
A novel algorithm for parallelizing actions
of a sequential plan

Sofia Santilli,1 Alessandro Trapasso,1 Luca Iocchi,1 Fabio Patrizi1

1DIAG, Università degli Studi di Roma “La Sapienza”, Italy
e-mail: sofiasantilli1998@gmail.com {trapasso, iocchi, patrizi}@diag.uniroma1.it

Abstract

The execution of robot plans often offers the possibility of
executing actions in parallel in order to achieve better perfor-
mance. However, this feature is rarely present in robotic ap-
plications using automated planning techniques. In this paper,
we present a novel algorithm that, given as input a sequential
plan computed by a classical planning engine, outputs a plan
in which actions are parallelized in order to reduce the plan
execution time. The proposed algorithm uses the planning do-
main specification, but not a planning engine, thus it is ex-
tremely efficient with respect to the plan length. Moreover, it
overcomes some limitations of current multi-agent planning
engines that offer limited support to the generation of parallel
plans. The proposed algorithm has been developed and in-
tegrated within the AIPlan4EU Unified Planning framework
and experimented in a real industrial robotic use-case.

1 Introduction
Automated planning and scheduling have become increas-
ingly important in robotics, particularly in applications
where time is a limiting factor, such as industrial automa-
tion or autonomous driving. One of the challenges in this
field is minimizing the execution time of plans, especially in
a multi-agent planning (MAP) context.

There are two main variants of MAP: cooperative, where
agents work together towards a common goal while main-
taining privacy about specific information, and competi-
tive, where each agent acts towards their own private goal.
MAP has two main solution approaches: centralized and dis-
tributed. In the centralized approach, a central planner cre-
ates a plan that assigns actions to agents, requiring access
to information from all agents. In the distributed approach,
agents plan separately to contribute to a common goal or to
reach their private goals. This paper focuses on agents acting
collaboratively and centralized planning.

We use a formalization of multi-agent planning with ex-
plicit agent representation (Trapasso et al. 2023) to model
our multi-agent problems. This formalism is integrated into
the Unified Planning framework (UP) of the AIPlan4EU
project1. Within this formalism, agents are explicitly repre-
sented as individual entities with specific private and public

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.aiplan4eu-project.eu/

Figure 1: Robot manipulation task

fluents and specific actions. These agents act within a com-
mon environment, which retains the information available to
all of them.

In this article, we present a novel algorithm for action par-
allelization aimed at minimizing the total execution time of
a given plan. The algorithm works on plans generated by
classical planners (used as a centralized planner for a MAP
problem) and can handle sequential and partially paralleliz-
able actions. We consider an industrial use case (Figure 1)
where a robotic manipulator performs qualitative tests on
laundry pouches. In this task, the robot places these pouches
on measurement instruments for quality tests. We assess the
performance of the proposed algorithm in terms of planning
time and plan execution time, showing efficiency and effec-
tiveness in reducing plan execution time through the execu-
tion of actions in parallel.

Our algorithm improves plan execution efficiency, taking
as input a classical sequential plan and producing a plan
in which some actions are parallelized with a sequence of
atomic actions. The resulting parallel plan significantly re-
duces the execution time.

The experimental results reported in this paper show that
our approach effectively reduces the total execution time of
plans and can obtain parallelizations that are not possible

with multi-agent planning methods. Overall, the proposed
algorithm represents a promising solution for optimizing
plan execution times in industrial automation and other ap-
plications where time is critical.

2 Related work
In recent years, the planning community has shown an in-
creasing interest in cooperative planning. The International
Planning Competition (ICP), with its first 1998 edition, has
played a crucial role in advancing the field. In particu-
lar, in 2015, the first IPC track on Distributed and Multi-
Agent Planning (CoDMAP) (Komenda, Štolba, and Kovács
2016) established MA-PDDL (MA-PDDL) (Kovács 2012)
as the de-facto standard language for MAP. Some of the
different planning engines participating in that competition
generated parallel plans. Competing MAP solvers that al-
low for parallel plans are CMAP (Borrajo and Fernandez
2015), MAPR (Borrajo and Fernandez 2015), PMR (Luis
and Borrajo 2015), and FMAP (Torreño, Sapena, and On-
aindia 2018). We briefly review the main features of these
planners.

