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Abstract

One of the difficulties of using AI planners in industrial ap-
plications pertains to the complexity of writing planning do-
main models. These models are typically constructed by do-
main planning experts and can become increasingly difficult
to codify for large applications. In this paper, we describe
our ongoing research on a novel approach to automatically
learn planning domains from previously executed traces us-
ing Behavior Trees as an intermediate human-readable struc-
ture. By involving human planning experts in the learning
phase, our approach can benefit from their validation. This
paper outlines the initial steps we have taken in this research,
and presents the challenges we face in the future.

Introduction
In the current industrial practice within the domain of au-
tonomous systems, plans are typically manually designed by
“planning experts” who have extensive knowledge of the ap-
plication domain. Even when automated planners (AI plan-
ners) are employed, they still rely on manually specified do-
main knowledge about the system and application context to
derive plans. Such AI planners typically work by taking in
information about the environment, encoded in the so called
planning domain, in the form of action models with pre-
conditions and effects (Ghallab, Nau, and Traverso 2016).
Generating domains by hand is time-consuming or even in-
feasible for large applications (Jiménez et al. 2012). As a
result, one of the reasons why AI planning techniques are
not widely adopted in real applications is the burden of de-
signing accurate and complete domain descriptions. To ad-
dress this issue, our ongoing research aims to automatically
learn planning domains by extracting and formalizing expert
knowledge from historical executed traces.

We propose a 2-step learning approach, shown in Fig-
ure 1, that utilizes an intermediate structure to involve the
human planning expert in the learning phase, as we want to
integrate the manual planning experts’ knowledge and their
experience. However, engaging human planning experts re-
quires a structure that is understandable even to those with-
out an AI planning background. Domain description lan-
guages, such as PDDL and its extensions (Ghallab et al.
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Figure 1: The proposed approach generates planning mod-
els from a set of execution traces using Behavior Trees as an
intermediate representation in order to engage human plan-
ning experts and account for their experiential knowledge.

1998; Kovacs 2011) are difficult to understand for man-
ual planning experts who are not used to logical specifica-
tions. Indeed, planning domains are able to represent a wide
range of problems from different domains such as robotics,
logistics, manufacturing and more. Nevertheless, the flexi-
bility of these domains often leads to an increase in com-
plexity and may pose challenges in terms of readability and
comprehension, particularly for individuals who lack ex-
perience with the syntax and conventions of the planning
domain languages. Therefore, we propose to use Behavior
Trees (BTs) (Biggar, Zamani, and Shames 2021) as an in-
termediate structure to make the learning process transpar-
ent and intuitive. BTs provide a hierarchical structure that
breaks down complex behaviors into smaller, simpler sub-
tasks that are intuitive to understand and easy to modify.
In essence, the advantages of using BTs align with those of
HTN planning, an extension of classical planning that incor-
porates a hierarchical structure into domain representations
(Ghallab, Nau, and Traverso 2016). Therefore, although the
purposes of HTN planners and BTs differ, the adoption of
BTs promises to be beneficial.

In the next section, we review some previous approaches
for learning planning domains from execution traces. We
then outline our approach and the main challenges that arise



in each step. Finally, we present our current progress in re-
alizing these steps, discuss the open points, and conclude.

Related Work
Learning planning domains has been a focus area in the
knowledge engineering literature. Methods such as LOCM2
(Cresswell and Gregory 2011), NLOCM (Gregory and Lind-
say 2016) and AMAN (Zhuo and Kambhampati 2013) gen-
erate action models based on plan traces. The LOCM family
of algorithms inputs entirely deterministic plan traces and
operates under the assumption that each object can be rep-
resented by parameterized finite state machines. In contrast,
the AMAN algorithm takes in noisy plan traces and employs
a probabilistic graphical model-based approach. However,
the aforementioned methodologies lack an interpretable in-
termediary structure that can facilitate interaction with hu-
mans, and are restricted to certain specific types of repre-
sentations.

Konidaris, Kaelbling, and Lozano-Perez (2018) use rein-
forcement learning to learn a set of low-level action rep-
resented as a policy. In a second step, the learned actions
are used to automatically generate a symbolic representa-
tion, which serve as the basis for the domain representa-
tion. In this case, the traces are not historical yet generated
through exploration and trial-and-error within the environ-
ment. On the other hand, Ahmetoglu et al. (2022) exploit
deep learning to generate symbols and rules that can be used
for planning. This is an end-to-end learning approach that
maps traces directly to planning domain without giving any
guarantees about the resulting planning domain.

Arora et al. (2018) poses the problem of learning the user
domain knowledge. The authors claim that even the most
advanced state-of-the-art ML techniques may not eliminate
the need and benefits of human intervention, especially for
real industrial applications. There have been several studies
on AI planning with humans in the loop. One well known
framework is Human-in-the loop planning or HILP (Sen-
gupta et al. 2017) where the idea is to add an AI planning
layer to support the human expert in decision making and
planning. Another research field where humans are involved
in planning is mixed-initiative goal manipulation (Cox and
Zhang 2005). In this case, users can establish and “steer”
goals to provide better plan quality. Collaborative planning
techniques were also explored by Kim, Banks, and Shah
(2017), who proposed to involve humans before the plan-
ning phase by providing high-level strategies encoded as
soft preferences to guide the low-level search of the planner.
However, all these approaches aim at improving the gener-
ated plan rather than addressing our main objective of en-
hancing the learned domain.

