, v′) ∈
P}}

8 if costT (u∗, v∗) > costT (u, v) then
9 ST ← ST \ {(u∗, v∗)} ∪ {(u, v)}

10 else if pathCost < costT (u, v) then
11 costT (u, v)← pathCost // Update

non-MST edge with a cheaper
path via MST

12 return ST

Algorithm 5: PruneEdges(ST ,A)
1 for (u, v) ∈ A : (u, v) ̸∈ ST do
2 (u∗, v∗) = argmax{costT (u′, v′) : (u′, v′) ∈

Ω((u, v), ST ) \ {u, v}}
3 if h(u, v) > costT (u

∗, v∗) then
4 A ← A \ {(u, v)}
5 return A

since h(u, v) ≤ costT (u, v), we have costT (u
∗, v∗) <

costT (u, v). Then, again applying the cycle property, edge
(u, v) is pruned fromA and is never considered by the algo-
rithm henceforth (line 4 of Algorithm 5). This is can be seen
in Fig. 1 where every non-MST edge gets pruned because its
lower bound (straight line distance in this case) is more than
the current cost of each of the edges it encloses in its MST
cycle.

Update probability distributions Once a feasible ST is
found, the probability distribution is updated (Algorithm 6)
in each iteration to reflect the changes in the costs andA. We
want to sample the region around an edge more if the uncer-
tainty around the cost of the edge is higher. This is based
on our assumption that the more we learn about the cost of
an edge, the better we can decide on its inclusion in ST . If
an edge (u, v) already belongs to ST , we assign a sampling
probability for (u, v) proportional to the difference between
the edge cost and its lower bound. On the other hand, if an
edge (u, v) does not belong to ST , we first aim to include
it in ST and later hope to drive its cost to its lower bound.
Thus, we assign a sampling probability for (u, v) propor-
tional to the difference between the edge cost and the cost of
its next largest cost edge in Ω((u, v), ST ). An illustration of
this can be seen in Fig. 1: In the middle subfigure, the MST
edge 2 – 5 has highest deviation from its lower bound (com-

Algorithm 6: UpdateProbability(Prob,A, ST , h)

1 if ST is empty then
2 return Prob

// Reset probability distribution
3 Prob(e) := 0 for all e ∈ {(u, v) : u, v ∈ T, u ̸= v}
4 gap1(e) := costT (u, v)− h(u, v),∀(u, v) ∈ ST

5 gap2(e) := costT (u, v)−max{c(e′) : e′ ∈
Ω(e, ST ) \ {e}},∀e ∈ A \ ST

// Partition active edges
6 Amst = {e ∈ ST : gap1(e) > 0}
7 Anon−mst = {e ∈ A \ ST : gap2(e) > 0}
8 foreach e ∈ Amst do
9 Prob(e)← |Amst|

|Amst|+|Anon−mst| ·
gap1(e)∑
e′∈gap1(e′)

10 foreach e ∈ Anon−mst do
11 Prob(e)← |Anon−mst|

|Amst|+|Anon−mst| ·
gap2(e)∑
e′∈gap2(e′)

12 return Prob

pared to other MST edges). Thus, we would like to sample
this edge’s informed set more to reduce the uncertainity (de-
viation). This is reflected by the sampling probability which
can be seen to be darker compared to rest. Consequently, in
the next iteration, we significantly densify in its correspond-
ing ellipsoid making the deviation from its lower bound ap-
proach 0.

Theoretical Properties
At any iteration of the algorithm, the algorithm maintains a
Steiner tree ST which is formed by expanding the paths of
a MST on the terminal graph GT . For any given state of the
graph G that contains the terminals T along with the sam-
pled points so far, we argue that the tree returned by IST* is
such an MST.
Theorem 1. IST* will return an MST over the shortest
paths between terminals in G.

We show this theorem by arguing that the edge pruning
from the active set A of inter-terminal edges is correct and
that the sampling procedure with updated probabilities cou-
pled with the Ripple update will eventually find all rele-
vant shortest paths. The former claim follows from the cycle
property as discussed in the pruning step. To prove the latter
claim, we use the following key lemma, that is proved in the
Appendix.
Lemma 2. Suppose a sample point s ∈ S′ is processed by
Ripple so that rs is a terminal t, then in G, t is (one of)
the closest terminal to s among all terminals T .

