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Abstract

We study a planning problem based on Plotting, a
tile-matching puzzle video game published by Taito in
1989. The objective of this game is to remove a target
number of coloured blocks from a grid by sequentially
shooting blocks into the grid. Plotting features complex
transitions after every shot: various blocks are affected
directly, while others can be indirectly affected by grav-
ity. We highlight the challenges of modelling Plotting
with PDDL and of solving it with a grounding-based
state-of-the-art planner.

Introduction
We consider finding optimal solutions for a discrete time and
space puzzle, Plotting, a puzzle video game published by
Taito in 1989 and ported to many platforms. The objective is
to reduce a given grid of coloured blocks to a goal number
or fewer (Figure 1). This is achieved by the avatar charac-
ter repeatedly shooting the block it holds into the grid. The
game is also known as Flipull in Japan as well as in versions
for the Famicom and Game Boy.

Plotting is naturally characterised as a planning prob-
lem (Espasa, Miguel, and Villaret 2022a), aiming to find
a sequence of firing positions such that enough blocks are
removed to beat the scenario objective. The complexity of
state transitions after every shot makes this problem inter-
esting: some blocks are affected directly, while others can be
indirectly affected by gravity, as explained in the next sec-
tion. Modelling the game dynamics in PDDL (Haslum et al.
2019) is difficult, as we will demonstrate.

The resulting complexity of the model severely hinders
the ability of current planning systems to produce a valid
plan. Most state-of-the-art AI planners rely on grounding,
instantiating every action schema for all meaningful combi-
nations of parameters. As we will show, the complexity of
Plotting is too much for this grounding process. Problems
with grounding are now attracting attention in the planning
community (Matloob and Soutchanski 2016; Corrêa et al.
2020), with suggestions to avoid grounding lifted represen-
tations as far as possible. A lifted representation succinctly

*A paper extending this work and (Espasa, Miguel, and Villaret
2022b) has been submitted for journal publication.

Figure 1: Plotting (Taito, 1989). The avatar is seen on the
left, holding a green block. The objective is to reduce the
number of blocks in the middle pile. In this particular case
there are 16 left (see center-right of the image), and the goal
is 8 or less (see top-right of image).

defines actions by grouping them with their preconditions
and effects using action schemas with parameters.

Constraint modelling languages can be used to express
planning problems (Barták, Salido, and Rossi 2010; Babaki,
Pesant, and Quimper 2020; Barták and Toropila 2008; Es-
pasa et al. 2019; van Beek and Chen 1999). These languages
are more expressive than PDDL and permit a succinct lifted
representation of Plotting, providing access to lifted solving
approaches that don’t need exhaustive grounding. However,
they are not a panacea and require significant human effort
to be put into modelling. In this work we describe Plotting
and provide a working model, an instance generator and a set
of benchmark instances. We also highlight the challenges of
modelling and solving Plotting with PDDL.

Plotting
Plotting is played by one agent with full information of the
game state, and the effects of each action are deterministic.
This situation is common in puzzle-style video games, and
similar to pen and paper puzzles (Espasa et al. 2021), some
variants of patience like Black Hole (Gent et al. 2007), and
board games such as peg solitaire (Jefferson et al. 2006) or
the knight’s tour (Akgün et al. 2018). The objective in Plot-
ting is to reduce a given grid of coloured blocks down to a



goal number or fewer. This is achieved by the avatar charac-
ter shooting the block it holds into the grid, either horizon-
tally directly into the grid, or by shooting at the wall blocks
above the grid, and bouncing down vertically onto the grid.
Note that we consider the topmost row as the first row and
the leftmost column as the first column. When shooting a
block, if it hits a wall as it is travelling horizontally, it falls
vertically downwards. In a typical level, additional walls are
arranged to facilitate hitting the blocks from above. If the
block falls onto the floor, it rebounds into the avatar’s hand.

The rules for a shot block S colliding with a block B in
the grid are a bit more complex:

• If the first block S hits is of a different type from it-
self, S rebounds into the avatar’s hand and the grid is
unchanged: this is a null move.

