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Abstract

Targeted nanomedicine involves the use of nanometer-scale
devices that target specific tissues, while reducing side ef-
fects. It creates opportunities for ground-breaking applica-
tions in medical imaging, diagnosis, and treatment. These ap-
plications require careful planning of the type, dosage, and
timing of administrating nano-devices, which cause cascad-
ing reactions, ending with a medically-desired result. Such
planning is currently only carried out manually. We present a
novel representation of targeted nanomedical treatment prob-
lems, related—but distinct—from familiar temporal planning
approaches. We discuss preliminary steps towards planning
and scheduling approaches for solving such problems. The
formulation opens novel directions for the use of planning in
targeted medicine.

Introduction
Targeted nanomedicine involves the use of nanometric-scale
devices that target specific tissues, while significantly reduc-
ing side effects. It creates opportunities for ground-breaking,
highly innovative applications in medical imaging, diagno-
sis, and treatment. Nanoparticles (NPs) are nanometric-scale
material structures with a diameter of 1 to 100 nm. Each
nanoparticle has unique properties and is designed to react
with a predefined group of materials.

The usage of nanoparticles for medical applications has
rapidly grown in recent years. The properties of different
nanoparticle types are exploited for better detection and
treatment of damaged organs. Using a single nanoparticle
type might not be sufficient to achieve the desired medi-
cal goal, and so novel treatment plans provide schedules for
nanoparticle injections. An example of such a requirement is
combination therapy, where multiple treatments are used to
mitigate a single disease. In addition, using various nanopar-
ticle types can increase efficacy in comparison to the usage
of each type alone (Turan et al. 2019).

Timing the administration of each nanoparticle type is
necessary to maximize the benefits drawn from the nanopar-
ticles. Many factors must be considered in order to in-
crease the interactions between different nanoparticles, such
as nanoparticle’s circulation time, attaching probability, and
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half-life property. These factors depend on the physiochem-
ical properties of the nanoparticles; their size, shape, charge,
and surface property. Timing different nanoparticle types re-
quires careful planning of administration times.

We propose a novel temporal planning representation that
supports continuous non-linear actions for medical treat-
ments and takes into account drug interactions. In this plan-
ning domain, states represent the amount of each nanopar-
ticle type and material (e.g., drug) in different organs, and
actions are the administration of nanoparticles to the patient.
The domain’s constraints are the safety constraints of a pa-
tient. We then discuss problem formulations using this rep-
resentation. The formulation opens novel directions for the
use of planning in medicine.

There are current planners and planning languages that
support continuous actions and may be a basis for represent-
ing this domain (Fox and Long 2006; Scala et al. 2016; Pi-
otrowski et al. 2016). For this domain, we require the ability
to model parallel actions with concurrent non-linear effects
that may affect the same state variable. We are currently
examining the usage of existing planners and planning lan-
guages to support this domain.

Targeted Nanomedicine: An Opportunity for
AI Planning

Targeted nanomedicine involves the use of nanometer-scale
devices, often referred to as nanoparticles1 which are de-
signed such that by themselves, or in combination with other
nanodevices, cause desired reactions in specific target tis-
sues at the therapeutic site in the body (a biological site of
interest, for example, a tumor, or a specific organ), while re-
ducing side effects. This is the distinction from non-targeted
medicine, where the administered compounds spread in the
body without restricting the effect to specific tissues. As an
example, most older forms of chemotherapy cause damage
to healthy and cancerous cells alike, while newer targeted
chemotherapy destroys cancer cells preferentially, and thus
can be more aggressive in terms of the toxicity of the com-
pounds administered to the cancerous tissues.

We believe that the design of targeted nanomedicine treat-
ments presents high-impact opportunities for AI planning.

1and varieties such as nanospheres, nanorods, nano-
robots/nanobots, etc.



The current process is completely manual, and is very slow
to produce meaningful outcomes. In this section, we ex-
plain the fundamental concepts and terminology of targeted
nanomedicine, and then argue for its suitability for automa-
tion by AI planning. The next section will formally define
targeted nanomedicine planning processes.

