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Abstract
It is essential for users to understand what their AI systems
can and can’t do in order to use them safely. However, the
problem of enabling users to assess AI systems with evolving
sequential decision making (SDM) capabilities is relatively
understudied. This paper presents a new approach for model-
ing the capabilities of black-box AI systems that can plan and
act, along with the possible effects and requirements for exe-
cuting those capabilities in stochastic settings. We present an
active-learning approach that can effectively interact with a
black-box SDM system and learn an interpretable probabilis-
tic model describing its capabilities. Theoretical analysis of
the approach identifies the conditions under which the learn-
ing process is guaranteed to converge to the correct model of
the agent; empirical evaluations on different agents and simu-
lated scenarios show that this approach is few-shot generaliz-
able and can effectively describe the capabilities of arbitrary
black-box SDM agents in a sample-efficient manner.

1 Introduction
AI systems are becoming increasingly complex, and it is be-
coming difficult even for AI experts to ascertain the limits
and capabilities of such systems, as they often use black-box
policies for their decision making process (Greydanus et al.
2018; Popov et al. 2017). E.g., consider an elderly couple
with a household robot that learns and adapts to their specific
household. How would they determine what it can do, what
effects their commands would have, and under what condi-
tions? Although we are making steady progress on learning
for sequential decision-making (SDM), the problem of en-
abling users to understand the limits and capabilities of their
SDM systems is largely unaddressed. Moreover, as the ex-
ample above illustrates, the absence of reliable approaches
for user-driven capability assessment of AI systems limits
their inclusivity and real-world deployability.

This paper presents a new approach for Query-based
Autonomous Capability Estimation (QACE) of black-box
SDM systems in stochastic settings. Our approach uses a
restricted form of interaction with the input SDM agent
(referred to as SDMA) to learn a probabilistic model
of its capabilities. The learned model captures high-level
user-interpretable capabilities, such as the conditions under
which an autonomous vehicle could back out of a garage,
or reach a certain target location, along with the probabili-
ties of possible outcomes of executing each such capability.

The resulting learned models directly provide interpretable
representations of the scope of SDMA’s capabilities. They
can also be used to enable and support approaches for ex-
plaining SDMA’s behavior that requires closed-form mod-
els (e.g., (Sreedharan, Srivastava, and Kambhampati 2018)).
We assume that the input SDMA provides a minimal query-
response interface that is already commonly supported by
contemporary SDM systems. In particular, SDMA should
reveal capability names defining how each of its capabilities
can be invoked, and it should be able to accept user-defined
instructions in the form of sequences of such capabilities.
These requirements are typically supported by SDM systems
by definition.

The main technical problem for QACE is to automatically
compute “queries” in the form of instruction sequences and
policies, and to learn a probabilistic model for each capa-
bility based on SDMA’s “responses” in the form of execu-
tions. Depending on the scenario, these executions can be in
the real world, or in a simulator for safety-critical settings.
Since the set of possible queries of this form is exponential
in the state space, naı̈ve approaches for enumerating and se-
lecting useful queries based on the information gain metrics
are infeasible.

The main contributions of this work are: (i) the first ap-
proach for query-based assessment of SDMAs with mini-
mal assumptions on SDMA internals, and (ii) the first ap-
proach to reduce query synthesis for SDMA assessment to
FOND planning (Cimatti, Roveri, and Traverso 1998). Em-
pirical evaluation shows that these contributions enable our
method to carry out scalable assessment in both embodied
and vanilla SDMAs.

We express the learned models using an input concept vo-
cabulary that is known to the target user group. Such vo-
cabularies span multiple tasks and environments. They can
be acquired through parallel streams of research on inter-
active concept acquisition (Kim, Shah, and Doshi-Velez
2015; Kim et al. 2018; Koh et al. 2020; Lage and Doshi-
Velez 2020) or explained to users through demonstrations
and training (Schulze et al. 2000). These concepts can be
modeled as binary-valued predicates that have their asso-
ciated evaluation functions (Mao et al. 2022). We use the
syntax and semantics of probabilistic planning domain def-
inition language (PPDDL) (Younes and Littman 2004), to
express the learned models.



Figure 1: The cafe server robot environment in OpenRave
simulator.

Related work on the problem addresses model learning
from passively collected observations of agent behavior (Pa-
sula, Zettlemoyer, and Kaelbling 2007; Martı́nez et al. 2016;
Juba and Stern 2022); and by exploring the state space us-
ing simulators (Ng and Petrick 2019; Chitnis et al. 2021;
Mao et al. 2022). However, passive learning approaches can
learn incorrect models as they do not have the ability to gen-
erate interventional or counterfactual data; exploration tech-
niques can be sample inefficient because they don’t take into
account uncertainty and incompleteness in the model being
learned to guide their exploration. (see Sec. 7 for a greater
discussion). In addition to the key contributions mentioned
earlier, our results (Sec. 6) show that the approaches for
query synthesis in this paper do not place any additional re-
quirements on black-box SDMA but significantly improve
(i) convergence rate and sample efficiency for learning re-
lational models of SDMAs with complex capabilities, (ii)
few-shot generalizability of learned models to larger envi-
ronments, and (iii) the accuracy of the learned model w.r.t.
the ground truth capabilities for SDMA.

2 Preliminaries
SDMA setup In this work, we work with SDMAs that op-
erate in stochastic and fully observable environments. An
SDMA can be represented as a 3-tuple ⟨X , C, T ⟩, where
X is the environment state space that the SDMA operates
in, C is the set of SDMA’s capabilities (capability names,
e.g., “place object x at location y” or “arrange table x”) that
the SDMA can execute, and T : X × C × X → [0, 1] is
the stochastic black-box transition model determining the
effects of SDMA’s capabilities on the environment and the
probabilities associated with them. Note that the semantics
of C are not known to the user(s) and X may not be user-
interpretable. The only input from the SDMA is the instruc-
tion set in the form of capability names, represented as CN .
This isn’t a restricting assumption because the AI agents
must reveal their instruction sets for usability.
Running Example Consider a cafe server robot that can
pick and place items like plates, cans, etc., from various lo-
cations in the cafe, like the counter, tables, etc., and also
move between these locations. A capability pick-item
(?location ?item) would allow a user to instruct the

(:capability pick-item
:parameters (?location ?item)
:precondition (and

(empty-arm) (has-charge)
(robot-at ?location)
(at ?location ?item))

:effect (and (probabilistic
0.7 (and (not (empty-arm))

(not (at ?location ?item))
(holding ?item))

0.2 (and (not (has-charge)))
0.1 (and))) #No-change

Figure 2: Sample PPDDL description for the pick-item ca-
pability of the cafe server robot.