MAPR (Planning by Reuse) and CMAP (Cooperative
MAP) were developed by the same authors and integrated
into the same MAP framework. These algorithms generate
totally ordered (sequential) plans. However, in MAP, plans
are executed by multiple agents, thus making the use of par-
allel plans preferable to sequential ones. To address this, the
authors implemented an algorithm that transforms the se-
quential plan into a partially ordered plan (POP), similarly
to (Veloso, Perez, and Carbonell 2008), from which a par-
allel plan is finally extracted by an independent algorithm.
The algorithm, however, does not optimize the overall plan
duration.

PMR is a centralized, single-threaded planner, which
combines two MAP techniques: plan merging (Foulser, Li,
and Yang 1992) and plan reuse (Fox et al. 2006). PMR al-
lows individual agents to build their plans independently and
combines them into a single plan with parallel actions. The
obtained plans, however, are not guaranteed to be valid, es-
pecially in tightly coupled domains. In such cases, PMR ap-
plies a re-planning approach, taking the invalid plan as input,
to generate a sound plan via planning-by-reuse. Once a valid
plan is obtained, PMR parallelizes it by transforming a to-
tally ordered plan into a POP. This allows multiple agents to
execute actions in the same step.

FMAP adopts the POP paradigm, which enables handling
plans with parallel actions and imposes an ordering on ac-
tions only when strictly required. FMAP parallelizes only
atomic actions, as it does not explicitly deal with time con-
straints or durative actions.

The approach proposed in this paper has similar features
to the ones described in this section, but with a different per-
spective combining an efficient classical planner generating
a centralized sequential plan with a greedy algorithm com-
puting the parallel plan. The approach in this paper considers
some specific aspects arising in robotic applications and, al-
though not in an optimal way as for other MAP planners, it
allows for significantly reducing plan execution time, which
is an important objective of using planning technologies for

robotic applications. Moreover, the development of a solu-
tion based only on classical planning allows for exploiting
the large development of planning engines with many fea-
tures that may not be available for other specialized plan-
ners, like MAP planners. For example, in our formulation of
the problem, we use conditional effects that are not available
in some MAP planners.

3 Problem definition
In this paper, we consider problems modelled with a plan-
ning language and the use of automated planning engines to
find solutions to such problems. We denote with ⟨D,P⟩ a
planning problem, where the domain description D includes
formal specification of actions and the problem description
P contains specification of initial state and goals. The set
of actions is denoted with A = {a1, . . . , an, d1, . . . , dm},
in which ai are atomic actions and di are parallelizable ac-
tions that can be executed in parallel with atomic actions.
We assume the designer to provide information about which
actions should be considered as parallelizable actions, de-
pending on the specific application.

In this paper, we do not provide an explicit representation
of action duration, and we assume that the system designer
is able to identify those actions that our algorithm should
parallelize. In general, these parallelizable actions are ac-
tions that take a substantial amount of time during execu-
tion, while other actions could be executed in parallel. In
robotic applications described as multi-agent planning prob-
lems, parallelizable actions are typically actions performed
by other agents while the robot could execute its own actions
in parallel.

Actions A are described with a classical planning lan-
guage (e.g., PDDL or AIPlan4EU Unified Planning formal-
ism) and a classical planning engine (e.g., FastDownward)
is used to generate a plan (i.e., a sequence of actions) to
achieve the specified goal. At this stage, the difference be-
tween atomic actions and parallelizable actions is not con-
sidered. The sequential plan generated by the planner is de-
noted with Π := [α1, . . . , αL], αi ∈ A

The goal of the algorithm presented in this paper is to
transform a sequential plan Π into a Simple Parallel Plan,
where parallelizable actions are performed in parallel with a
sequence of atomic actions, while maintaining the correct-
ness of the plan in achieving the goal.