Biodistributions of Medical Nanoparticles
Nanoparticles have many medical applications, such as
cancer treatment, diabetes, infections, and cosmetics (von
Maltzahn et al. 2011; Souto et al. 2019; Kirtane et al. 2021;
Raj et al. 2012). Some nanoparticles are designed so that
their properties (geometric size and shape, electric charge,
and their chemical composition) can allow targeting differ-
ent tissues in the body to achieve various medical goals.

When nanoparticles are introduced into the body (e.g.,
by an injection or oral), they are generally carried by the
bloodstream, completing a circulation cycle approximately
three times a minute. The circulation time of nanoparticles
in the bloodstream is prolonged compared to conventional
drugs, since they have good solubility in the plasma and
due to their compatibility with the immune system. As a re-
sult, their clearance is decreased and accumulation in dif-
ferent tissues (including the therapeutic site) is improved,
thereby increasing therapeutic efficacy and reducing side ef-
fects (Cho et al. 2008). They may penetrate to a specific
organ that the blood vessels reach, as a function of their
biochemical affinity to the specific organ. Thus, over time,
nanoparticles can accumulate in different tissues in the body,
and may also be cleared from the organs and the body. In
general, all nanoparticles disintegrate at some point and are
cleared from the body.

We refer to all possible biological sites (tissues, organs,
tumor) as bio-sites. One or more of these—the therapeu-
tic sites—are the target of the treatment, while others are
exposed—and may accumulate—nanoparticles as a side ef-
fect. The time-changing distribution of the nanoparticles
across different bio-sites is referred to as their biodistribu-
tion. It can be represented by a set of trajectories: given a
time since the injection, each trajectory is defined by a func-
tion that gives the level of accumulated nanoparticles per a
standard unit of mass, for a specific bio-site (including but
not limited to a therapeutic site).

Figure 1 presents the biodistribution of the nanoparticle
trajectories in mice, resulting from the injection of two types
of nanoparticles. The horizontal axis shows the organs (bio-
sites): heart, liver, spleen, lungs, and kidney in which the
biodistribution of nanoparticles was sampled in-vivo (mice).
Bloodstream is treated as a bio-site in itself—a common
practice in nanoparticle literature—despite its system-wide
in connecting all bio-sites. The vertical axis marks the per-
centage of the injected dose (ID%) per gram of tissue. Each
organ has four bars, showing the levels (in ID% units) after
1, 6, 16, and 24 hours from the administration from left to
right. The first point displayed for each bio-site is at one hour
from administration. The nanoparticle biodistribution is not
uniform across the body: the accumulation of nanoparticles
varies between organs and changes over time. The biodis-
tribution was shown to be highest after the first hour and

then decreased gradually. This process is similar for all the
substances administered to the body, but the rate (timing) of
the accumulation and the clearance process is different for
each nanoparticle type. Indeed, the figure shows two biodis-
tributions for two differently-shaped nanoparticles (Akhtar
et al. 2019). The biodistributions are different, as the shape
affects the affinity of the nanoparticles to the different bio-
sites, i.e., the nanoparticle shape affects the biodistribution.
In particular, concentration (ID%/gr) is found to be higher
for one-type of nanoparticle compared to the second-type.
Furthermore, one nanoparticle type mainly accumulates in
the spleen, while the other preferentially attaches to the liver.

Figure 1: Biodistribution of nanoparticles of different
shapes, in the bloodstream, heart, liver, spleen, lungs, and
kidney, at different times from the injection. Figure (a)
shows actual in-vivo results from injecting mice with one
type of nanoparticle, which we term N1. Figure (b) shows
the same, for a second type, which we term N2. The graphs
are adapted from (Akhtar et al. 2019).



Using Biodistributions for Targeted Medicine
Some nanoparticles have biodistribution trajectories that are
directly targeted. That is, they accumulate faster and higher
at therapeutic sites (Sykes et al. 2014). Modifying the sur-
faces of nanoparticles by conjugation of a specific protein or
other biomarkers, it is possible to use them as a basis for a di-
rect targeted medical treatment (Pearce and OReilly 2019).