• If S and B are of the same type, B is consumed and S con-
tinues to travel in the same direction. All blocks above B
fall one grid cell each.

• If S, having already consumed a block of the same type,
hits a block B of a different type, then S replaces B, and
B rebounds into the avatar’s hand.

A complex shot is depicted in Figure 2, where a green
block consumes an entire row of the grid, hits the wall, and
continues to consume blocks as it falls until it finds a block
of a different colour (red). Finally, the green block replaces
the final red block, which rebounds to the avatar’s hand.
Blocks above the consumed green blocks fall. If, after mak-
ing a shot, the block that rebounds into the avatar’s hand
is such that there is now no possible shot that can further
reduce the grid, we reach a dead end and the block in the
avatar’s hand is transformed into a wildcard block, which
transforms into the same type as the first block it hits. Each
level also begins with the avatar holding a wildcard block. In
our models we consider the task of finding a solution while
avoiding dead ends, since each dead end causes the loss of
one of the player’s lives.

Plotting’s initial state is the given grid, and there are
usually multiple goal states where the grid is sufficiently
reduced to meet the target. In the model we abstract the
avatar’s movement to consider the key decisions: the rows
or columns chosen at which to shoot the held block. There-
fore, the sequence of actions to get us from the initial to the
goal state is comprised of individual shots at the grid, either
horizontally or vertically.

Limitations of Planning Approaches
Tools to solve problems such as Plotting should ideally sup-
port natural ways of expressing elements such as matrices to
represent the state of play, a way to index the entries in such
matrices, and a representation of the states of the blocks.
PDDL 2.1 (Fox and Long 2003) added support for numeric
and temporal features, extending the expressivity of the lan-
guage. Still, such an extension is insufficient for efficiently
modelling and solving Plotting. Fox and Long (2003) states:

Numeric expressions are not allowed to appear as
terms in the language (that is, as arguments to predi-
cates or values of action parameters) . . . Functions in
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Figure 2: A diagram of a shot where the firing block reaches
the end and goes downwards. The top right red block has
to fall a variable number of positions (two in this case), de-
pending on the state of the board and the colour of the shot.

PDDL2.1 are restricted to be of type Objectn → R,
for the (finite) collection of objects in a planning in-
stance, Object and finite function arity n.

In other words, no action, predicate or function can have
a number as a parameter. Sadly, these severe limitations ren-
der this PDDL extension useless for our needs. Note that an
essential construct in the preconditions and effects of the ac-
tions would be the use of arithmetic to deal with indices of
rows and columns that actions should have as parameters.
For example, when we remove a block in a given row and
col, if there was a block above it, this block would fall and
we would need to refer to its colour. Unfortunately, since
row cannot be a numeric parameter in PDDL, we are forced
to use quantifiers to be able to refer to the “block that is
above it” (i.e. its row is equal to row+1). Therefore, as we
will see in the next section, we are forced to define predicates
to simulate some basic arithmetic operations on indices.

Functional STRIPS (Geffner 2000) or Planning Modulo
Theories (Gregory et al. 2012) would alleviate the expres-
sivity problems faced with Plotting. On one hand, with
Functional STRIPS extensions such as those of Francès and
Geffner (2016) we would be able to both simulate matrices
thanks to proper support for functions in the language, and
to operate on their indices thanks to the arithmetic support.
On the other hand, the Planning Modulo Theories paradigm
could support a theory with both matrices and arithmetic.

Unfortunately, these approaches have either not been re-
leased, or are not actively maintained, and we have been un-
able to use these off the shelf. In particular, the FS plan-
ner (Francès and Geffner 2016) has dependencies on soft-
ware which we have not been able to find and the Planning
Modulo Theories planner of Gregory et al. (2012) was not
released. Therefore, it would require a significant engineer-
ing effort to either reproduce or re-engineer them. Consider-
ing available and well supported planners, we are limited to
using classical planners.