Simple Parallel Plan: SP := [σ1, . . . , σK], with

σi := ai | di | di ||Π′

with Π′ := [α1, . . . , αN], αi ∈ A.
SP is a sequence of terms where each term can be either

an action (atomic or parallelizable) or the parallel execution
of a parallelizable action with a sequence Π′ of actions. This
plan format is denoted simple since it considers only one
level of parallelism. The generalization of the approach is
left as future work.

The problem we are considering in this paper is the fol-
lowing.

Problem Definition. Given a classical planning problem
⟨D,P⟩, and a sequential plan Π generated by a classical

planning engine as a solution of the problem, generate a sim-
ple parallel plan SP that is equivalent to Π in solving the
planning problem.

The solution that is presented in this paper is based on a
transformation of the plan Π by using the action specifica-
tion of the planning domain, but without using a planning
engine.

4 Algorithm
The method for solving the problem defined in the previous
section is divided in two steps: i) pre-processing of the input
sequential plan, ii) generation of the simple parallel plan.

Plan actions pre-processing
Pre-processing of the sequential plan is needed to adapt the
action specifications in the planning domain to their actual
implementation. Two pre-processing steps are needed.

The first step is to divide the parallelizable actions di
into two actions that are denoted by di.start and di.end,
where di.start is the action that is parallelized to a se-
quence of actions and di.end is needed to make the ter-
mination of di explicit. A new fluent is also introduced
di.inprogress to denote that the action di is currently run-
ning. di.start has the same preconditions of di and as effect
it only sets di.inprogress to true. di.end has precondition
di.inprogress to be true and the same effects of di. Re-
placing the action di with the sequence [di.start; di.end]
in a plan solution of a planning problem preserves its cor-
rectness. In the actual implementation of di, di.start is an
instantaneous action (i.e., the fluent di.inprogress is im-
mediately set to true) representing the beginning of a paral-
lelizable action, while di.end blocks plan execution until the
action is actually completed and the effects are achieved.

The second pre-processing step is needed to mask some
parameters of actions that are used in the planning specifi-
cation, but not in the action implementation. This is a typi-
cal situation arising when formalizing planning domains for
robots using a classical planning language. In fact, the posi-
tion of a mobile robot or a robot arm is usually denoted with
a predicate (for example, at(location)) and actions de-
noting robot motion are usually described with two param-
eters: from and to (for example, goto(from, to)). In
particular, the from parameter is used in the effects of the
action to make the value of at(from) false. However, in
most robotic applications, the implementation of such ac-
tions does not require the parameter related to the starting
position of the robot, which is usually stored in a different
format (e.g., within the localization module), and, in gen-
eral, navigation modules are able to achieve the target po-
sition from any current position. In other words, there is
a mismatch in the definition of the action specification at
planning level goto(from,to) with respect to its actual
implementation not using the parameter from. The two rep-
resentations need to be aligned before the execution of the
algorithm proposed in this paper, in order to find effective
parallel plans. Consequently, in this paper, we make the fol-
lowing assumption and the following transformation of the
actions in the plan.

Assumption. If an action is specified at planning level
with a parameter that is not used in its actual implementa-
tion, the action is assumed to achieve its effects for any value
of such a parameter.

For any action specified with parameters at planning time
that are not used at execution time, those parameters are
replaced by a special symbol denoting any value. In the
above example, the action goto(from,to) is replaced
with goto(,to).

After the two pre-processing steps described above, the
original sequential plan Π has been transformed into an
equivalent plan P , in which parallelizable actions are de-
composed in two atomic actions (start and end) and param-
eters not used in the action implementation are masked with
an any-value symbol.

Simple parallel plan generation
The general structure of the proposed algorithm is presented
in Algorithm 1.

This algorithm takes as input a sequential plan P that was
previously pre-processed after being generated by a planner
and that is characterised by a length equal to L (computed at
line 6), the number of actions that compose the plan. The
other input to the algorithm is a number N , representing
the length of the maximum sequence Π′ of actions that we
want to parallelize to a parallelizable action di. The output
of the algorithm is a simple parallelized plan SP , initialized
as empty (line 8). At line 9, the variable cs, denoting the cur-
rent state (i.e., values of all the fluents) that is updated during
the execution of the algorithm, is set to the initial state of the
problem P .