However, the real promise of targeted nanomedicine
comes from combining different nanoparticles. A recent
tumor-detecting approach proposed by von Maltzahn et
al. 2011 serves as an example. The approach divides the
treatment into two steps, each using a different nanoparticle.
The first step begins by injecting “signaling” nanoparticles
which attach to the tumor and induce coagulation. After 72
hours, the signaling nanoparticles are entirely cleared from
the body, but the elevated coagulation level is high in the tu-
mor microenvironment. Then, a second type of nanoparticle
called “receivers” are injected. Over 24 hours, these accu-
mulate in therapeutic sites with elevated levels of coagula-
tion. They conducted two experiments; Firstly, the receiver
nanoparticles were tested for treatment by near-infrared ir-
radiation, causing them to heat up and destroy cancer cells.
In the other experiment, they were served for diagnosis, by
imaging, for detection and localization of tumors.

This approach utilizes two different nanoparticles, which
can provide targeted treatment only in combination. The first
nanoparticle can target tumors, but cannot be used for imag-
ing or for heating. The second nanoparticle cannot target tu-
mors.

We posit that the process of choosing nanoparticles for
use, determining their dosage, and timing and method of ad-
ministration, is essentially a temporal planning process. The
planner is given a description of all the nanoparticles it can
administrate, and their bio-diversity trajectory effects. It is
given a goal that is specified in terms of biological proper-
ties and their levels. It is given safety constraints that pro-
hibit dosage and accumulation from reaching toxic levels,
or interacting with each other in harmful ways.

A Representation for Nanomedicine
Treatment Planning Problems

We show a concrete representation of the nanomedicine
treatment planning problem in terms that are familiar to the
AI planning community: bio-diversity states, injection ac-
tions that transition the system between states, and targeted
medical goals. Along the way, the domain requirements will
raise discussion of additional concepts such as derived pred-
icates (to represent interactions between bio-chemical prop-
erties), and safety constraints (to prevent the generation of
feasible—but harmful—plans). Using this representation the
next section will address preliminary solution approaches.

States
We begin by discussing fluents, as the building block from
which states can be represented. A bio-chemical property
of a bio-site (therapeutic or otherwise) is represented as a
fluent, which has a numeric value, representing the concen-
tration level of the property in the given site, in standard

units. For example, accumulation of nanoparticles of type
N1 in the liver can be represented as the fluent livern1

= x.
It means x nanoparticles are present per gram of liver tissue.

Properties are not limited to measuring nanoparticle con-
centrations. The levels of coagulation factor in bio-sites,
the levels of insulin or glucose in the blood: these are all
measurements which are familiar to anyone who has done
a blood test, and follow the same pattern, also with estab-
lished statistical values on normal and abnormal ranges. Bio-
chemical tests estimate these values from measurements,
and medically, it is convenient to use concentration per mass,
as this allows normalization for different organ sizes and
masses.

Nanoparticles affect properties in several ways. First,
the accumulation of nanoparticles in a bio-site directly af-
fects their concentration. Second, compounds of which the
nanoparticles are composed, can directly add to the levels of
the same, pre-existing compounds in the bio-site. For exam-
ple, if nanoparticles are made of gold (a common theme),
the amount of gold in the bio-site increases as nanoparti-
cles accumulate. Third, the presence of nanoparticles can
trigger biological reactions that change (reduce or elevate)
other properties. Indeed, in the von Maltzahn example we
discussed earlier, the signaling nanoparticles cause coagula-
tion, which lingers even after they are cleared.

A set of fluents can therefore be used to describe the
bio-chemical status of different bio-sites, and together, of
a body. However, as properties affect each other locally (as
discussed above), it makes sense to collect together the prop-
erties of the same bio-site.

We, therefore, represent a body state s as a set of bio-site
property sets,

s := {O1, . . . , On} (1)

where each bio-site (or organ) Oj is itself a set of fluents
representing properties {Oj [1] = vj1, . . . , Oj [m] = vjm}.
Oj [i] is used to refer to the fluent representing property i in
bio-site Oj , and vji is its value.