In this way, Ripple maintains every sample point in the
correct so-called ‘Voronoi’ partition of the terminals (i.e. as-
signing it to its closest terminal). From this lemma, we see
that the edges between terminals in GT whose costs are up-
dated by Ripple (line 24, Algorithm 3) are precisely those
where an edge between a node u∗ and its neighbor n such
that ru∗ ̸= rn discovers a new cheaper path between ru∗ and
rn. Thus, Ripple is able to find all shortest paths between
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Figure 2: The different 3D environments considered for evaluation with SFF* and Multi-T RRT. Figures (d) and (e) are taken
from (Janoš, Vonásek, and Pěnička 2021) and those environments were designed by the respective authors while environments
(a), (b), and (c) are part of the OMPL suite (Şucan, Moll, and Kavraki 2012).

pairs of terminals that are witnessed by a pair of neighbor-
ing boundary g nodes. We can now use a result of (Mehlhorn
1988) (Lemma in Section 2.2) that shows that this subgraph
GT of the subset of shortest paths between terminals in T
that are witnessed by adjacent boundary nodes is sufficient
to reconstruct an MST of G. This shows that ST constructed
as a MST of GT is indeed an MST of the metric completion
of T using all the edges in G as claimed.

Since the UpdateTree method in IST* always main-
tains a MST of the sampled graph G, in the limit with more
sampling, the actual shortest paths corresponding to the true
final MST will be updated to their correct lengths with di-
minishing error, and this MST will be output by IST*. Since
the MST is a 2-approximation to the optimal Steiner tree
in any graph and consequently, the MGPF problem (Kou,
Markowsky, and Berman 1981), we get the following result.

Corollary 3. IST* outputs a 2-approximation to the MGPF
problem asymptotically.

Results
We compared the performance of IST* with the exist-
ing approaches, namely SFF* (Janoš, Vonásek, and Pěnička
2021), Multi-T-RRT (Devaurs, Siméon, and Cortés 2014)
and LazyTSP (Englot and Hover 2013). However, we found
that these approaches timed out (took significantly greater
time to find an initial solution) even in three-dimensional
environments. Thus, for more holistic evaluation of IST*,
we came up with a baseline, as described in the Background
and Preliminaries section.

Specifically for the baseline, we densified a roadmap
given by PRM* (Karaman and Frazzoli 2011) for a fixed
amount of time via uniform random sampling after which
S* (specifically, S*-BS variant) was run on the resulting
roadmap to obtain an MST-based Steiner tree (Chour, Rathi-
nam, and Ravi 2021). It was ensured that the combined time
spent in growing the roadmap and running S* exhausted the
input time limit.

The planners (IST* and the Baseline) were implemented
in Python 3.7 using OMPL (Şucan, Moll, and Kavraki 2012)
v1.5.2 on a desktop computer running Ubuntu 20.04, with 32

gA node u is said to be a boundary node if not all its neighbors
have root ru.

GB of RAM and an Intel i7-8700k processor. Further imple-
mentation details are available in the Appendix.

Due to the absence of a standard suite of instances for
benchmarking planners for MGPF, we use the environments
commonly considered in motion planning and extend them
to our setting by randomly generating valid goal configura-
tions. Specifically, we test our planners in rigid body motion
planning instances available in the OMPL.app GUI and the
environments considered by the authors of SFF*. A prob-
lem instance is uniquely identified by an environment (with
its specific robot model), number of terminals, and the com-
putational time given for planning. For each environment, a
varying number of terminals (|T | = 10, 30, 50) was gen-
erated. The choice for the size of the problem instances
was motivated by unmanned vehicle applications (Oberlin,
Rathinam, and Darbha 2011). We now describe the testing
environments and the corresponding results next.

Environments
As the environment models in OMPL App are designed
for single source and destination motion planning (with no
goals), many of them have disconnected regions making
them unsuitable for benchmarking multi-goal path planning
under random generation of goal points. Thus, we used the
Home, Abstract and Twisty Cool environment which ad-
mit one connected SE(3) configuration space.

Home (Fig. 2b) and Abstract (Fig. 2a) are related to the
classic Piano Mover’s problem (Schwartz and Sharir 1983),
admitting several narrow passages offering several homo-
topy classes of solution paths. Meanwhile, Twisty Cool
(Fig. 2c) represents a cubicle divided into two regions by
a wall in between which has a narrow window connecting
the two regions.