The algorithm consists in a main loop over all the actions
composing P . Here at line 12, an empty list γ is initialized:
it will memorize one or more actions that at the end of the
current iteration of the loop will be added to SP . For each
action acti (computed at line 13), there are three possibili-
ties:
• if acti has already been inserted in SP (lines 14-17), the

algorithm directly skips to the next action of the loop.
Otherwise, the current loop continues;

• the second possibility is that the action is any action of
the plan, except for the di.start ones (lines 18-22). In
this case, the UpdateState algorithm (Algorithm 2) is first
called, which computes the event associated to the ac-
tion, by instantiating its parameters (Algorithm 2, line 7).
If the action is one that presents one or more unspeci-
fied parameters (so it was subjected to the second step
of our preprocessing), those parameters are replaced by
the value of their corresponding fluent from curr state
(Algorithm 2, line 5). After computing the event, it is
checked if the event can be applied to the current state; if
so, it is simulated and the current state is updated (Algo-
rithm 2, line 9).
Finally, the action is added to the list γ, in order to be
memorized and later added to SP .

• the last possibility consists in acti being an action
di.start (lines 23-65), that points out that the execution
of a parallelizable action begins. The event relative to the

Algorithm 1 Action parallelization algorithm

1: input: ⟨D,P⟩ planning problem
2: input: P pre-processed sequential plan
3: input: N maximum length of the sequence to parallelize
4: output: SP simple parallelized plan
5:

6: L = len(P)
7: i = 0 // C-style index

8: SP = []
9: cs = P .initialState // current state

10:

11: while i < L do
12: γ = []
13: acti = P [i]
14: if acti already in SP then
15: i+=1
16: continue
17: end if
18: if acti atomic action then
19: // Build an atomic action term

20: UpdateState(cs, acti, D)
21: γ.add(acti)
22: i+=1
23: else
24: // acti is the start of a parallelizable action

25: // Build a parallel term

26: applicability = False
27: actstart = acti ; actend = P [i+1]
28: UpdateState(cs, actstart, D)
29: γ.add(actstart)
30: j = i+2
31: // Search for first applicable action

32: while j ≤ L and not(applicability) do
33: if applicable(cs,P [j]) then
34: cs’ = cs // copy of current state

35: UpdateState(cs’, P [j], D)
36: γ.add(P [j])
37: applicability = True
38: end if
39: j+=1
40: end while
41: if applicability then
42: // Apply up to N-1 more actions in parallel

43: w = 0
44: while w < N-1 and applicability do
45: if applicable(cs,P [j+w]) then
46: UpdateState(cs’, P [j+w], D)
47: γ.add(P [j+w])
48: w+=1
49: else
50: applicability = False
51: end if
52: end while
53: // Check if remaining part is valid

54: Pr = [P [i+2], , , , , P [j−1], P [j+w], ..., p[L−1]]
55: if valid(cs’, Pr) then
56: cs = cs’
57: else
58: γ = [actstart, actend]
59: end if
60: end if
61: UpdateState(cs, actend, D)
62: γ.add(actend)
63: i+=2
64: UpdateSP(SP,γ)
65: end if
66: end while

Algorithm 2 UpdateState
1: input: curr state, action, , domain D
2: output: updated curr state (if applicable)
3:

4: if action has unspecified params then
5: assign unspecified parameters from curr state
6: end if
7: event = sim.get events(curr state, action, , D)
8: if applicable(curr state, event) then
9: curr state = sim.apply(event, curr state)