robot to pick up an item like a soda can for any location.
However, without knowing the capability description, the
user would not know under what conditions the robot could
execute this capability and what the effects will be.
Object-centric concept representation We aim to learn
representations that are generalizable, i.e., the transition
dynamics learned should be impervious to the environment
properties like number of objects and their configuration.
Additionally, the learned dynamics should hold in different
settings of objects in the environment as long as the
SDMA’s capabilites does not change. To this effect, we
learn the SDMA’s transition model in terms of interpretable
concepts that can be represented using first-order logic
predicates. This is a common formalism used to represent
symbolic models for SDMAs (Mao et al. 2022; Zhi-Xuan
et al. 2020). We formally represent them using a set of
object-centric predicates P . The set of predicates used
for cafe server robot in Fig. 1 can be (empty-arm),
(has-charge), (robot-at ?location), (at
?location ?item), and (holding ?item). Here,
? precedes an argument that can be replaced by an object in
the environment. E.g., (robot-at tableRed) means
“robot is at the red table.” As mentioned earlier, we assume
these predicates along with their boolen evaluation func-
tions (which evaluate to true if predicate is true in a state)
are available as input. Learning such predicates (Mao et al.
2022; Sreedharan et al. 2022) is interesting but orthogonal
research direction, and it is not the focus of this work.
Abstraction Using an object-centric predicate representa-
tion induces an abstraction of environment states X to high-
level logical states S expressible in predicate vocabulary P .
This abstraction can be formalized using a surjective func-
tion f : X → S. E.g., in the case of the cafe server robot, the
concrete state x may refer to ⟨x, y, z, r, p, γ⟩ tuples for all
objects representing their positions in xyz coordinate with
roll, pitch, and yaw values, respectively. On the other hand,
the abstract state s corresponding to x will consist of truth
values of all the predicates.
Probabilistic transition model Following the framework
proposed by Mao et al. (2022), we assume that there exists
an arbitrary latent space S expressible in P . This induces



an abstract transition model T ′ : S × C × S → [0, 1].
This is done by converting each transition ⟨x, c, x′⟩ ∈ T
to ⟨s, c, s′⟩ ∈ T ′ using predicate evaluators such that
f(x) = s and f(x′) = s′. Now, T ′ can be expressed as
model M that is a set of parameterized action (capability
in our case) schema, where each c ∈ C is described as
c = ⟨name(c), pre(c), eff(c)⟩, where name(c) ∈ CN refers
to name and arguments (parameters) of c; pre(c) refers
to the preconditions of the capability c represented as a
logical formula defined over P that must be true in a state
to execute c; and eff(c) refers to the set of logical formulas
over P , each of which becomes true on executing c with
an associated probability. The result of executing c for a
model M is a state c(s) = s′ such that PM (s′|s, c) > 0 and
one (and only one) of the effects of c becomes true in s′.
We also use ⟨s, c, s′⟩ triplet to refer to c(s) = s′. This rep-
resentation is similar to the probabilistic planning domain
definition language (PPDDL) (Younes and Littman 2004),
which can compactly describe the SDMA’s capabilities.
E.g., the cafe server robot has three capabilities (shown
here as name(args)): pick-item(?location
?item); place-item(?location ?item); and
move(?source ?destination). The description of
pick-item in PPDDL is shown in Fig. 2.
Variational Distance Given a black-box SDMA A, we
learn the probabilistic model M representing its capabili-
ties. To measure how close M is to the true SDMA transi-
tion model T ′, we use variational distance – a standard mea-
sure in probabilistic-model learning literature (Chitnis et al.
2021; Martı́nez et al. 2016; Ng and Petrick 2019; Pasula,
Zettlemoyer, and Kaelbling 2007). It is based on the total
variation distance between two probability distributions T ′

and M , given as:

δ(T ′,M) =
1

|D|
∑

⟨s,c,s′⟩∈D

∣∣PT ′(s′|s, c)−PM (s′|s, c)
∣∣ (1)

where D is the set of test samples (⟨s, c, s′⟩ triplets)
that we generate using T ′ to measure the accuracy of
our approach. As shown by Pinsker (1964), δ(T ′,M) ≤√

0.5×DKL(T ′ ∥M), where DKL is the KL divergence.

3 The Capability Assessment Task
In this work, we aim to learn a probabilistic transition model
T ′ of a black-box SDMA as a model M , given a set of user-
interpretable concepts as predicates P along with their eval-
uation functions, and the capability names CN correspond-
ing to the SDMA’s capabilities. Formally, the assessment
task is:
Definition 1. Given a set of predicates P along with
their boolean-evaluation functions, capability names CN ,
and a black-box SDMA A in a fully observable, stochas-
tic, and static environment, the capability assessment task
⟨A,P, CN , T ′⟩ is defined as the task of learning the proba-
bilistic transition model T ′ of A expressed using P .

The solution to this task is a model M that should ide-
ally be same as T ′ for correctness. In practice, T ′ need not
be in PPDDL, so the correctness should be evaluated along
multiple dimensions.

Notions of model correctness As discussed in Sec. 2, vari-
ational distance is one way to capture the correctness of
the learned model. This is useful when the learned model
and the SDMA’s model are not in the same representation.
The correctness of a model can also be measured using
qualitative properties like soundness and completeness. The
learned model M should be sound and complete w.r.t. the
SDMA’s high-level model T ′, i.e., for all combinations of
c, s, and s′, if a transition ⟨s, c, s′⟩ is possible according to
T ′, then it should also be consistent with M , and vice versa.
Here, ⟨s, c, s′⟩ is consistent with M if P (s′|s, c) > 0 ac-
cording to M . We formally define this as:

Definition 2. Let ⟨A,P, CN , T ⟩ be a capability assessment
task with a learned model M as its solution. M is sound
iff each transition ⟨s, c, s′⟩ consistent with M is a subset of
transitions in T ′. M is complete iff the set of all transitions
in T ′ is a subset of transitions consistent with M .

This also means that if T ′ is also a PPDDL model, then
(i) any precondition or effect learned as part of M is also
present in T ′ (soundness), and; (ii) all the preconditions and
effects present in T ′ should be present in M (completeness).
Additionally, a probabilistic model is correct if it is sound
and complete, and the probabilities for each effect set in each
of its capabilities are the same as that of T ′.

4 Interactive Capability Assessment
To solve the capability assessment task, we must identify
what should be the preconditions and effects of each capa-
bility in terms of logical formalae expressed using P . At a
very high-level, we do this by identifying that a probabilis-
tic model can be expressed as a set of capabilities c ∈ C,
each of which has two places where we can add a pred-
icate p, namely precondition and effect. We call these lo-
cations within each capability. We then enumerate through
these 2×|C| locations and figure out how to correctly add the
predicate at each of those locations. Here, the correct way to
add a predicate to a location can be one of the three ways: (i)
adding it as p, i.e., the predicate must be true for that capa-
bility to execute (when the location is precondition), or it be-
comes true on executing it (when the location is effect); (ii)
adding it as not(p), i.e., the predicate must be false for that
capability to execute (when the location is precondition), or
it becomes false on executing it (when the location is effect);
(iii) not adding it at all, i.e., the capability execution does not
depend on it (when the location is precondition), or the ca-
pability does not modify it (when the location is effect).
Hypothesis and Version spaces Let H represent the hy-
pothesis space of all possible transition models expressible
in terms of P and C. Let V ⊆ H represent the version
space (Mitchell 1982) corresponding to the set of hypotheses
that are consistent with the observed data. In such a setting
T ′ belongs to V . We must prune the version space to solve
the capability assessment task, ideally bringing it to a size
of 1. We achieve this by posing queries to the SDMA and
using the responses to the queries as data to eliminate the
inconsistent hypotheses from the version space.