Modelling Plotting in PDDL
We now provide fragments of the model to illustrate the
main drawbacks of PDDL for modelling Plotting. The game
board is abstracted as a grid of coloured cells. The colour
of each cell is the colour of the block it contains, or null
if empty. Therefore, the state is the colour of each cell and
the colour of the block in the avatar’s hand. To parameterise
the actions and the predicates defining the state, we use two
types of objects: colour and number, where number is
the name of a type used to manually encode the basic re-
quired numerical properties. The predicate hand has one
colour parameter, and encodes if the avatar has a block of
the given colour. Given parameters row, col and c, the
coloured predicate expresses if the block in that row and
column has the given colour.

(hand ?c - colour)

(coloured ?row ?col - number ?c - colour)

Auxiliary predicates such as islastcolumn or
isbottomrow are added both for clarity and to re-
duce the use of quantifiers and so the burden on the
planner’s preprocessor.

(isfirstcolumn ?n - number)

(islastcolumn ?n - number)

(istoprow ?n - number)

(isbottomrow ?n - number)

Moreover, we need to encode some integer relations as
Boolean predicates:

(succ ?p1 ?p2 - number) ; p1 is successor of p2

(lt ?p1 ?p2 - number) ; p1 is less than p2

(distance ?p1 ?p2 ?p3 - number) ; p3 is p2 - p1

These predicates must be defined in each instance file, along
with the specific scenario information. For instance, when
dealing with a 5 × 5 board we need to state succ for ev-
ery pair of successive numbers between 1 and 5, and lt and
distance for every pair of two numbers (p1, p2) between
1 and 5 such that p1 < p2. Figure 3 is an excerpt of the ac-
tion consisting of partially removing blocks of colour ?c in
row ?r until column ?t, not reaching the last column. One
of the principal difficulties is in identifying successors and
predecessors of particular rows or columns (e.g. Lines 8, 14,
22, 32), which could have been eased by support for arith-
metic on parameters.

The lack of support for multi-valued variables makes the
encoding of some transitions difficult. For example, when
changing the colour held by the avatar we must state: remove
previous colour in the hand and set the new colour (lines
28-29). Multi-valued variables would make this change
straightforward. Due to the lack of support for function sym-
bols in the considered PDDL fragment, we must also employ
quantification to name specific objects. For instance, the col-
umn of the cell next to ?t (?nextcolumn) and its colour
(?nextcolour) have to be discovered. This quantification
is introduced in line 22, and the values of ?nextcolumn
and ?nextcolour are discovered in lines 23-25 as a con-
dition for the effect to take place.

If we could use function symbols and arithmetic, we could
remove variables ?nextcolumn and ?nextcolour,

1 (:action shoot-partial-row

2 ;; ?r - what row we are shooting at

3 ;; ?t - the end cell where the shot ends

4 ;; ?c - the colour we are removing

5 :parameters (?r - number ?t - number ?c - colour)

6 :precondition (and

7 ;; ?col is successor of ?t coloured differently to ?c

8 (exists (?col - number)

9 (and (succ ?col ?t)

10 (not (coloured ?r ?col ?c))

11 (not (coloured ?r ?col null))))

12 ...

13 ;; all blocks up to ?t are either colour ?c or null

14 (forall (?col - number)

15 (or (lt ?t ?col)

16 (and (= ?col ?t) (coloured ?r ?t ?c))

17 (or (coloured ?r ?col ?c)

18 (coloured ?r ?col null)))))

19 :effect (and

20 ;; Change hand colour

21 ;; next cell that we cannot remove gets hand colour

22 (forall (?nextcolumn - number ?nextcolour - colour)

23 (when

24 (and (succ ?nextcolumn ?t)

25 (coloured ?r ?nextcolumn ?nextcolour))

26 (and (not (coloured ?r ?nextcolumn ?nextcolour))

27 (coloured ?r ?nextcolumn ?c)

28 (hand ?nextcolour)

29 (not (hand ?c)))))

30 ;; Move everything downwards.