10: end if

start action is computed and applied to the state in the
UpdateState function; actstart is added to γ (lines 28-
29). Whereupon, a first inner loop (lines 32-40) is ex-
ploited in order to slide the remaining sequential plan
until we find a first action that can be parallelized to the
current actstart: each action actj = P [j], is tested as ap-
plicable in the current state. If the first inner loop does
not find an action to parallelize, the algorithm does not
enter the condition at line 41 and directly update the state
according to actend and adds actend to γ (lines 61-62).
This accounts for the case in which di is not paralleliz-
able with the actions in the plan. Instead, if an applicable
action is found, applicability is set to true (line 37) and
the algorithm enters the second inner loop at lines 44-
52, in order to find up to other N-1 actions to complete
the sequence to be parallelized (w at line 43 is used to
count the number of parallelized actions). At each itera-
tion of the second inner loop, the action P [j+w] is tested
for applicability in the current state (line 45) through the
applicable function that, given the current state and an
action, generates the relative event and checks its appli-
cability. If so, we add P [j+w] to γ and continue the loop.
This is repeated until an action cannot be parallelized or
until the maximum length of the sequence to parallelize
is reached.
A final check (lines 54-59) is needed to verify that
the current state is valid for the remaining part of the
plan, excluding the actions added in γ in the first inner
loop. This validity check is performed by simulating the
execution of the actions for cs′, but it does not change
the value of cs′. If the remaining part of the plan is valid,
we update the current state cs with the copy cs′ used
so far, otherwise this sequence is not parallelizable and
we roll back to adding in the final plan only the action
di denoted with [actstart, actend] (line 58), without
modifyng cs. Next, the current state is updated with the
effects of actend, which is also added to γ (lines 61-62).
Finally, γ is used to update the output plan SP (line 58)
and the main loop can continue.

The UpdateSP function (presented in Algorithm 3) is
used to insert the actions memorized in the γ list into SP .
This list will contain at least one action, always inserted in
SP . If γ contains two elements, it can only mean that the
first one is an actstart, and the second is the relative actend,
which are reported in SP in two different inputs. Instead,

if γ contains more than two elements, it means that the al-
gorithm found a sequence AP of at least one action to par-
allelize to actstart. So we add in SP first the parallel term
with actstart and the sequence AP = γ[1], . . . , γ[n − 2]
(with n being the length of γ). Then the action actend (i.e.,
the last instance of γ) is also added to SP to close the paral-
lel execution.

Algorithm 3 UpdateSP
1: input: SP , list of actions γ
2: output: updated SP
3:

4: n = len(γ)
5: if len(γ) = 1 then
6: SP .push back(γ[0])
7: else if len(γ) = 2 then
8: SP .push back(γ[0])
9: SP .push back(γ[1])

10: else
11: σ = γ[0] || [γ[1], . . . , γ[n− 2]]
12: SP .push back(σ)
13: SP .push back(γ[n− 1])
14: end if

The pre-processing step and the algorithm described in
this section compute a parallel plan that is equivalent to the
original plan in terms of correctness in solving the planning
problem, while reducing the plan execution time.

The overall computational cost of this process is O(L2),
with L being the size of the sequential plan.

5 Implementation and experimental results

The algorithm has been implemented within the AIPlan4EU
UP framework. Although it is possible to implement this al-
gorithm in other frameworks (for example, by using plain
PDDL specifications), using the UP framework provides
many useful functionalities that make this implementation
easy and effective. In particular, in the UP framework, the
sequential plan generated by a planner is a sequence of ac-
tion instances and a simulator is available to compute state
evolution when applying actions. Therefore the steps of the
algorithm to check the applicability of an action in a given
state and the applicability of parallel execution of actions
were easily and effectively computed by using such func-
tionalities.

Figure 2: Gazebo simulation environment

The implemented algorithm has been tested on a Gazebo
simulator (Figure 2) used to replicate the real industrial use
case and is going to be deployed in the real robotic scenario
in the near future. In the simulator, the actions of the mea-
surement instruments are simulated through green/red lights
denoting the time of operation of the instrument.

Some results obtained through the use of the proposed
algorithm for an industrial robot task are described below.
In the considered task, a robotic manipulator has to per-
form some qualitative tests on laundry pouches. The robot
performs pick & place actions to move pouches on mea-
surement instruments that perform the required measures.
This domain is modelled as a multi-agent problem in which
the robot and all measurement instruments are modelled
as agents. In this domain, we considered measurement ac-
tions as parallelizable actions, since they require a substan-
tial amount of time, during which the robot arm can perform
other placement actions.