Apart from OMPL environments, we also considered
3D environments (6D configuration space) introduced by
the authors of SFF*; specifically, Dense (Fig. 2d) and
Traingles (Fig. 2e). Triangles has multiple triangular
prisms of same size symmetrically placed as obstacles while
Dense represents a city-like environment with various free-
form building-like structures, placed irregularly, acting as
obstacles.

The spatial size (volume) of each of the environments is
shwon in Table 1.



(a) 10 Terminals

(b) 30 Terminals

(c) 50 Terminals

Figure 3: Performance of the different approaches on the en-
vironments considered in Table 1. The plots represent the
mean (across 30+ runs) with error bars (standard deviation).
The number on top of a bar represents the percentage of fail-
ure while its absence indicates no failures. A cross ✗ repre-
sents 100% failure (timeout in all runs). Note that the y-axis
is in log scale.

Table 1: Time (in seconds) given to planners as input in dif-
ferent three-dimensional problem instances.

Environment
Terminals

10 30 50
HOME 450s 1200s 1800s

ABSTRACT 300s 1200s 1800s
TWISTY COOL 600s 1200s 1800ss

DENSE 600s 1200s 1800s
TRIANGLES 10s 150s 300s

Comparison with the State of the Art
Given the stochastic nature of sampling-based path planning
methods, all the approaches considered for evaluation were
ran 30+ times to obtain a distribution of the cost of the
Steiner tree found by them. First, we note that IST* and the
Baseline find a (initial) solution for all the problem instances
considered within 5 minutes. Meanwhile, it was found that
LazyTSP took more than 45 minutes across all the problem
instances so we explicitly exclude it from further discussion.
Next, Multi-R RRT, unlike SFF*, IST* and the Baseline,
stops the moment it finds a solution and doesn’t improve
further. Thus, we tried to find a rough average of the time
taken by Multi-T-RRT to solve a problem instance. In the
cases where it finished under an acceptable threshold (30
minutesh), we recorded its duration and provided the same
time to SFF*, IST* and the Baseline for fair comparison.
Otherwise, they were given (the same) time based on the
number of terminals and difficulty of planning in that en-
vironment. The exact time for each instance finally used is
shown in Table 1.

The results are shown as bar plots for each planner across
environments in Fig. 3. To make them more insightful, we
also calculate a lower bound on the cost of the MST (de-
scribed in Appendix) in each problem instance and show it
as a dashed red bar in the figures. It represents the best pos-
sible cost achievable for that instance.

We find that Multi-T-RRT was only able to find solutions
in the Triangles environment which has relatively less vol-
ume compared to other environments. This suggests that
Multi-T-RRT is only suitable for low-dimensional environ-
ments as it timed out even for 10 terminals in other envi-
ronments. Furthermore, the solutions it found were 4 times
worse than other planners which is not surprising given its
nature of stopping at the first solution found.

SFF* is more promising that Multi-T-RRT, finding solu-
tions across all environments for 10 terminals, across more
than half of the environments for 30 terminals but only in
Triangles when given 50 terminals. Further, it excels in 10
terminals case, reaching the optimal solution in 4 out of the 5
environments consequently outperforming IST*. However,
when considering more number of terminals, it either finds
a poor solution, worse than our Baseline (30 terminals) or

hGiven both IST* and the Baseline finds a solution within 5
minutes, a significantly larger time period (30 minutes) was chosen
to be the upper limit.



times out (50 terminals). SFF* further has more variance and
higher rate of failure. Meanwhile, our Baseline consistently
finds good solutions across all instances and performs only
marginally worse to IST* making it a competitive alterna-
tive for future evaluations.

Overall, we find SFF* is best suited for the cases when the
number of terminals is low. In all other cases, IST* is supe-
rior to it, consistent, asymptotically optimal, and also per-
forms good with low number of terminals. A final point of
distinction we would like to emphasize is that the available
implementation of Multi-T-RRT and SFF*i only supports
SE(3) (and its subspace), and thus, cannot be evaluated on
environments like R4 and R8 presently. Further, SFF* was
primarily designed for SE(3) and lower-dimensional envi-
ronments given its dense space filling nature while Mutli-
T-RRT only tries to find a solution and never improves on
it. IST* overcomes all these limitations and is scalable to
higher dimensions as we show below.