We generate an exhaustive set of hypotheses for each
predicate at every location. Given a location (precondition



or effect in a capability), the hypothesis space correspond-
ing to a predicate will correspond to 3 transition models: one
each corresponding to the three ways we can add the predi-
cate in that location. We call these three hypotheses hT , hF ,
hI , corresponding to adding p (true), not(p) (false), and not
adding p (ignored), respectively at that location.
Shortening the version spaces Note that the hypothesis
space (and also the version space) of the possible transi-
tion models is infinite due to the probabilities associated
with each transition. To simplify this, we first constrain the
hypothesis space by ignoring the probabilities, and hence
learning a non-deterministic transition model (commonly re-
ferred to as FOND model (Cimatti, Roveri, and Traverso
1998)) instead of a probabilistic one. This makes our hy-
pothesis space finite. We later learn the probabilities us-
ing maximum likelihood estimation using the transitions ob-
served as part of the query responses.
Simulator use Using the standard assumption of a simu-
lator’s availability in research on SDM, QACE solves the
capability assessment task (Sec. 3) by issuing queries to the
SDMA and observing its responses in the form of its exe-
cution in the simulator. In non-safety-critical scenarios, this
approach can work without a simulator too. This interface
required to answer the queries is rudimentary as the SDMA
A need not have access to its transition model T ′ (or T ) but
should be able to interact with the environment (or a sim-
ulator) to answer the queries. We next present the types of
queries we use, followed by algorithms for generating them
and inferring the SDMA’s model using its responses.
Policy simulation queries (QPS) These queries ask the
SDMA A to execute a given policy multiple times. More
precisely, a QPS query is a tuple ⟨sI , π,G, α, η⟩ where sI ∈
S is a state, π is a partial policy that maps each reachable
state to a capability, G is a logical predicate formula that ex-
presses a stopping condition, α is an execution cutoff bound,
and η is an attempt limit. Note that the query (including the
policy) is entirely created by our solution approach with-
out any interaction with the SDMA. QPS queries ask A to
execute π, η times. In each iteration, execution continues
until either the stopping goal condition G or the execution
bound α is reached. E.g., “Given that the robot, soda-can,
plate1, bowl3 are at table4, what will happen if the
robot follows the following policy: if there is an item on the
table and arm is empty, pick up the item; if an item is in the
hand and location is not dishwasher, move to the dishwasher;
if an item is in the hand and location is dishwasher, place
the item in the dishwasher?” Such queries will be used to
learn both preconditions and effects (Sec. 4.3). An example
of policy simulation queries is included in Appendix A.1.

A response to such queries is an execution in the simu-
lator and η traces of these simulator executions. Formally,
the response θPS for a query qPS ∈ QPS is a tuple ⟨b, ζ⟩,
where b ∈ {⊤,⊥} refers to if the SDMA can reach a goal
state sG ∈ G, and ζ are the corresponding triplets ⟨s, c, s′⟩
generated by it when it executed the policy η times. If the
SDMA reaches sG even once during the η simulations, b is
⊤, representing that it is possible to reach the goal using this
policy. We next see how we use these responses to prune
the version space to learn the correct transition model of the

Algorithm 1: QACE Algorithm
Input : predicates P; capability names CN ;

state s; SDMA A; hyperparameters α, η
Output: M

1 L← {pre, eff} × CN
2 M∗ ← initializeModel (P, CN )
3 for each ⟨l, p⟩ ∈ ⟨L,P⟩ do
4 Generate hT , hF , hI by setting p at l in M∗

5 for each pair hi, hj in {hT , hF , hI} do
6 q ← generateQuery(hi, hj , α, η, s)
7 θA,S← getResponse(q,A, s)
8 M∗ ← pruneHypotheses (θA, hi, hj)
9 M∗ ← learn possible stochastic effects of

capability with cN in l using ζ (in θA)

10 M ← learnProbabilitiesOfStochasticEffects(ζ,M∗)
11 return M

SDMA represented in the input predicate vocabulary.

4.1 Query-based Autonomous Capability
Estimation (QACE) Algorithm

We now discuss how we solve the capability assessment task
using the Query-based Autonomous Capability Estimation
algorithm (Alg. 1), which works in two phases. In the first
phase, QACE learns all preconditions and non-deterministic
effects of all the capabilities using the policy simulation
queries (Sec. 4.2). In the second phase, QACE converts the
non-deterministic effects of capabilities into probabilistic ef-
fects (Sec. 4.3). We now explain the learning portion (lines
3-11) of Alg. 1 in detail.

QACE first initializes a model M∗ with capabilities hav-
ing names cN ∈ CN , and predicates P . All the precondi-
tions and effects for all capabilities are empty in this model.
QACE iterates over all combinations of L and P (line 4).
For each pair, QACE creates 3 hypotheses hT , hF , and hI

as mentioned earlier. It then takes 2 of these (line 5) and gen-
erates a query q (line 6) such that the response of the SDMA
on that query can help prune out one of the hypotheses (see
Sec. 4.2). The query q is then posed to the SDMA A whose
response is stored as θA (line 7). QACE finally prunes at
least one of the two hypotheses using θA (line 8). QACE
also updates the effects of all models in the version space
to fasten the learning process (line 9). Finally, it learns the
probabilities of the observed stochastic effects using maxi-
mum likelihood estimation (line 10). An important feature of
the algorithm (similar to PLEX (Mehta, Tadepalli, and Fern
2011) and AIA (Verma, Marpally, and Srivastava 2021)) is
that it keeps track of all the locations where it hasn’t identi-
fied the correct way of adding a predicate. We next see how
QACE generates the queries in line 6.

4.2 Algorithms for Query Synthesis
One of the significant challenges in interactive model learn-
ing is to generate the queries we explained above and to
learn the agent’s model using them. Although active learn-
ing (Settles 2012) addresses the related problem of figur-



ing out which data sets to request labels for, vanilla ac-
tive learning approaches do not apply here because the pos-
sible set of queries expressible using the literals in a do-
main is vast. Query-based learning approaches use an es-
timate of the value of a query. This can be a multi-valued
measure like information gain (Sollich and Saad 1994),
value (Macke, Mirsky, and Stone 2021), etc. or a binary-
valued attribute like distinguishability (Verma, Marpally,
and Srivastava 2021), etc. This is because not all queries are
helpful. We use distinguishability as a measure to identify
useful queries. According to it, a query q is distinguishing
w.r.t. two hypotheses if responses by both models to q do not
match. We now discuss methods for generating such queries.
Generating distinguishing queries QACE automates the
generation of queries using search. As part of the algorithm,
a model M in the version space is used to generate the three
hypotheses corresponding to a specific predicate p and loca-
tion l combination. So other than the predicate p at location
l, the model representing the three hypotheses is exactly the
same. A forward search is used to generate the policy simu-
lation queries with two hypotheses hi, hj chosen randomly
from hT , hF , and hI . The forward search is initiated with
an initial state ⟨si0, sj0⟩ as the root of the search tree, where
si0 and sj0 are copies of the same state s0 from which we are
starting the search. The edges of the tree correspond to the
capabilities with arguments replaced with objects in the en-
vironment. The nodes correspond to the two states resulting
from applying the capability in the parent state according to
the two hypotheses models. E.g., consider that a transition
⟨si0, c, si1⟩ is possible according to the model of the hypothe-
ses hi, and let ⟨sj0, c, sj1⟩ be the corresponding transition (by
applying the same effect set of c as hi) according to the
model of the hypotheses hj . Now there will be an edge in
the forward search tree with label c such that parent node
is ⟨si0, sj0⟩ and child node is ⟨si1, sj1⟩. The search process
terminates when a node ⟨si, sj⟩ is reached such that either
the states si and sj don’t match, or the preconditions of the
same capability were met in the state according to one of the
hypotheses but not according to the other. Forward search
can be slow depending on the number of capabilities and
objects in the environment. So we use state-of-the-art plan-
ner PRP (Muise, McIlraith, and Beck 2012) used for search-
based planning in non-deterministic environments. The out-
put of this search is a policy π to reach a state where the
two hypotheses, hi and hj differs. Additional details about
PRP’s settings, the input we use for it, and an example of
the output policy are available in Appendix A.1. The query
⟨sI , π,G, α, η⟩ resulting from this search is such that sI is
set to the initial state s0, π is the output policy, G is the goal
state where the hypotheses disagree, α and η are hyperpa-
rameters as mentioned earlier. We next see how to use these
queries to prune out the incorrect hypothesis.