As described in the previous section, a centralized classi-
cal planner has been used to compute a sequential plan sat-
isfying the goals of the presented problem. In the case study
shown here, it was required to test a number of pouches into
two instruments: a scale and a tightness meter.

A first example of the application of the algorithm to the
sequential plan is illustrated here. Let us consider the fol-
lowing portion of a sequential plan solution of a problem.

[...
movegripper(open, _, _)
measure(scaleB pouch1).start;
measure(scaleB, pouch1).end;
goto_grasp(_, scaleUpB, pouch1);
movegripper(close, _, _);
...]

In this portion of the plan, the robot opens its gripper to
place a pouch on the scale, then waits for its measure, moves
the arm in the grasp position and closes its gripper to pick
the pouch up for the next operation. The algorithm presented

in this paper, with input N = 1, can parallelize the portion
of this plan as follows.

[...
movegripper(open, _, _)
measure(scaleB pouch1).start ||

[goto_grasp(_, scaleUpB, pouch1)];
measure(scaleB, pouch1).end;
movegripper(close, _, _);
...]

At execution time, the parallel plan is faster since the ac-
tion to position the robot arm to grasp the pouch after the
measurement is performed in parallel to the measure. Notice
also that the action measure(scaleB, pouch1).end
is a blocking action, thus guaranteeing that the robot picks
the pouch only after the measurement is completed. Notice
also that in this case we would obtain the same parallel plan
for any N ≥ 1, since grasping the object is not a valid par-
allel action with respect to measuring. Thus this case is not
sensitive to the input value N .

The second example considers a longer operation per-
formed by another instrument. In this case, while a pouch
is measured on such an instrument, the robot can operate
on a different pouch and complete another measure using a
different instrument. The portion of plan below shows the
parallel term built by our algorithm with N ≥ 4.

[...
measure(markt10, pouch1).start ||

[goto_grasp(_, drawer, pouch3);
movegripper(close, _, _);
goto(_, scaleUpA);
movegripper(open, _, _);

};
measure(markt10, pouch1).end;
goto(_, markt10);
...]

In this parallel plan, while a pouch is measured by the
instrument markt10, another one is picked and placed on
scaleA. This is the situation shown in Figure 2, where the
red label of the rightmost instrument indicates that the mea-
sure is in progress, while the robot arm is manipulating an-
other pouch.

A relevant factor to be taken into account, when deciding
which parallelization method to use, is the computational
time employed for figuring out the final plan. For the pro-
posed approach, the overall planning is given by the sum of
the time tP required by the planner for computing a sequen-
tial plan and of the time tA required by Algorithm 1.

The planning times tP and tA for different sizes of the
problem are shown in Table 1. As expected, with the in-
crease in the number of pouches to be tested, the plan length
increases linearly, the planning time increases exponentially,
while Algorithm 1 time increases linearly. The proposed ap-
proach can thus exploit the benefit of using very performing
classical planners (such as fast downward), in contrast with
the use of more complex MAP planners. Comparing com-
putational times of the proposed approach with other MAP
planners is left as future work.

pouches plan length tP tA
1 21 3-5 2
2 39 10-12 3
3 57 34-41 5

Table 1: Planning times in seconds of fast-downward (min-
max on different platforms) and Algorithm 1 to generate an
overall parallel plan with respect to the number of pouches
in the problem.

The main goal of the proposed approach is however to
reduce plan execution time. Algorithm 1 applied with N=1
returns parallel plans with only one atomic action in paral-
lel with parallelizable actions, being equivalent to planners
able to parallelize only atomic actions, such as FMAP. While
these parallel plans are better (in terms of plan execution
time) with respect to the sequential plan, parallel execution
is not fully exploited. On the other hand, the advantage of
using our algorithm is the possibility of increasing the size
of the parallel sequence N to achieve higher parallelism.

plan te avg % te stddev %
Sequential 100 % -
FMAP / Alg. 1 (N = 1) 95.9 % 0.81 %
Alg. 1 (N = 4) 79.7 % 2.70 %

Table 2: Average and standard deviation execution times in
percentage with respect to the sequential plan.