We sometimes simply use vi to represent the value of
property i, as a notational shorthand for the fluent, when the
bio-site is understood from the context. The initial state of
a patient’s body may be represented by setting the values
of properties, in each organ, to current (normal or abnor-
mal) values. If no nanoparticles were previously injected,
then their associated property values will be 0.

An example of a state is presented in Table 1. The data
of nanoparticle type N1 is estimated by the leftmost col-
umn of each organ in Figure 1a, when injecting a dosage
of 100 type-N1 nanoparticles. In this example, each organ
has only two properties: nanoparticle type N1, and a hypo-
thetical property p1. This state represents the domain one
hour from the nanoparticle administration, assuming the ini-
tial state is the null vector.



Property
Organ Blood Heart Liver Spleen Lung Kidney

N1 6.5 3.1 6.2 13 2.5 5
p1 3.2 430.02 0.001 3.99 32.3 4.3

Table 1: The state representation of the patient’s body one hour after injecting a dosage of 100 type-N1 nanoparticles. Columns
represent organs. Rows represent property values. Here, one row shows the accumulation levels type N1 nanoparticles, and the
second row shows the values for a hypothetical property p1, both after one hour from administration.

Actions
Actions involve the administration of l nanoparticles of type
n at time t, represented by the action template n(l, t)2.
This allows multiple administrations (e.g., by injection) of
the same nanoparticle type, at different times, regardless of
dosage. However, parallel injections of the same type, at the
same time, are not allowed by this representation.

The effect of an action is given by the biodistribution tra-
jectories of the administrated nanoparticles, as they change
the associated properties (accumulated nanoparticles of type
n in different bio-sites) over time. Each action (an admin-
istration of nanoparticles) has a multidimensional continu-
ous non-linear effect. Its multidimensionality is in both time
and place as it affects several bio-site simultaneously and
changes over time. As the effects of an action depend on the
parameter l (the dosage), they are specified relative to l.

Figure 2 serves to illustrate. It shows the temporal effect
of nanoparticle type N1 administration in mice. Consider
this to be the non-grounded effects of action n1(l, 0). The
horizontal axis shows the time passed from administration
(0). The amount of injected nanoparticles l is unknown, as
this is not a fully-grounded action. Thus the vertical axis
measures the concentration per gram of tissue as percentage
of the injection dosage l. Each line shows the effect of the
nanoparticle type N1 administration on a different bio-site.
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Figure 2: N1 type nanoparticles administration effect on the
paitent’s blood, heart, liver, spleen, lung, and kidney over
time. The data is estimated from Figure 1a.

2For notation simplicity, we distinguish between an action n()
and a nanoparticle type n by adding parentheses to the action label.

The data presented in this Figure is estimated
from (Akhtar et al. 2019). We simply extracted the
data presented in Figure 1a and created an accumulation
graph for each organ. We assume that prior to the injection,
the subject had no particles in its body. As one can see, the
effect of an action is multidimensional, as the administration
of nanoparticles affects multiple organs simultaneously.
Moreover, it has a continuous effect that changes over time.

To ease the discussion of how action effects are repre-
sented and computed, we begin first by discussing simpler
special cases of actions, before the more elaborate general
case.

Baseline Effects of a Single Action. The simplest case of
an action is one that affects a single property. The biodistri-
bution of the administrated nanoparticles only affects each
organ directly, modifying a single property on each organ:
the accumulated number of nanoparticles that are present in
the organ. We refer to this effect as the baseline trajectory
of the nanoparticle type accumulation behavior (baseline in
short).

We follow bio-chemical literature common practices, and
assume that the biodistribution trajectories of injection ac-
tions are given in percentages of the initial dosage, for the
standard mass unit. Computing the grounded effects of an
action n(l, t0) is carried out by computing a function of the
initial dosage l and the time since injection t − t0, which
yields a percentage in the associate biodistribution trajec-
tory. For simplicity, we assume this function is linear, i.e. it
is a simple multiplication of the percentage by l.