Extensive Comparison with Baseline
Given the similar final solution cost of the Baseline with
IST*, we now try to investigate in detail the difference in
their performance, especially in higher dimensions. We let
both the planners output the cost of the Steiner tree found
over time. We ran each planner 50 times to obtain a distri-
bution of solution costs. The mean solution cost with a 99%
confidence interval is calculated from 50 trials and shown in
Table 2.

Real-vector space problems
IST* and the Baseline were tested on two simulated prob-
lems in a unit hypercube with distinct obstacle configura-
tions in R4 and R8 (Fig. 4). The collision detection reso-
lution was set to 10−4 to make evaluating edge costs com-
putationally expensive. The time given to each planner is
available in Table 5 (in Appendix).

Figure 4: A 2-dimensional illustration of the problems in
real-vector spaces. The configuration space for both is a unit
hypercube, i.e., each state space was bounded to the interval
[0, 1], illustrated by the black bounding box. Solid regions
represent invalid states. In Fig.4(b), the hypercube obstacles
are axis-aligned (specifically, 10 on each axis) and uniformly
spread with w = 0.075, d = 0.025.

ihttps://github.com/ctu-mrs/space filling forest star

Center Obstacle (CO): This problem consisted of a big
hypercube at the center (with volume (0.9)n in Rn) (Fig.
4a). In this environment, IST* started on par with the Base-
line but significantly improved while the Baseline remained
stuck in a sub-optimal solution.

Uniform Hypercubes (UH): This domain was filled with
a regular pattern of axis-aligned hypercubes (identically dis-
tributed with uniform gaps) (Fig. 4b). For a real vector space
of dimension n, this environment contains 10n obstacles
with a total volume of 0.75n. In this environment, we see
a dominant performance of IST* over the Baseline with up
to 30% better solution cost.

SE(3) problems
Among the OMPL environments, Home offers the highest
scope for optimization among all the environments consid-
ered, with the final solution often being 50% better than the
initial solution. In Home, Baseline performs competitively
to IST*, and sometimes also finds better solutions initially.
However, IST* converges to a better solution asymptoti-
cally in all the problem instances of Home. In Abstract,
both Baseline and IST* find a good solution quickly, and as
a result, the scope for optimization is not much. Still, IST*
is able to improve very quickly, dominates throughout, and
reaches the final solution cost of Baseline ≈ 6 times faster.

Impact of Ripple
In each iteration of IST*, a batch of samplesj is added to
the roadmap G. As Ripple processes each sample incre-
mentally and keeps rewiring a rooted shortest-path tree until
convergence, it may seem better to simply add all the sam-
ples at once and then run S* on the updated roadmap to get
ST . However, the roadmap grows significantly over time,
making S* computationally expensive for repeated execu-
tions. Whereas, Ripple only has to process a small frac-
tion of the roadmap for a fixed number of samples per batch.
Note that Ripple uses the same amount of memory as S*
given that the underlying graph is same for both. However,
the time taken by each may vary, significantly.

We benchmarked Ripple with S* to investigate its ef-
fect on the performance of IST*. A pseudorandom genera-
tor was used for generating the same sample points for both.
The problem instances considered for this comparison were
same as before (Table 5). However, due to space constraints,
we only show the results (in Table 3) for just 2 environ-
ments depicting extreme scenariosk. In UH R8, both S* and
Ripple perform similarly, with Ripple being marginally
better in the instance with 50 terminals. In Home, Ripple
not only finds a better final solution, but is also 2− 3x faster
than S* for the same solution cost consistently. In all other
problem instances as well, these 2 scenarios were observed
throughout: either Ripple’s performance was very similar
to S* or it was significantly faster while converging to a bet-
ter solution. In conclusion, while both S* and Ripple can

jNote that the batch size is a hyperparameter and remains fixed
throughout the execution.

kThe plot on rest of the problem instances with further discus-
sion is available in the Appendix.