31 ;; 2 cases: base case (top row), general case (rest)

32 (forall (?currentrow ?nextrow ?currentcol - number)

33 (and ;; the general case: any row except the top

34 (forall (?currentcolor ?nextcolor - colour)

35 (when

36 (and

37 (lt ?currentrow ?r)

38 (succ ?nextrow ?currentrow)

39 (or (lt ?currentcol ?t)

40 (= ?currentcol ?t))

41 ;; ensure cells have the pertaining colours

42 (coloured ?currentrow ?currentcol ?currentcolor)

43 (coloured ?nextrow ?currentcol ?nextcolor)

44 ;; avoid a contradiction:

45 (not (= ?currentcolor ?nextcolor)))

46 (and

47 (not (coloured ?nextrow ?currentcol ?nextcolor))

48 (coloured ?nextrow ?currentcol ?currentcolor)

49 ))))))); Then, case of firing on the top row.

50 ...))

Figure 3: Fragment of the shoot-partial-row action.

changing the coloured symbol to a function that, given
a row and column, maps to the colour in that cell. Overall,
lines 22-29 could theoretically be simplified to:

(assign (hand (coloured ?r (?t + 1))))

(assign (coloured ?r (?t + 1)) ?c)

Unfortunately, functions can not have numeric expressions
as parameters. Finally, we must define the initial and goal
states for every instance. The initial state is simply stated



with a coloured statement for each cell. However, the
goal state is more complex to express if we do not have
arithmetic or aggregate functions to count the number of
cells coloured with null. In our instances we define the
goal as follows. Let g be the maximum allowed number of
non-null cells in order to satisfy the goal state. We require
that there exist g different cells such that any other cell is
null. E.g. requiring at most 2 non-null cells creates:

(:goal ;; at most 2 cells are not null, i.e. g=2

(exists (?x1 ?x2 ?y1 ?y2 - number)

(and (or (not (= ?x1 ?x2))

(not (= ?y1 ?y2)))

(forall (?x3 ?y3 - number)

(or ; Or is one of cell 1 or cell 2, or is null

(and (= ?x1 ?x3) (= ?y1 ?y3))

(and (= ?x2 ?x3) (= ?y2 ?y3))

(coloured ?x3 ?y3 null))))))

The length of this goal is Θ(g2), since the g cells must be
pair-wise different. Again, this is simpler to state in a con-
straint language with, for example, an atleast constraint.

Empirical Evaluation
We improved our previous instance generator (Espasa,
Miguel, and Villaret 2022b) to avoid generating symmet-
ric grids, ensuring more interesting instances. A new set of
522 instances was then created with a range of difficulties1.
These use from 8 to 49 blocks, and from 2 to 6 colours.

We considered the best planners in the 2018 International
Planning Competition. From all planners, 9 claimed to sup-
port the features required. Of those, 7 were based on the Fast
Downward preprocessor and the rest crashed when given the
instances. We therefore present results for only Fast Down-
ward (Helmert 2006) 22.12 because the pre-processing for
all planners based on Fast Downward is the same, and for
the successfully pre-processed instances the search time was
very small. The integrated Stone Soup portfolio showed that
only the blind heuristic supported the features in the model.

We also used a Planning as Satisfiability (Kautz and Sel-
man 1992) approach and translating the problem to the con-
straint programming language Essence Prime. Then, Savile
Row (Nightingale et al. 2017) 1.9.1 was used to solve the
problem with three different solvers: kissat 3.0.0, Chuffed
0.10.4, and OR-Tools 9.5. As a brief summary of the ap-
proach, a planning problem is encoded to a Boolean for-
mula (or constraint satisfaction problem), with the property
that any model of this formula will correspond to a valid
plan. Since the length of a valid plan is not known a priori,
we encode the existence of a plan of T steps with a for-
mula f(T ). Then, the method for finding the shortest plan
consists in iteratively checking the satisfiability of f(T ) for
T = 0, 1, 2, . . . until a satisfiable formula is found. We ob-
served the lower bound on the number of blocks remaining
in the grid is one less than the number of distinct colours in
the initial grid. Combined with the fact that each shot should
remove at least one block from the grid, for each instance we
can consider a sequence of decision problems from 1 up to

1Model and instances are available in https://github.
com/stacs-cp/Plotting-Journal

(width×height)−max(goalb, colours) steps, where goalb
is the number of allowed blocks remaining in the goal states
and colours is the number of different colours in the grid.
As expected, the hardest queries for each instance are the
last unsatisfiable one (with the greatest queried time horizon
among the unsatisfiable ones) and the first satisfiable query.