4.3 Learning Probabilistic Models Using Query
Responses

At this point, QACE already has a query such that the re-
sponse to the query by the two hypotheses does not match.
We next see how to prune out the hypothesis inconsistent

with the SDMA. QACE poses the query generated earlier
to the SDMA and gets its response. If the SDMA can suc-
cessfully execute the policy, QACE matches the response
of the two hypotheses with that of the SDMA and prunes
out the hypothesis whose response does not match with that
of the SDMA. If the SDMA cannot execute the policy, i.e.,
SDMA fails to execute some capability in the policy, then
the hypotheses cannot be pruned directly. In such a case, a
new initial state s0 must be chosen to generate a new query
starting from that initial state. This process to generate new
queries for the same pair of hypotheses can take a long time,
hence we preempt this issue by creating a pool of states S
that can execute the capabilities using a directed exploration
of the state space using partially learned models.
Learning probabilities of stochastic effects After QACE
learns the non-deterministic model, to learn the probabili-
ties of the learned effects it uses the transitions collected as
part of responses to queries. This is done using Maximum
Likelihood Estimation (MLE) (Fisher 1922). For each triplet
⟨s, c, s′⟩ seen in the collected data, let countc be the number
of times a capability c is observed. Now, for each effect set,
the probability of that effect set becoming true on executing
that capability c is given as the number of times that effect is
observed on executing c divided by countc. As we increase
the value of the hyperparameter η, we increase the number
of collected triplets, thereby improving the probability val-
ues calculated using this approach.

5 Theoretical Analysis and Correctness
We now discuss how the model M of SDMA A learned us-
ing QACE fulfills the notions of correctness (Sec. 3) dis-
cussed earlier. We first show that the model M∗ learned be-
fore line 10 of QACE (Alg. 1) is sound and complete ac-
cording to Def. 2. The proofs for the theorems are available
in Appendix B.

Theorem 1. Let A be a black-box SDMA with a ground
truth transition model T ′ expressible in terms of predi-
cates P and a set of capabilities C. Let M∗ be the non-
deterministic model expressed in terms of predicates P∗

and capabilities C, and learned using the query-based au-
tonomous capability estimation algorithm (Alg. 1) just be-
fore line 10. Let CN be a set of capability names corre-
sponding to capabilities C. If P∗ ⊆ P , then the model M∗

is sound w.r.t. the SDMA transition model T ′. Additionally,
if P∗ = P , then the model M∗ is complete w.r.t. the SDMA
transition model T ′.

Next, we show that the final step to learn the probabilities
for all the effects in each capability converges to the cor-
rect probability distribution of the source distribution under
the assumption that all the effects of a capability are identi-
fiable. When a capability c is executed in the environment,
one of its effects ei(c) ∈ eff(c) will be observed in the envi-
ronment. To learn the correct probability distribution in M ,
we should accurately identify that effect ei(c). Hence, the
set of effects is identifiable if at least one state exists in the
environment from which each effect can be uniquely identi-
fied when the capability is executed. An example of this is
available in Appendix. A.4.



Theorem 2. Let A be a black-box SDMA with a ground
truth transition model T ′ expressible in terms of predicates
P and a set of capabilities C. Let M be the probabilistic
model expressed in terms of predicates P∗ and capabili-
ties C, and learned using the query-based autonomous ca-
pability estimation algorithm (Alg. 1). Let P = P∗ and M
be generated using a sound and complete non-deterministic
model M∗ in line 11 of Alg. 1, and let all effects of each
capability c ∈ C be identifiable. The model M is correct
w.r.t. the model T ′ in the limit as η tends to ∞, where η is
hyperparameter in query QPS used in Alg. 1.

6 Empirical Evaluation
We implemented Alg. 1 in Python to evaluate our approach
empirically. We found that our query synthesis and inter-
active learning process leads to (i) few shot generalization;
(ii) convergence to a sound and complete model; and (iii)
much greater sample efficiency and accuracy for learning
lifted SDM models with complex capabilities as compared
to the baseline.
SDMAs for evaluation To test the efficacy of our ap-
proach, we created SDMAs for five different settings; Cafe
Server Robot is a Fetch robot (Wise et al. 2016) that can
do sequential decision-making in a restaurant environment
to serve food, clear tables, etc.; Warehouse Robot is a robot
that can stack, unstack, and manage the boxes in a ware-
house; Driving Agent that can drive between locations and
can repair the vehicle at certain locations; First Responder
Robot that can assist in emergency scenarios by driving to
emergency spots, providing first-aid and water to victims,
etc.; and Elevator Control Agent that can control the op-
eration of multiple elevators in a building. Here, the Cafe
Server Robot uses the ATM-MDP task and motion planning
system (Shah et al. 2020) internally that is unknown to the
QACE algorithm, whereas the other four SDM systems use
state-of-the-art stochastic planning systems from the litera-
ture. Additional details about each setting are available in
Appendix C.
Setup We used a single training problem with few objects
(≤ 7) for all methods in our evaluation and used a test set
that was composed of problems containing object counts
larger than those in the training set. We ran the experiments
on a cluster of Intel Xeon E5-2680 v4 CPUs with CentOS
7.9 running at 2.4 GHz with a memory limit of 8 GB and a
time limit of 4 hours. For QACE, we used α = 2d where d
is the PRP policy depth and η = 5. All of the methods in our
empirical evaluation receive the same training and test sets
and are evaluated on the same platform.
Cafe Server Robot This SDMA setup uses an 8 degrees
of freedom Fetch (Wise et al. 2016) robot in a cafe setting
on OpenRave simulator (Diankov and Kuffner 2008). The
low-level environment state consists of continuous x, y, z,
roll, pitch, and yaw values of all objects in the environment.
The predicate evaluators were provided by ATM-MDP of
which we used only a subset to learn a PPDDL model. Each
robot capability is refined into motion controls at run-time
depending on the configuration of the objects in the envi-
ronment. The results for variational distance between the
learned model and the ground truth model in Fig. 4 show