Env. 10 Terminals 30 Terminals 50 Terminals

CO
R4

CO
R8

UH
R4

UH
R8
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O
M
E

A
B
S
T
R
A
C
T

Table 2: Comparison of IST* against the Baseline across 6 different environments – real vector spaces over uniform hyper
rectangles (UH) and center obstacles (CO), and SE(3) environments HOME and ABSTRACT – over 10/30/50 terminals. The
y-axis represents the solution cost (i.e., Steiner tree cost) while the x-axis is the time horizon (in seconds). The thin solid line
represents the mean solution cost with the shaded region being the 99% confidence interval about this mean.



Env. 10 Terminals 30 Terminals 50 Terminals

H
O
M
E

UH
R8

Table 3: Comparison of the performance of IST* when Ripple is used against S* on an SE(3) instance (Home) and a
high-dimensional environment (UH R8). The dark line represents the mean solution cost with the thick region being the 99%
confidence interval about the mean.

lead to the optimal MST over GT , Ripple dominates S*
across all instances considered.

Comparing Path Costs

While IST*’s primary output is a Steiner tree, we also eval-
uated the cost of the feasible path obtainable from IST* for
MGPF (details provided in Appendix). Overall, it was seen
to perform better than the Baseline in path computations too,
an example of which is shown on two challenging problem
instances in Fig. 5.

Figure 5: Comparisons of the costs of the feasible MGPF
solution found by the planners in the high-dimensional real
environments with 50 terminals (over 50 runs).

Conclusion
Inspired by the recent advancements in sampling-based
methods for shortest path problems for single source and
destination in continuous space and multi-goal path finding
in discrete space, we provide a unifying framework to pro-
mote a novel line of research in MGPF. For the first time,
to the best of the authors’ knowledge, the ideas of informed
sampling have been fruitfully extended to the setting of plan-
ning for multiple goals. Our approach is decoupled in the
sense that any further advancements in PRM* or informed
sampling can be directly used to update the respective com-
ponents of our proposed framework.

In the future, we plan to explore obtaining effective lower
bounds on the shortest path cost between two terminals in-
stead of using the Euclidean distance. Including heuristics in
Ripple also seems to be a promising line of research.
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vex regions in a polygonal map. Robotics and Autonomous
Systems, 61(10): 1070–1083.
Fort, J. 1988. Solving a combinatorial problem via self-
organizing process: An application of the Kohonen algo-
rithm to the traveling salesman problem. Biological cyber-
netics, 59(1): 33–40.
Friedrich, C.; Csiszar, A.; Lechler, A.; and Verl, A. 2018. Ef-
ficient Task and Path Planning for Maintenance Automation
Using a Robot System. IEEE Transactions on Automation
Science and Engineering, 15(3): 1205–1215.
Gammell, J. D.; Barfoot, T. D.; and Srinivasa, S. S. 2018. In-
formed sampling for asymptotically optimal path planning.
IEEE Transactions on Robotics, 34(4): 966–984.

Gammell, J. D.; Srinivasa, S. S.; and Barfoot, T. D. 2014.
Informed RRT*: Optimal sampling-based path planning
focused via direct sampling of an admissible ellipsoidal
heuristic. In 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2997–3004. IEEE.
Gammell, J. D.; Srinivasa, S. S.; and Barfoot, T. D. 2015.
Batch informed trees (BIT*): Sampling-based optimal plan-
ning via the heuristically guided search of implicit random
geometric graphs. In 2015 IEEE international conference
on robotics and automation (ICRA), 3067–3074. IEEE.
Garrett, C. R.; Chitnis, R.; Holladay, R.; Kim, B.; Silver, T.;
Kaelbling, L. P.; and Lozano-Pérez, T. 2021. Integrated task
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Appendix
Detailed Literature Review
The MGPF problem belongs to a general class of integrated
task and motion planning problems which have been studied
in the literature (Garrett et al. 2021; Liu et al. 2022; Friedrich
et al. 2018; Rathinam, Sengupta, and Darbha 2007). Here,
we provide an extensive review of the work relevant to the
MGPF in continuous domains.