Formally, the baseline effect of an action n(l, t0) deter-
mines the properties Oi[n] = bin (property n in every organ
Oi). It is determined for time t ≥ t0 by:

bkn[t] = fn(t− t0, k) · l (2)

where fn(t − t0, k) is the value of the biodistribution tra-
jectory for organ Ok of nanoparticle type n at time absolute
time t, when the injection took place in time t0. In Figure 2,
we see the plots of f where k is one of blood, liver, kidney,
heart, lung, spleen, for an injection at time t0 = 0.

Derived Effects. Some properties are affected by others,
as demonstrated by (von Maltzahn et al. 2011). The accu-
mulating signaling nanoparticles (whose concentration lev-
els in any organ k can be computed by Eq. 2) creates a co-
agulation cascade in the organ k. The level of coagulation in
this case is not a simple function of the number of signal-
ing nanoparticles, as coagulation lingers after the signaling
nanoparticles clear the organ.



We therefore model the effects of interactions between
properties as follows. Suppose a property d depends on other
properties p1, . . . , pz , i.e, the value vd of property d is de-
pendent on the values v1, . . . , vz (all in the same bio-site, for
simplicity of the illustration). We assume this dependency is
captured by a function Dd which determines the value of d
at time t ≥ t0) as follows:

vd[t] = Dd(t, vd[], {vi[]})

where vd[] is the past trajectory (historical values, up to time
t) of d in the same bio-site, and likewise vi[] stands for the
historical values of property pi. We do not allow same-time
cycles in this computation; if d at time t depends on p at time
t, then p cannot depend on d at the same time.

The reader should keep in mind that although the pro-
cesses are continuous, the currently available bio-data is not.
To the best of our knowledge, biologists’ smallest measure-
ment scale is minutes. Thus, we allow finite discretization of
time. We will also assume a Markov property of the calcula-
tion, and simplify the above to:

vd[t] = Dd(vd[t− 1], {vi[t]}) (3)

Going back to the example, the coagulation level vc at
time t can be computed—derived—as a function of the base-
line level of signaling nanoparticles (s), given by bs[t]:

vc[t] = Dc(vc[t− 1], bs[t])

Conditional Effects of a Single Action. The baseline ef-
fects of an action, described above, assume that the accu-
mulation and clearance of administered nanoparticles are
a function of the biodistribution trajectories alone, and do
not depend on the bio-chemical conditions of the bio-site,
as represented by other properties. However, in reality, the
biodistribution trajectories change depending on such con-
ditions.

Indeed, some nanoparticle types accumulate differently
under different conditions, i.e., their accumulation and clear-
ance depend on the value of other properties. An example
of such behavior can be found in the von Maltzahn exam-
ple discussed earlier (von Maltzahn et al. 2011): The base-
line behavior of the receiver nanoparticle changes due to the
presence of coagulation; it targets tissues with increased co-
agulation.

Note that this case is a special case of the derived effects
discussed earlier. Here, the property describing the accumu-
lation of nanoparticles is not directly described by the base-
line (Eq. 2), but rather, the effects are a function of a different
property, which itself is derived from others (Eq. 3).

Combining both equations, we describe the value of the
accumulation of a nanoparticle type n at time t in organ Ok
is by Skn[t], given a function that describes the accumulation
based on both the baseline and other properties:

Skn[t] = Cn(S
k
n[t− 1], bkn[t], {Skj [t]}, {vkp [t]}) (4)

where Skn[t − 1] is the concentration level of n at time
t−1, bkn[t] is the baseline value for particles if type n at time
t (Eq. 2), {Skj [t]} is the set of levels of other particle types

(j 6= n) on which n’s accumulation may be dependent, and
similarly {vkp [t]} is a set of levels of other properties (Eq. 3).

This is the general form for computing the effects of an
action. bkn[t], S

k
j [t],vp[t] are all values of properties on which

Skn[t] is dependent. So in fact, Skn[t] is computed as a derived
effect.