that despite the different vocabulary, QACE learns an accu-
rate transition model for the SDMA. The baseline was not
compatible with ATM-MDP setup hence it was compared
with the other four vanilla SDMA settings only.
Baseline Selection We used the closest SOTA related
work, GLIB (Chitnis et al. 2021) as a baseline. It learns a
probabilistic model of an intrinsically motivated agent by
sampling goals far away from the initial state and mak-
ing the agent try to reach them. This can be adapted to an
assessment setting by moving goal-generation based sam-
pling outside the agent, and, to the best of our knowledge,
no existing approach addresses the problem of creating in-
telligent questions for an SDMA. GLIB has two versions,
GLIB-G, which learns the model as a set of grounded noisy
deictic rules (NDRs) (Pasula, Zettlemoyer, and Kaelbling
2007), and GLIB-L, which learns the model as a set of lifted
NDRs. We used the same hyperparameters as published for
the Warehouse Robot and Driving Agent and performed ex-
tensive tuning for the others and report results with the best
performing settings.
Accuracy To compare accuracy, we use Variational Dis-
tance (VD) as presented in Eq. 1. However, GLIB cannot use
this measure because it learns a set of NDRs and hence does
not have a unique NDR for each capability. In order to main-
tain parity in comparison, we use GLIB’s setup to calcu-
late an approximation of the VD. Using it, we sample 3500
random transitions ⟨s, c, s′⟩ from the ground truth transition
model T ′ using problems in the test set to compute a dataset
of transitionsD. The sample-based, approximate VD is then
given as: 1

|D|
∑

d∈D 1[s′ ̸=cM (s)], where cM (s) samples the
transition using the capability in the learned model output
by each method. In Fig. 5, we compare the approximate
variational distance of the three approaches w.r.t. D as we
increase the learning time. Note that we also evaluated VD
for QACE using Eq. 1 and found that δ(T ′,M) ≈ 0 for our
learned model M in all SDMA settings. The plots in Fig. 5
show the exact point (marked as ×) when δ(T ′,M) ≈ 0.
The detailed results are included in Appendix D.
Faster convergence The time taken for QACE to learn the
final model is much lower than that of GLIB for three of the
four SDMAs. This is because trace collection by QACE is
more directed and hence ends up learning the correct model
in a shorter time. The only setup where GLIB marginally
outperforms QACE is Warehouse Robot, and this happens
because this SDMA has just two capabilities, one of which
is deterministic. Hence, GLIB can easily learn their configu-
ration from a few observed traces. For SDMAs with com-
plex and much larger number of capabilities – First Re-
sponder Robot and Elevator Control Agent – GLIB finds
it more challenging to learn the model that is closer to the
ground truth transition model. Additionally, QACE takes
much fewer samples to learn the model than GLIB. In all
settings, QACE is much more sample efficient than GLIB as
QACE needed at most 4% of the samples needed by GLIB-
G to reach the variational distance that GLIB-G plateaued at.
In contrast, GLIB-L started timing out only after processing
a few samples for complex SDMAs.
Few-shot generalization To ensure that learned models
are not overfitted, our test set contains problems with larger
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Figure 3: Screen captures from the Cafe Server Robot simulation. The complete environment is shown in the image on the left.
The image grid on the right shows screen captures of multiple steps of the robot delivering a soda-can to a table.
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Figure 4: Change in Variational Distance (y) with increasing
time (x) for QACE for Cafe Server Robot.

quantities of objects than those used during training. As seen
in Fig. 5, GLIB has higher variational distance from the
ground truth model for complex domains as compared to
QACE . This shows that QACE has better few-shot general-
ization as compared to GLIB.

7 Related Work
The problem of learning probabilistic relational agent mod-
els from a given set of observations has been well stud-
ied (Juba and Stern 2022; Martı́nez et al. 2016; Mourão et al.
2012; Pasula, Zettlemoyer, and Kaelbling 2007). Jiménez
et al. (2012) and Arora et al. (2018) present comprehensive
reviews of such approaches. We next discuss the closest re-
lated research directions.
Passive learning Several methods learn a probabilistic
model of the agent and environment from a given set of
agent executions. Pasula, Zettlemoyer, and Kaelbling (2007)
learn the models in the form of noisy deictic rules (NDRs)
where an action can correspond to multiple NDRs and
also model noise. Mourão et al. (2012) learn such opera-
tors using action classifiers to predict the effects of an ac-
tion. Rodrigues, Gérard, and Rouveirol (2011) learn non-
deterministic models as a collection of rule sets and learn

these rule sets incrementally. They take a bound on the num-
ber of rules as input. Juba and Stern (2022) provide a theo-
retical framework to learn safe probabilistic models with a
range of probabilities for each probabilistic effect while as-
suming that each effect is atomic and independent of others.
A common issue with such approaches is that they are sus-
ceptible to incorrect and sometimes inefficient model learn-
ing as they cannot control the input data used for learning or
perform interventions on it.
Sampling of transitions Several approaches (Jin et al.
2022; Ng and Petrick 2019)) learn the operator descriptions
from exploring the state space but focus on deterministic
models. The process of evaluating deterministic models is
significantly easier and the number of works there would
be too broad to cover here. A few reinforcement learning
approaches have been explored for learning the relational
probabilistic action model by exploring the state space us-
ing pre-determined criteria to generate better samples (Ng
and Petrick 2019). Konidaris, Kaelbling, and Lozano-Pérez
(2018) explore learning PPDDL models for planning, but
they aim to learn the high-level symbols needed to describe
a set of input low-level options, and these symbols are not
interpretable. GLIB (Chitnis et al. 2021) also learns proba-
bilistic relational models using goal sampling as a heuristic
for generating relevant data, whereas we use active querying
using guided forward search for this. Our empirical analy-
sis shows that our approach to the synthesis of queries yield
greater sample efficiency and correctness profiles than the
goal generation used in this approach.
Active learning Inspired from Angluin (1988), there are
several active learning approaches (Aarts et al. 2012; Tang
et al. 2013; Vaandrager 2017) that learn automata to repre-
sent the system’s model. These approaches assume access
to a teacher (or an oracle) that can determine whether the
learned automaton is correct and provide a counterexample
if it is incorrect. This is not possible in the black-box SDMA
settings we work with.

8 Conclusion
In this work, we presented an approach to learning a prob-
abilistic model of an agent using interactive querying. We
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Figure 5: A comparison of the approximate variational distance as a factor of the learning time for the three methods: QACE
(ours), GLIB-G, and GLIB-L (lower values better). × shows that the learning process ended at that time instance for QACE
. The results were calculated using 30 runs per method per domain. Solid lines are averages across runs, and shaded portions
show the standard deviation. T ′ is the ground truth model. Detailed results are available in Appendix D.