In (Devaurs, Siméon, and Cortés 2014), a meta-heuristic
similar to simulated annealing is combined with multiple
Rapidly-exploring Random Tree (RRT) expansions to solve
MGPF. In (Englot and Hover 2013), LazyTSP was intro-
duced for efficient path planning that combines RRT-based
planning with TSP (Jünger, Reinelt, and Rinaldi 1995). It
starts with TSP to compute an initial tour and then verifies
the connections using RRT-based planning, iteratively refin-
ing the tour until a valid trajectory is found. In (Vonásek and
Pěnička 2019), a method called Space Filling Forests (SFF)
is proposed to solve MGPF. Multiple trees are grown from
the nodes in T and unlike the approach in (Devaurs, Siméon,
and Cortés 2014) where any two close enough (or neighbor-
ing) trees are merged into a single tree, in SFF, multiple vir-
tual connections are allowed between two neighboring trees
leading to multiple paths between any two nodes in T . Re-
cently, in (Janoš, Vonásek, and Pěnička 2021), a generaliza-
tion of SFF (called SFF*) has been proposed to also include
rewiring of the edges in the trees similar to RRT*. Com-
putational results show that SFF* performed the best among
several previously known solvers for the simulation environ-
ments considered in (Janoš, Vonásek, and Pěnička 2021).

A generalization of MGPF was considered in (Saha et al.
2006) where all the goals were partitioned into groups and
the aim is to also visit one goal from each partition. They
work under the assumption that a path between two nodes
is computed at most once which may, in reality, be far from
the optimal path. Their planner stops the instant it has found
a feasible path connecting all the goals unlike our approach
which keeps refining the paths.

Un-supervised learning approaches (Faigl et al. 2011;
Faigl 2016; Fort 1988) using Self Organizing Maps (SOMs)
have been used to solve MGPF. SOM is a two-layer neu-
ral network and is a iterative procedure that provides a non-
linear mapping between a higher dimensional space (set of
goals) to a lower dimensional one (goal ordering). SOM also
relies on an underlying distance metric, which can be Eu-
clidean (Fort 1988), visibility graph-based (Faigl et al. 2011;
Faigl, Vonásek, and Přeučil 2013), or sampling-based graph
approximation (Faigl 2016; Vaněk, Faigl, and Masri 2014).
In (Faigl 2016), SOM is combined with a rapidly explor-
ing random graph algorithm to find feasible solutions for
the MGPF. However, in comparison to our asymptotic 2-
approximation guarantee, there is no guarantee on the qual-
ity of solutions obtained using SOMs.

In (Faigl et al. 2011; Faigl, Vonásek, and Přeučil 2013),
a point robot moves in an environment represented as a
polygonal domain, and a convex polygon partition is used
for workspace decomposition. Such assumptions may not be
straightforward to generalize, for example, such a decompo-

sition is not possible even in common robotic environments
like SE(3); thus, making them incomparable to IST* in the
environments considered.

Multi-goal motion planning has also been explored in ap-
plication to data collection. (Faigl and Hollinger 2014) con-
sider this problem in planar environment with neighborhood
and prize on the goals. The vehicle is required to visit only
the neighborhood of each goal and all the goal (regions) are
not given the same priority. This makes their problem sig-
nificantly different from the one we have addressed. Simi-
larly, (McMahon and Plaku 2021) have considered rewards
on goals but also assume the fact that both goals and rewards
are unknown to the operating vehicle in the beginning and
become known only when a goal comes under its sensing
radius.

(Faigl, Váňa, and Deckerová 2019) consider the general-
ized traveling salesman problem with neighborhoods (GT-
SPN) specifically for 3D environments, where an individual
neighborhood may consist of multiple regions (thus, form-
ing a neighborhood set), and the problem is to determine
a shortest multi-goal path to visit at least one region of
each neighborhood. They propose two heuristics for solv-
ing the GTSPN with neighborhoods defined as polyhedra
and ellipsoids to quickly find a feasible solution. The heuris-
tics exploit properties of the 3D instances with convex re-
gions making their approach inapplicable for comparison
with ours. Further, they mention that an extension of their
proposed approach for high-dimensional problems is a sub-
ject of their future work, which precisely forms the motiva-
tion for our work.

Other papers have addressed variations of multi-goal
motion planning taking into account additional constraints
like Dubins vehicle (Faigl, Váňa, and Drchal 2020),
energy-aware planning with recharging stations (Warsame,
Edelkamp, and Plaku 2020), availability of physics-based
game engine to model dynamics (Edelkamp and Plaku 2014)
which are outside our scope.