Table 2 shows the results of 24 experiments covering dif-
ferent situations in the simulated environment. The execu-
tion time is reduced in average to 95.9% when using sin-
gle atomic actions in parallel, and to 79.7% when using se-
quences of 4 actions in parallel.

6 Discussion
The proposed approach guarantees the correctness of the
plan, is fast, and may significantly reduce plan execution
time. It is especially useful in robotic applications with com-
plex tasks executed by different machines when automated
planning techniques are used to generate plans of action to
achieve specific goals.

Nonetheless, this approach has some limitations. First, the
parallelizable actions must be given in input. This is usually
not a difficult choice in application domains where differ-
ent operations are taken by different machines and we aim
at parallelizing those operations with the ones of a robot.
Second, the maximum length of the parallel sequence must
be provided as input. The sensitivity of the final results to
this input decreases as the value of N increases. Third, Al-
gorithm 1 generates a simple parallel plan not considering
the opportunity of more levels of parallelism. This can be
extended by applying Alg. 1 recursively on the plan sub-
sequence computed to be parallelized. Finally and most im-
portantly, the proposed approach does not guarantee to re-
turn the best parallel plan. Indeed, it acts as a greedy ap-
proach in searching for parallel terms to a parallelizable ac-

tion.
Despite these limitations, we believe that the proposed ap-

proach may be very useful in practical robot applications
using planning technology. Moreover, some of these limita-
tions can be addressed in a future extension of the approach.

7 Conclusions
In this paper, we have presented a novel algorithm exploited
in order to obtain, starting from sequential plans, parallel
plans in which parallelizable actions are executed simulta-
neously to a sequence of N (parameter that can be chosen)
actions. We described the algorithm structure in detail, ex-
plaining that this method does not use a planning engine for
parallelization, but exploits the planning domain specifica-
tions and a simulator computing states evolution and action
applicability. We have shown the results obtained from an
industrial robotic use-case, demonstrating that the proposed
approach allows to reduce the plan execution time in an effi-
cient way. We also discussed the limitations of this approach
and its practical applicability in a set of real robotic prob-
lems.

The current solution will be soon deployed in the real
industrial use case to actually measure its impact in this
application. As future work, we intend to work to reduce
the current limitations and to extend the proposed approach
to other application domains, such as service robots and
human-robot cooperative tasks, to parallelize robot actions
with human operations.

References
Borrajo, D.; and Fernandez, S. 2015. Mapr and cmap. Pro-
ceedings of the Competition of Distributed and Multi-Agent
Planners (CoDMAP-15), 1–3.
Foulser, D. E.; Li, M.; and Yang, Q. 1992. Theory and al-
gorithms for plan merging. Artificial Intelligence, 57(2-3):
143–181.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
Stability: Replanning versus Plan Repair. In ICAPs, vol-
ume 6, 212–221.
Komenda, A.; Štolba, M.; and Kovács, D. 2016. The Interna-
tional Competition of Distributed and Multiagent Planners
(CoDMAP). AI Magazine, 37: 109–115.
Kovács, D. L. 2012. A multi-agent extension of PDDL3.1.
In ICAPS-2012 Proc. of the 3rd Workshop on Distributed
and Multi-Agent Planning, 19–27.
Luis, N.; and Borrajo, D. 2015. PMR: Plan merging by
reuse. Competition of Distributed and Multi-Agent Planners
(CoDMAP-15), 11.
Torreño, A.; Sapena, O.; and Onaindia, E. 2018. FMAP:
A Platform for the Development of Distributed Multi-Agent
Planning Systems. Know. Based Syst., 145(C): 166–168.
Trapasso, A.; Santilli, S.; Iocchi, L.; and Patrizi, F. 2023.
A formalization of multi-agent planning, with explicit agent
representation. In Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing, SAC ’23, 816–823. New
York, NY, USA: Association for Computing Machinery.
ISBN 9781450395175.

Veloso, M. M.; Perez, A.; and Carbonell, J. G. 2008. Non-
linear Planning with Parallel Resource Allocation.