show that the approach is few-shot generalizable to larger
environments and learns a sound and complete model faster
than state-of-the-art approaches in sample-efficient manner.
Limitations and Future Work In this work, we assume
that the agent can be connected to a simulator to answer the
queries. In real-world settings, sometimes this assumption
can be limiting as users might not have direct access to such
a simulator. For future work, we must formalize under what
conditions is it safe to ask the queries directly to the agent in
the real-world instead of passing them to the simulator. Ad-
ditionally, in this work, we assume the availability of the in-
struction set of the SDMA as input in the form of capability
names. In certain settings, it might be useful to discover the
capabilities of an evolving AI SDM system. In future work,
methods such as iCaML (Verma, Marpally, and Srivastava
2022) can be used to address this limitation. We also plan to
leverage knowledge of queries that the agent fails to answer
using approaches like DAAISy (Nayyar, Verma, and Srivas-
tava 2022) that also use negative examples to learn action
models efficiently. In the future, we can also extend QACE
to work with systems like JEDAI (Shah et al. 2022) as inter-
faces to make AI systems compliant with Level II assistive
AI (Srivastava 2021). Finally, we also plan to do a more rig-
orous analysis of the complexities of the queries (Verma and
Srivastava 2021) used in this paper.
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Mao, J.; Lozano-Pérez, T.; Tenenbaum, J. B.; and Kaelbing,
L. P. 2022. PDSketch: Integrated Domain Programming,
Learning, and Planning. In Proc. NeurIPS.
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A Additional Details
A.1 Example of Policy Simulation Query
As mentioned in the main paper, these queries ask the
SDMA A to execute a given policy multiple times. More
precisely, a QPS query is a tuple ⟨sI , π,G, α, η⟩ where sI ∈
S is a state, π is a partial policy that maps each reachable
state to a capability, G is a logical predicate formula that ex-
presses a stopping condition, α is an execution cutoff bound,
and η is an attempt limit. Note that the query (including the
policy) is entirely created by our solution approach with-
out any interaction with the SDMA. QPS queries ask A to
execute π, η times. In each iteration, execution continues
until either the stopping goal condition G or the execution
bound α is reached. E.g., “Given that the robot, soda-can,
plate1, bowl3 are at table4, what will happen if the
robot follows the following policy: if there is an item on the
table and arm is empty, pick up the item; if an item is in
the hand and location is not dishwasher, move to the dish-
washer?”. Fig. 6(right) shows an example of such a query.
Note that the initial state is shown adjacent to the top-most
node. Note that the initial state can be obtained by abstract-
ing a low level state using predicate evaluators. Fig. 6(left)
shows an example of such an abstraction where a low-level
state in terms of objects’ location is abstracted in terms of
user-interpretable predicates.

Such queries can be generated using non-deterministic
planners like PRP (Muise, McIlraith, and Beck 2012). How
we use PRP for our search process outlined in Sec. 4.2 in the
main paper is explained next.

A.2 Generating Queries using PRP
QACE automates the generation of queries using non-
deterministic planning problems. QACE always generates
queries to distinguish between models that differ only on one
predicate corresponding to just one location (a precondition
or effect in a capability). To generate the policy simulation
queries, QACE creates a FOND planning model and a prob-
lem. Let Mi and Mj be a pair of FOND models expressed
usingP and C corresponding to hypotheses hi and hj , where
i, j ∈ {T, F, I}. QACE renames the predicates and capabil-
ities in Mi and Mj as Pi and Pj , and Ci and Cj , respectively,
so that there are no intersections and a pair of states in the
two models can be progressed independently using pairs of
capabilities. This gives a planning model Mij expressed in
terms of Pij and Cij . Here, Pij = Pi∪Pj ∪{(goal)}, where
(goal) is a 0-ary predicate. It is used to identify when the
goal for the FOND planning problem is reached. For each
capability ⟨ci, cj⟩ ∈ ⟨Ci, Cj⟩ such that their names match,
pre(cij) of the combined capability cij is disjunction of pre-
conditions of ci and cj . For e(cij) ∈ eff(cij) ACE adds three
conditional effects: (i) pre(ci)∧pre(cj)⇒ e(ci)∧e(cj); (ii)
pre(ci)∧¬pre(cj)⇒ (goal); and (iii) ¬pre(ci)∧pre(cj)⇒
(goal). An example of this process is included in the next
section.

Starting from an initial state, the FOND problem uses one
of these states and maintains two different copies of all the
objects in the environment, one corresponding to each of the
models. Each model only manipulates the objects in its own

copy. QACE then solves a planning problem that has an ini-
tial state sIij = {p∗1

i , . . . , p∗z
i , p∗1

j , . . . , p∗z
j } and a goal state

Gij = (goal)∨ [∃p ∈ P∗
ij(pi∧¬pj)∨ (¬pi∧pj)]. Here, P∗

represents the grounded version of predicates P using ob-
jects O in the environment. The partial policy π generated
as a solution to this planning problem is a strong solution.
As shown by Cimatti, Roveri, and Traverso (1998), the so-
lution is a strong solution if the resulting plan is guaranteed
to reach the goal. The solution partial policy will lead the
two models in a state where at least one capability cannot be
applied, and hence the (goal) predicate becomes true. This
is possible because the models differ only in the way one
predicate is added at a location. We formalize this with the
following lemma. The proof is available in Sec. B.
Lemma 1. Given two models Mi and Mj such that both
are abstractions of the same FOND model, and are at the
same level of abstraction with only one predicate differing
in way it is added in one of the location, the intermediate
FOND planning problem created using QACE to generate
policy simulation queries has a strong solution.

A.3 Planning Problem to Generate Queries
This section provides an example of a sample planning prob-
lem using which we generate a query. We provide below an
example of how to modify the precondition and effect of a
capability when we are learning its preconditions. The pro-
cedure is similar for effects.

Consider we have a capability move (?frm ?to) in the Cafe
server robot, and we already know one of its preconditions;
(has-charge). We are now trying to find what will be the cor-
rect way to add the predicate (robot-at ?frm) in the precon-
dition of this move (?frm ?to) capability. Consider we have
two models Mi and Mj , where i = T and j = F . We will
represent their move capability as follows:

(:action move_i
:parameters (?frm - loc ?to - loc)
:precondition (and (has-charge_i)

(robot-at_i ?frm))
:effect (and )

)

(:action move_j
:parameters (?frm - loc ?to - loc)
:precondition (and (has-charge_j)

(not (robot-at_i ?frm)))
:effect (and )

)

To create a query, we will combine the move capabilitys
into a combined capability. For each capability ⟨ci, cj⟩ ∈
⟨Ci, Cj⟩ s.t. name(ci) = name(cj), pre(cij) = pre(ci) ∨
pre(cj); and for each e(cij) ∈ eff(cij) we add three con-
ditional effects: (i) pre(ci) ∧ pre(cj) ⇒ e(ci) ∧ e(cj); (ii)
pre(ci)∧¬pre(cj)⇒ (goal); and (iii) ¬pre(ci)∧pre(cj)⇒
(goal). Applying it here for the move capability, we get:

(:action move_ij
:parameters (?frm - loc ?to - loc)
:precondition (or

(and (has-charge_i)



Figure 6: An example of abstraction of low-level state into a high level state (left) and an example of a policy simulation query
(right). For the policy, the labels on the left of nodes correspond to state properties that must be true in those states, and the
labels on right of edges correspond to the capabilitys for each eadge. The policy simulation query corresponds to: “Given that
the robot and soda-can are at table1, what will happen if the robot follows the following policy: if there is an item on the
table and arm is empty, pick up the item; if an item is in the hand and location is not dishwasher, move to the dishwasher?”.

(robot-at_i ?frm))
(and (has-charge_j)

(not (robot-at_j ?frm)))
)
:effect (and

(when (and (has-charge_i)
(robot-at_i ?frm)
(has-charge_j)
(not (robot-at_j ?frm)))

(and )
)
(when (and (has-charge_i)

(robot-at_i ?frm)
(or (not (has-charge_j))

(robot-at_j ?frm)))
(and (goal))

)
(when (and (has-charge_j)

(not (robot-at_j ?frm))
(or (not (has-charge_i))

(not (robot-at_i ?frm))))
(and (goal))

)
)

)

Note that we have expanded pre(ci)∧¬pre(cj) using dis-
junction of negations of all predicates in pre(cj), etc.