There is also an extensive literature on efficiently con-
structing minimal-cost Euclidean Steiner Tree spanning a
set of vertices on a plane avoiding obstacles, having appli-
cations in VLSI designs and ascent assembly engineering
(Zăvoianu et al. 2018; Lin et al. 2008; Decroos, De Caus-
maecker, and Demoen 2015). However, all such works as-
sume the underlying roadmap graph (whose nodes act as
Steiner points) to be given up-front as input rather than con-
structing and refining it over time to reduce the path cost.

Finally, we would like to emphasize that the major differ-
ence in our proposed approach with respect to prior work is
to adapt informed sampling (with a pruning method based
on the current bounds on the edge lengths) to the setting of
multiple goals enabling faster convergence to an asymptoti-
cally 2-approximate solution.

Key Lemma on Ripple
We will prove Lemma 2 here by induction. At the beginning
of the algorithm, G consists only of the terminals t′ ∈ T
for which rt′ = t′ so the claim is trivially true. When a new
sample point s is processed, it is assigned to its neighbor n
with the smallest value of g(n) + cost(s, n) (line 6 of Al-



gorithm 3) via which it traces a shortest path to its closest
terminal (by the definition of the g-values of its neighbors).
The subsequent ripple of updates via the priority queue up-
date the value of g(n) and the closest terminals for neigh-
bors n who have just discovered their shortest path to a ter-
minal via the currently processed u∗, and they are entered
into a priority queue for further expansion. In this way, if a
new shorter path via the newly added sample node s arises
in G, the Ripple update discovers and updates this infor-
mation correctly hence maintaining the inductive invariant
of the lemma that ru is (one of) the closest terminals to u
among all terminals T for every node u ∈ G.

Connection Radius
The connection radius ρ (used in determining the neighbors
of a node) controls the sparseness of the roadmap graph (G).
High values of ρ will lead to a dense roadmap making graph-
search algorithms (like Ripple) computationally expen-
sive while low values will make the roadmap sparse but may
also cause it to be disconnected. As the module PRM* from
OMPL was used as the underlying roadmap for both IST*
and the Baseline, it adaptively limits the connections in G
as the number of samples increase by decreasing the radius
ρ (generally done to make the minimal number of connec-
tions required to ensure asymptotic optimality), as proposed
in (Karaman and Frazzoli 2011)

ρ(q) := η
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where q is the number of points sampled in Xf (ie., |V |),
d is the dimension of X , η > 1 is a tuning parameter, and
λ(Xf ) is Lebesgue measure of the obstacle-free space and
ζd is the volume of the unit ball in the d-dimensional Eu-
clidean space.

Pruning
Lower Bound on Edges A critical phase in IST* is prun-
ing edges of GT which cannot be part of the MST in fu-
ture. Success of this phase relies heavily on how close are
the lower bounds of these edges to their optimal cost. Past
research has been focused mostly on finding lower bounds
for special instances of the general motion planning prob-
lem (Canny and Reif 1987; Lumelsky and Stepanov 1987).
A separate line of research recently has been focused on cal-
culating the lower bound on the past cost obtainable from
the current set of samples (Salzman and Halperin 2015).
However, these are not lower bound on the optimal path cost
but only representative of the lower bound derived from the
discrete approximation of the state space. Thus, due to lack
of effective worst-case lower bound on the optimal path cost
for the general motion planning problem, we use the Eu-
clidean distance between two points in Xf as the heuristic
estimate.

Numerical Results In Table 4, we show the impact of the
pruning condition we have developed. Even though we have
a very simple heuristic estimate as the lower bound, we are

able to prune a significant number of edges. With more ter-
minals, it is likely that edges in the MST of GT will be a
straight-segments in Xf (hence, the optimal path is quite
close to Euclidean distance). This is turn should lead to more
pruning which we observe as a trend in Table 4.

Table 4: Average percentage of edges pruned from GT by
IST* in each problem instance across 50 runs.

Environment
Terminals

10 30 50
CO R4 91% 98% 98%
CO R8 64% 84% 90%
UH R4 92% 97% 98%
UH R8 37% 79% 81%
HOME 87% 91% 98%

ABSTRACT 97% 98% 99%

While the pruning statistics may look appealing, it is pos-
sible to generate instances where no edges would be pruned.