Experiments were executed on a cluster of compute nodes
with two 2.1 GHz 18-core Intel Xeon processors each. Each
process was limited to 8GB of memory and 1 hour. In the ta-
ble we compare instances solved within resource limits and
the PAR2 score for each solver.

Solver Instances Solved PAR2 Score (s)

Chuffed 510 162537
Kissat 508 176207
OR-Tools 488 329176
FD 78 3233535

The three CP solvers all perform reasonably well, being
able to solve most instances within the given time. In con-
trast, Fast Downward exhibits a significantly worse perfor-
mance scaling, and also only solves the smallest instances,
getting stuck during the grounding process. When using the
best constraint model, neither SAT, OR-Tools nor Chuffed
ran out of memory. In contrast, out of the 522 instances,
Fast Downward runs out of memory for 249 and times out
for 195. Further, when Fast Downward exceeds resource
bounds, it always does so during grounding.

Conclusions
As we have shown, classical planning can solve Plotting de-
spite the highlighted PDDL limitations. Over the last few
decades, the prevalent method of solving classical planning
problems has been heuristic search. In such approaches, a
grounded representation of the problem is generally needed
to be able to then compute heuristic values that guide the
search. The grounding component in most of the planners
struggles when presented with the PDDL model. More con-
cretely, memory is exhausted due to the generation of large
intermediate data structures, which is unavoidable if the ex-
pansion phase of grounding is performed before any prun-
ing of the intermediate expressions. Plotting appears to be a
hard-to-ground problem (Corrêa et al. 2020), and we there-
fore intend to investigate models that are easier to ground.

Problems with grounding could be mitigated by using a
more expressive language, like those proposed by Gregory
et al. (2012) or Francès and Geffner (2016), allowing more
concise and efficient problem representation. However, one
may also need to deal with the grounding of this richer lan-
guage to apply similar solving methods. Corrêa et al. (2020)
adapt the heuristic search framework to allow search in
the non-grounded representation of the problem. Yet, those
approaches are still too limited in their expressivity to be
able to reason with essential constructs needed for Plotting,
such as conditional effects and quantifiers. Improvements to
grounding, such as partial grounding (Gnad et al. 2019) or
pruning-during-grounding, may enable automated planning
systems to leapfrog CP and SAT solvers for this hard-to-
ground problem.
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Gnad, D.; Torralba, Á.; Domı́nguez, M. A.; Areces, C.;
and Bustos, F. 2019. Learning How to Ground a Plan
- Partial Grounding in Classical Planning. In AAAI,
7602–7609. https://doi.org/10.1609/aaai.
v33i01.33017602.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning Modulo Theories: Extending the Planning Paradigm.
In ICAPS, 65–73. https://doi.org/10.1609/
icaps.v22i1.13505.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An Introduction to the Planning Domain Definition
Language. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Springer. https://doi.org/10.
2200/S00900ED2V01Y201902AIM042.
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191–246. https://doi.org/10.
1613/jair.1705.
Jefferson, C.; Miguel, A.; Miguel, I.; and Tarim, A. 2006.
Modelling and solving English Peg Solitaire. Comput.
Oper. Res., 33(10): 2935–2959. https://doi.org/
10.1016/j.cor.2005.01.018.
Kautz, H. A.; and Selman, B. 1992. Planning as Sat-
isfiability. In ECAI, 359–363. https://web.
archive.org/web/20230209175344/https:
//henrykautz.com/papers/satplan.pdf.
Matloob, R.; and Soutchanski, M. 2016. Exploring Or-
ganic Synthesis With State-of-the-Art Planners. In Pro-
ceedings of Scheduling and Planning Applications woRK-
shop (SPARK), 52–61. https://icaps16.icaps-
conference.org/proceedings/spark16.pdf.
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