A.4 Identifiable Effects
A set of effects of a capability are identifiable if there
exists a state such that when we execute a capabil-
ity in that state, we can identify which of its ef-
fects was executed. Let us consider a capability a,
such that pre(a) = {p1 ∧ p2 ∧ ¬p3}, and eff(a) =
{⟨p3 ∧ p4, 0.2⟩, ⟨p3 ∧ ¬p2, 0.5⟩, ⟨p3 ∧ ¬p4 ∧ ¬p2, 0.3⟩}.
The effects of this capability are identifiable because if we
execute this capability in state {p1, p2, p4}, we can identify
which of its effect is getting executed. This is because, on
executing a, we can identify each effect as follows: (i) if the

resulting state has p4 and p2, then it is the first effect, (ii)
if the resulting state has p4 but not p2, then it is the second
effect, and (iii) if the resulting has neither p2 nor p4, then it
is the third effect.

A.5 Instantiated Predicates
A literal corresponding to a predicate p ∈ P can appear in
pre(c) or any ei(c) ∈ eff(c) of a capability c ∈ C iff it can be
instantiated using a subset of parameters of c. E.g., consider
a capability move (?src ?dest) and a predicate (connected ?x
?y) in the example discussed earlier. Suppose a literal corre-
sponding to the predicate (connected ?x ?y) can appear in the
precondition and/or the effect of move (?src ?dest). The pos-
sible lifted instantiations of predicate connected compatible
with move-car are (connected ?src ?dest), (connected ?dest
?src), (connected ?src ?src), and (connected ?dest ?dest).
The number of parameters in a predicate p ∈ P that is rel-
evant to a capability c ∈ C, i.e., instantiated using a subset
of parameters of c, is bounded by the maximum arity of c.
So using the capability names and the predicates, we get a
set of instantiated predicates. In our implementation we use
these set of instantiated predicates as the set of predicates.

B Theoretical Results
We will next show that the plan in the distinguishing queries
always ends up with the capability that is part of the pal tuple
being concretized at that time. This will help us in limiting
our analysis to, at most, the last 2 capabilities in the plan.

Proposition 1. Let Mi,Mj be the models corresponding
to hypotheses hi, hj , where i, j ∈ {T, F, I}. These mod-
els generated by adding a predicate p in a location cor-
responding to a capability c to a model M . Suppose q =
⟨sI , π,G, α, η⟩ is a distinguishing query for two distinct
models Mi,Mj . The last capability in the partial policy π
to achieve G will be c.

Proof. We prove this by contradiction. Consider that the
last capability of the policy π in the distinguishing query
q is c′ ̸= c. Now the query q used to distinguish between



Mi and Mj is generated using the FOND planning prob-
lem ⟨Mij , sIij , Gij⟩, which has a solution if both the mod-
els have different precondition or at least one different effect
for the same capability. Since the last capability of the pol-
icy is c′, the two models either have different preconditions
for c′ or different effects. This is not possible as, according
to Alg. 1, Mi and Mj differ only in precondition or effect of
one capability c. Hence c′ = c.

We now use this proposition to prove Lemma 1 stated in
Appendix A.2.

Lemma 2. Given two models Mi and Mj such that both
are abstractions of the same FOND model, and are at the
same level of abstraction with only one predicate differing
in way it is added in one of the location, the intermediate
FOND planning problem created using QACE to generate
policy simulation queries has a strong solution.

Proof (Sketch). We prove this in two parts. In the first part,
we consider the case where we are refining the model in
terms of the precondition of some capability. Recall that
for each capability cij , we have 3 conditional effects: i)
pre(ci)∧pre(cj)⇒ e(ci)∧ e(cj); (ii) pre(ci)∧¬pre(cj)⇒
(goal); and (iii) ¬pre(ci) ∧ pre(cj) ⇒ (goal). Now, accord-
ing to proposition 1, capability cij has to be the last capa-
bility in the policy π. Since the model Mi and Mj differ
only in preconditions, condition (ii) or (iii) must be true for
cij . This implies that on executing cij , the (goal) predicate
will become true, and executing this policy π will end up in
reaching the goal.

In the second part, we consider the case where we are re-
fining the model in terms of the effects of some capability.
According to proposition 1, capability cij has to be the last
capability in the policy π. Since the model Mi and Mj dif-
fer only in effects, condition (i) must be true for cij . This
implies that on executing cij , one of the predicates will be-
come true according to one model, and false according to
another, and hence executing this policy π will end up in
reaching the goal condition Gij .

Next, we prove the soundness and completeness of the
learned model w.r.t. the agent model. Note that an important
part of the process is to get a state s, where a capability c can
be executed successfully. We can collect this information us-
ing some random traces, using a state where all capabilities
are applicable, or asking the agent for a state where certain
conditions are met (QSR). We use this information in the
proof.

Theorem 1. Let A be a black-box SDMA with a ground
truth transition model T ′ expressible in terms of predi-
cates P and a set of capabilities C. Let M∗ be the non-
deterministic model expressed in terms of predicates P∗

and capabilities C, and learned using the query-based au-
tonomous capability estimation algorithm (Alg. 1) just be-
fore line 10. Let CN be a set of capability names corre-
sponding to capabilities C. If P∗ ⊆ P , then the model M∗

is sound w.r.t. the SDMA transition model T ′. Additionally,
if P∗ = P , then the model M∗ is complete w.r.t. the SDMA
transition model T ′.

Proof. We first prove that given the predicates P , capability
names CH , model of the agent T ′, and the model M∗

learned by ALg. 1, M∗ is sound w.r.t. the model T ′. We
do this in two cases. The first one showing that the learned
preconditions of all the capabilitys in M∗ are sound, and
the second one showing the same thing for learned effects.
We use MT , MF , and MI to refer to models corresponding
to hypotheses hT , hF , and hI , respectively.

Case 1: Consider the location is precondition in a capabil-
ity c where we are trying to find the correct way to add a
predicate p ∈ P .
Case 1.1: Let the models we are comparing be MT and
MI (or MF ). The policy simulation query q to distinguish
between these models would involve executing c in a state
where p is false. Now, MT would fail to execute c (as it
has p as a positive precondition), and MI (or MF ) would
successfully execute it. If A can execute c in such a state,
we can filter out the model MT . We can also remove p from
a state where A is known to execute c, and see if it can
execute c. If not, we can filter out the model MI (or MF ).
Case 1.2: Let the models we are comparing be MF and
MI . The policy simulation query q to distinguish between
these models would involve executing c in a state where p
is true. MF would fail to execute c as it has p as a negative
precondition, whereas MI would successfully execute it. If
A can execute c in such a state, we can filter out the model
MT . We can also add p to a state where A is known to
execute c, and see if it can execute c. If not, we can filter out
the model MI .

Case 2: Consider the location is effect in a capability c where
we are trying to find the correct way to add a predicate p ∈
P∗.
Case 2.1: Let the models we are comparing be MT and MI

(or MF ). The policy simulation query q used to distinguish
between these models would involve executing c in a state
where p is false. After executing it, the resulting state will
have p true according to MT only. We ask the agent to sim-
ulate the policy N times, with p as the goal formula G. If p
appears in any of the simulation after executing c, then we
learn all the possible effects involving p. Not that the capa-
bility has identifiable effects, so if p appears in more than
one effect, the corresponding effect will eventually be dis-
covered when concretizing the predicate that uniquely iden-
tifies that effect.
Case 2.2: Let the models we are comparing be MF and MI .
The policy simulation query q used to distinguish between
these models would involve executing c in a state where p
is true. After executing it, the resulting state will have p true
according to MI only. We ask the agent to simulate the pol-
icy η times, with p as the goal formula G. If p appears in
any of the runs, then we learn all the possible effects involv-
ing p. Not that the capability has identifiable effects, so if
p appears in more than one effect, the corresponding effect
will eventually be discovered when concretizing the predi-
cate that uniquely identifies that effect.