Worst Case Consider a problem instance with a star-
shaped obstacle in the center with terminals at the concave
openings between two sharp ends of the star obstacle. Fur-
ther, the placement of terminals and the concave openings
should be such that all terminals are near to each other while
the optimal path is long and convoluted. For example, in Fig-
ure 6, lower bound between every edge is less than the op-
timal cost between any two distinct terminals which means
no edge will be pruned in GT .

Figure 6: A worst-case problem instance for pruning: Light
brown star denotes the obstacle region. Small blue hollow
circles represent the terminals in T to be connected. The
dashed green line is the Euclidean distance (lower bound)
between the terminals while the red lines are the optimal
paths.



Lower Bound Computation
A lower bound in the results can provide a more comprehen-
sive and informative view when comparing the performance
of different methods. Recall that a trivial lower bound for
any edge between two nodes is the Euclidean distance be-
tween them. Thus, we can create a lower bound graph, where
each edge between two nodes is the Euclidean distance and
calculate the Minimum Spanning Tree on this graph to ob-
tain a valid lower bound on the original problem. While this
may seem to be a loose bound, many planners actually come
fairly close to it (Fig. 3) establishing that lower bound was
not far from the optimal solution.

Table 5: Time (in seconds) given to IST* and the Baseline
as input in different problem instances.

Environment
Terminals

10 30 50
CO R4 450s 900s 1350s
CO R8 900s 1800s 2700s
UH R4 600s 1200s 1800s
UH R8 1200s 2400s 3600s
HOME 600s 1200s 1800s

ABSTRACT 600s 600s 600s

Implementation Details
While we mention that a fixed number of samples is added
to the roadmap in the pseudocode of IST*, the implemen-
tation could not exactly follow this as such an operation is
not allowed in the available module for PRM*. However,
OMPL does support growing the roadmap for a fixed amount
of time. Hence, we had a time-based implementation where
in each iteration of IST*, the roadmap was grown for the
same amount of time. Consequently, the number of samples
added per iteration was not fixed and varied depending upon
the time spent in collision-checking for each new sample
point. We let IST* and the Baseline run for all of the pro-
vided time.

Both the planners used the implementation of PRM* from
OMPL (with default parameters). We also tried LazyPRM*
(Hauser 2015) from OMPL but it performed worse than
PRM*, contrary to our expectations. However, our approach
(subsequently, the codebase of IST*) is modular such that
LazyPRM* or any other implementation of the underlying
roadmap can be used to interface with our planner.

Path Cost Computations To evaluate the cost of the fea-
sible path obtainable from IST* for MGPF (results shown in
Fig. 3), Baseline and IST* were given the same time as ear-
lier (mentioned in Table 3) to compute the Steiner Tree. This
was followed by computing shortest path in the roadmap
graph G for every pair of goal nodes to obtain a distance ma-
trix which was passed to the Lin-Kernighan heuristic (LKH)
(Lin and Kernighan 1973; Helsgaun 2000). LKH was run for
100 iterations for both the Baseline and IST* to get the final
path cost for MGPF.

Ripple : More Results and Discussion
We show the comparison of Ripple with S* on more en-
vironments in Table 6. In Abstract with 10 terminals, we
see Ripple performing better throughout while in all other
instances its performance is almost same as Baseline. In
real-vector space instances, it was observed that size of the
roadmap in the end was much smaller compared to instances
like Home or Abstract. As the size of roadmap was tiny, so
we couldn’t witness the benefits of Ripple. We believe this
was a consequence of our implementation in Python.

Real environments like CO and HR (Fig. 2) were custom
defined in Python so when the roadmap was grown for both
IST* and the Baseline, OMPL’s planners in C++ had to in-
terface with the collision checker of these environments in
Python for each point sampled in the configuration space.
This made the growth of PRM in these instances extremely
slow due to the constant back and forth call between Python
and C++. Thus, the size of the roadmap G in these envri-
onments was pretty small compared to Home or Abstract
which are defined in OMPL App itself.



Env. 10 Terminals 30 Terminals 50 Terminals

A
B
S
T
R
A
C
T

UH
R4

CO
R4

CO
R8

Table 6: Comparison of the performance of IST* when Ripple is used against S* on environments not shown in the main
paper. The dark line represents the mean solution cost with the thick region being the 99% confidence interval about the mean.