For the von Maltzahn example, the accumulation of the
first, signaling nanoparticles (α) in any biosite k is given by:

Skα[t] = bkα[t] = fα(t, k) · l
which leads to increased coagulation level:

vkc [t] = Dk
c (v

k
c [t− 1], Skα[t])

and both of these factors affect the accumulation of the
second, receiving nanoparticles (β) as follows:

Skβ [t] = Cβ(S
k
β [t− 1], bkβ [t], v

k
c [t])

The State-Transition Function δ(). Let us denote Ski [t]
as the value of property i at time t in organOk. The effect of
an action n() on property i of organ k at time t+ 1 depends
on the number of particles from n() on organ k at time t+1
and their effect on property i.

We now generalize the effect compositions to consider
multiple actions affecting the same property, at the same
time, in parallel. Let us denote the set of actions taken be-
tween time 0 and t by Nt. The value of any nanoparticle
accumulation property, Ski [t], is the sum of effects of all ac-
tions in Nt:

Ski [t] =
∑
a∈Nt

Ski [t]a (5)

where Ski [t]a is the value computed by Eq. 4 for any ac-
tion a = n(l, t0) ∈ Nt. Any such Ski [t]a includes the com-
putation of any derived properties on which Ski is dependent.
The start time of the action is its administration time. For
simplicity, we assume a single administration point.

The state-transition function δ(), analogous to the classi-
cal planning definition, will compute Eq. 5 for time t, for all
properties, in all bio-sites (Eq. 1).

Goal States and Safety Constraints
Given the definitions of states and actions above, it seems a
simple matter to define goal states in terms of target levels
for properties of interest, at a specific set of bio-sites (thera-
peutic sites). This is a relatively straightforward extension of
how we define goal states in classical planning and factored
state representations. The general preferences of reaching a
goal-state quicker would be familiar to planning researchers.
The result of the planning process is a timed sequence of in-
jection actions, which will cause the levels of specific prop-
erties to reach their target values.

However, the medical safety of the plan is a key concern,
and it affects states that are reachable (and may be reached)
at a time after the goal state has been reached. In particular,



any plan returned by the planner must conform to safety con-
straints imposed by the medical professional, and is given to
the planner as part of the planning problem.

Safety constraints impose limits on the maximal and/or
minimal values of a property at any moment. These limits
can come from medical defaults, or they may be tailored for
patients based on their specific health conditions. For exam-
ple, if a patient has diabetes, the glucose level must stay be-
low a given threshold h at all times. Such a constraint on the
property j of organ k can be expressed as follows: vkj ≤ h,
or vkj ≥ h.

A safety constraint can also constrain an interaction be-
tween two properties, e.g., when drugs interact with each
other. For example, we may represent a constraint that if a
property value i in an organ k is greater than a given thresh-
old hi, then the value of property j in the same organ must
be less than a threshold hj : Namely, vki > hi ⇒ vkj < hj .

As the effects of action have a duration, the first state in
which the goal state is reached (i.e., certain properties meet
goal conditions), is not the last state in which actions af-
fect change in the body. Given a time tg in which the goal
conditions are first met, safety constraints must be satisfied
not only in the interval [0, tg] but also in the interval [tg,∞)
(though generally, the effects of actions do have finite dura-
tions).

Planning and Scheduling Treatments
Using the definitions above, we can now define both plan-
ning and scheduling problems.

Planning Problem Definition. Targeted nanomedicine
planning problems involve deciding both on the type of the
nanotypes used, as well as on their dosage and their timing.
It is represented as a tuple 〈S,A, s0, δ, SG, C〉where S is the
set of states, s0 ∈ S is the initial state, A is a set of actions,
SG is the set of goal states, described as a set of conditions
on the goal properties, and C is a set of safety constraints. δ
is the state transition function, which is composed of all the
functions that define Ski and any derived properties. Given
a treatment problem, a valid solution plan is an ordered set
of actions (parallel actions allowed) that reaches a goal state
and does not violate any of the safety constraints both before
and after the goal state is reached. If there are multiple valid
plans, the plan with the shortest overall time (from initial
injection until the nanoparticles are cleared from the body)
will be chosen. Reducing the treatment time in medical pro-
cedures is important as it might reduce possible side effects
and accelerate healing (Sykes et al. 2014).