Combining both cases, we infer that whenever we learn
a precondition or effect, it is added in the same form as in



the ground truth model T ′, hence the learned model M∗ is
sound w.r.t. T ′.

We now prove that given the predicates P , capability
names CH , model of the agent T ′, and the model M∗ learned
by ALg. 1, M∗ is complete w.r.t. the model T ′. We just
showed that the model that we learn is sound as whenever
we add a predicate in a precondition or effect, it is in cor-
rect mode. Now, since Alg. 1 loops over all possible combi-
nations of predicates and capabilities, for both precondition
and effect, we will learn all the preconditions and effects
correctly. Hence, the learned model will be complete w.r.t.
the agent model.

Theorem 2. Let A be a black-box SDMA with a ground
truth transition model T ′ expressible in terms of predicates
P and a set of capabilities C. Let M be the probabilistic
model expressed in terms of predicates P∗ and capabili-
ties C, and learned using the query-based autonomous ca-
pability estimation algorithm (Alg. 1). Let P = P∗ and M
be generated using a sound and complete non-deterministic
model M∗ in line 11 of Alg. 1, and let all effects of each
capability c ∈ C be identifiable. The model M is correct
w.r.t. the model T ′ in the limit as η tends to ∞, where η is
hyperparameter in query QPS used in Alg. 1.

Proof (Sketch). Thm. 1 showed that the model learned by
Alg. 1 is sound and complete, meaning all the preconditions
and effects are correctly learned. Consider that each sample
generated by asking an agent to follow a policy is i.i.d. Now,
if we consider only the samples in which a capability is ap-
plied in a state such that its effects are identifiable effects,
then we can use MLE to learn the correct probabilities given
infinite such samples. This is a direct consequence of the
result that given infinite i.i.d. samples, probabilities learned
by MLE converge to the true probabilities (Kiefer and Wol-
fowitz 1956).

C SDMA Setups – Additional Information
We used five SDMA setups for our experiments. As stated
in the main paper, we used a single, small training prob-
lem with few objects (≤ 7). To demonstrate generalizability,
our test set contained problems that had twice the number of
objects than the training problem. Increasing the number of
objects causes an exponential increase in the problem size in
terms of the state space. Short descriptions of each SDMA
setup is presented below:
Cafe Server Robot This SDMA setup uses 8 degrees of
freedom Fetch (Wise et al. 2016) robot in a cafe setting on
OpenRave simulator (Diankov and Kuffner 2008). As shown
in Fig. 6 (left), the low-level environment state consists of
continuous x, y, z, roll, pitch, and yaw values of all objects
in the environment. The predicate evaluators were provided
by ATM-MDP (Shah et al. 2020) of which we used only
a subset to learn a PPDDL model. Each robot capability is
refined into motion controls at run-time depending on the
configuration of the objects in the environment.
Warehouse Robot This SDM setup is implemented using
state-of-the-art stochastic planning system used in planning
literature. This is motivated from Exploding Blocksworld

setup introduced in the probabilistic track of International
Planning Competition (IPC) 2004 (Younes et al. 2005). It
features a robot that has four capabilities: stack, unstack,
pick, and place. stack capability stacks one object on top
of another, unstack capability removes an object from top
of another object, pick capability picks up an object from
a fixed location, where place capability places the object at
a fixed location. The setup is non-deterministic as execut-
ing some of these capabilities can destroy the object as they
might be delicate. Hence even the ground truth does not have
100% success rate in this setup.
Driver Agent This SDM setup is implemented using state-
of-the-art stochastic planning system used in planning liter-
ature. This is motivated from Tireworld setup introduced in
the probabilistic track of IPC 2004 (Younes et al. 2005). It
consists of a robot moving around multiple locations. The
move action between locations can cause it to get a flat-tire
with some probability. Not all locations have the option to
change tire, but if available, a change-tire action will fix the
flat-tire with a 100% probability.
First Responder Robot This SDM setup is inspired from
First Responders in uncertainty track of IPC 2008 (Bryce
and Buffet 2008). The setup features two kinds of emergen-
cies: fire and medical, involving hurt victims. Victims can
be treated at the site of an emergency or the hospital. This
was originally a FOND setup, and we added probabilities
to all the capabilities with non-deterministic effects to make
it probabilistic. The recovery status depending on the treat-
ment location, is different with different probabilities.
Elevator Control Agent This SDM setup is motivated
from Elevators in the probabilistic track of IPC 2006 (Bonet
and Givan 2005). It consists of an agent managing multiple
elevators on multiple floors in a single building. The capa-
bilities of moving from one elevator to another on the same
floor are probabilistic. The size of this setup is much larger
than the previous three. Also, the capabilities have arities of
up to 5, making this setup complex from an assessment point
of view.

D Extended Empirical Evaluation
In addition to the experiments described in the main paper,
we also performed some additional experiments. The results
for the same are illustrated in Fig. 8 and Fig. 7.

Results w.r.t. Environment Steps Fig. 7 show a compar-
ison of the approximate variational distance between QACE
and the baselines as a factor of the total steps taken in the
environment. From the results, it is clear that QACE is able
to outperform GLIB while taking far fewer steps in the en-
vironment. GLIB-L operates by babbling lifted goals and
we found that the goal babbling step of GLIB-L took an
inordinate amount of time leading to very few steps in the
environment before the timeout of 4 hours. GLIB-G bab-
bles grounded goals and thus can perform many steps but is
not sample efficient in learning as the results show. We ana-
lyzed the cause and found that if GLIB-G learns an incorrect
model, it is often quite difficult to get out of local minima
since it keeps generating and following the same plan.



Figure 7: Results showing the trends in the approximate Variational Distance w.r.t. the total number of steps in the environment
(lower values better) for the three methods: QACE (ours), GLIB-G, and GLIB-L. Lines which do not extend until the end
indicate that the time limit (4 hours) was exceeded. The results were calculated using 30 runs per method per domain. Solid
lines are averages across runs, and shaded portions show the standard deviation. T ′ is the ground truth model.

Figure 8: Results showing the comparison of QACE w.r.t. the ground truth model T ′. The plots show a trend in the variational
distance (see Eq. 1) as a factor of the learning time for QACE (lower values better). × shows that the learning process ended at
that time instance for QACE. The results were calculated using 30 runs per method per domain. Solid lines are averages across
runs, and shaded portions show the standard deviation.

Evaluation w.r.t. Ground Truth Models T ′ Fig. 8
demonstrate that QACE is able to converge to a learned
model that is near-perfect compared to the ground truth
model T ′. QACE is able to learn such a near-perfect model
in a fraction of the time compared to the baselines (see Fig. 5
of the main paper). QACE can learn the non-deterministic
effects and preconditions in a finite number of representative
environment interactions and given enough samples MLE
estimates are guaranteed to converge. This is in stark con-
trast to GLIB whose learned NDRs cannot be easily com-
pared to the ground truth.