Scheduling Problem Definition and Preliminary Ap-
proach. A special case of the planning is a scheduling
problem, where the type and number of nanoparticle injec-
tions is given in the problem description, and the only open
question is their timing, such that all safety constraints are
satisfied.

We are currently investigating an approach towards solv-
ing the scheduling problem, using a hill-climbing approach3.

3We thank Sven Koenig for suggesting this approach.

Hill-climbing is an iterative heuristic search algorithm that
aims to find a local optimal solution regarding a given ob-
jective function. It starts at a random state and tries to im-
prove the current solution at each iteration. For the schedul-
ing problem, the algorithm attempts to reschedule the injec-
tion times until it reaches a local optima. It then repeats this
process for different possible order of injections, and ran-
dom initial times. Hill-climbing allows searching in a con-
tinuous domain, thus it is a strong candidate for solving the
described above scheduling problem.

To apply this technique, one needs to define an objective
function that the algorithm tries to minimize (or maximize).
Our objective function examines several criteria: The first
criterion to consider is the total number of unsatisfied con-
straints in the current solution, as a valid solution must sat-
isfy all safety constraints. Another criterion is the overall
treatment time. Treatment begins at the first injection and
ends once all injected particles were cleared out of the pa-
tient’s body (after the last injection in the treatment plan). A
final criterion is the number of injections, which generally
should be minimized.

Discussion and Related Work
Each action (an administration of nanoparticles) has a multi-
dimensional, continuous, non-linear, durative effect. Its mul-
tidimensionality is in both time and place as it affects several
organs simultaneously and changes over time. In particular,
multiple actions can take place in parallel and simultane-
ously affect the same state variable.

Penberthy and Weld proposed a temporal planner with
continuous effects (Penberthy and Weld 1994). Their plan-
ner, however, assumes that there is no continuous effect
without a direct explicit action causing it. This generally
does not hold in the targeted nanomedicine domain, as in-
teractions between different properties or natural processes
in the body have continuous effects, but are not modeled as
actions, but instead as derived properties.

PDDL (Planning Domain Definition Language) is one of
the most popular planning language families. Fox and Long
suggest an extension of PDDL (PDDL+) to model events
and processes (Fox and Long 2006), allowing for continuous
effects. Several planners extend the original PDDL+ to sup-
port non-linear effects (Scala et al. 2016; Piotrowski et al.
2016). We currently examine the possibility of using such
planners to represent this domain.

Boutilier and Brafman proposed a planner that models si-
multaneous actions (Boutilier and Brafman 2001). The ac-
tions in their planner are single points in time, whereas our
problem requires durative actions.

Michalowski et al. (Michalowski et al. 2021) proposed a
planner for multi-morbid patients. Their planner receives a
patient’s information, optimization function, planning hori-
zon length, and medical goals and outputs a conflict-free
plan. Their planner uses existing medical procedures and
chooses the combination of plans that minimizes (or max-
imizes) the objective function, replacing adverse actions be-
tween chosen sub-plans. They use knowledge repositories
as a reference for medical actions that can serve to sub-
stitute one another. In comparison, the planner we suggest



aims to generate a plan from scratch. We do not use tem-
plates from existing medical procedures. Furthermore, the
knowledge of adverse actions and their equivalent actions
is not inferred from the actions’ conditions and effects, but
is given as facts. We do not specify which actions cannot
be taken at the same plan and which actions have similar
results. Instead, we specify a health plan’s constraints and
actions’ effects and preconditions, and the planner infers the
rest.

Conclusion and Future Work
We propose that targeted nanomedicine treatments are a
novel domain for AI Planning. To represent such prob-
lems, we propose a novel representation of temporal plan-
ning problems. Planning in this domain requires planning for
parallel actions, each of which can have multi-dimensional,
continuous, non-linear effects. Additionally, we discussed a
scheduling variant of the treatment planning problem and
suggested solving it with a hill-climbing algorithm. We are
continuing to develop planning and scheduling algorithms
and will evaluate them in experiments using real-world and
synthetic data.
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