Ilghami et al. (2005) explored learning algorithms that
aim to acquire HTN domain knowledge from plan traces.
This is based on the assumption that it is known in ad-
vance how to decompose tasks, but not under what con-
ditions each of the several methods to decompose a task
is applicable. An alternative approach proposed by Xu and
Muñoz Avila (2005) is a lazy learning algorithm that lever-
ages the structure of methods and an ontology of types to

learn preconditions. However, both methods lack the abil-
ity to learn the method structure and infer causal relation-
ships between multiple actions, limiting their applicability.
Zhuo et al. (2009) developed the HTNlearner algorithm,
which learns method preconditions and action models simul-
taneously, assuming annotated tasks with preconditions and
effects. To overcome the deterministic assumption, (Hogg,
Kuter, and Muñoz Avila 2009) investigated learning hierar-
chical task networks in non-deterministic planning domains,
where actions may have multiple outcomes, to overcome the
deterministic assumption. Despite the successes achieved by
these previous learning systems, it is important to note that
they exhibit a limitation that is relevant to our objectives, as
they presume perfect observability, which may pose a limi-
tation in real-world scenarios.

Proposed Approach
The proposed method, shown in Figure 1 above, aims to ex-
tract planning domains from execution traces of previously
manually written plans, using a two-phase approach. In the
first phase, the objective is to extract the human domain
knowledge encoded in the historical execution traces into an
intermediate representation. The second phase of the learn-
ing process involves the obtaining of a domain theory, which
delineates the collection of actions that can be enacted, the
conditions under which these actions may be executed, and
the effects of such actions.

The reason for introducing an intermediary representation
between these phases is two-fold. First, to simplify the learn-
ing problem by reducing the abstraction gap between execu-
tion traces and symbolic action representations. Second, to
enable human inspection and validation, thereby enhancing
transparency in the learning process. Accordingly, we sug-
gest utilizing BTs, which, as per Colledanchise and Ögren
(2018), are known to be comprehensible by humans.

We now present a succinct outline of BTs, as well as
the stages and challenges associated with the proposed ap-
proach, along with the related state-of-the-art methods.

Behavior Trees
BTs have recently gained popularity in the robotics com-
munity due to their effectiveness in modelling the decision-
making policy of an agent designed for reactivity, modu-
larity, while also promoting transparency. Its hierarchical
structure provides a clear and intuitive representation of the
agent’s decision-making process, thus facilitating compre-
hension and modification for individuals without program-
ming or AI background. BT execution starts from its root
node, generating signals called Ticks with a given frequency.
The internal nodes are control flow nodes, and leaf nodes are
execution nodes. During the execution, the possible states of
each node are Running, Success or Failure. In the classical
formulation, the standard control flow nodes are Sequence,
Fallback or Parallel. A Sequence node executes its children
in a depth-first order until one returns Failure, at which point
it stops and fails itself. In contrast, a Fallback node executes
its child nodes in a depth-first order until one returns Suc-
cess, upon which it stops and succeeds itself. Lastly, a Paral-
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Figure 2: Example of a Behavior Tree.

lel node propagates the tick simultaneously to all its chil-
dren and it succeeds if a set amount of them return Suc-
cess. The standard execution nodes are action and condi-
tion nodes. The former represent the physical actions and
typically stands for the execution of a command. The latter
check a proposition when receiving signals.

To better understand how BTs work in practice, consider
the example of the battery management of an autonomous
agent, depicted in Figure 2. If the agent is located at the
charging station, it engages in the battery charging behavior.
In case the agent is not situated at the charging station but the
battery level exceeds 10%, the condition node returns Suc-
cess, and the system remains idle until the following Tick.
Otherwise, if the battery level drops below 10%, the agent
moves towards the charging station to recharge its battery.
Note that this BT can be used as a subtree within a more
intricate BT that integrates multiple behaviors (modularity).

From executed traces to BT
We consider execution traces consisting of high-level
snapshots of the environment during the plan execu-
tion. Therefore, they are represented in the format of
(State0,Action0)...(Staten,Actionn), where n denotes the
total number of snapshots, Statei describes the environment
variables at the i-th snapshot, including the agent’s position,
carried weight and the battery status, while Actioni expli-
cates the corresponding action undertaken by the agent at
the i-th snapshot.

Learning BTs from previous executed plans is similar to
Learning from Demonstation (LfD), where traces are typi-
cally recorded during a demonstration, and robots acquire
new skills by learning to imitate an expert. One common ap-
proach to learning a BT from demonstration is to leverage
Decision Trees (DT) as intermediaries (French et al. 2019).
To this end, data mining algorithms, such as C5.0 (Kuhn and
Johnson 2013), and CART (Breiman et al. 1984) can be em-
ployed to infer the knowledge that is implicitly encoded in
the previous plans in the form of if-then rules. This simple
representation shows what conditions must be met for an ac-
tion to occur. Finally, the DT can be converted into a BT by
using the naive Decision Tree to Behavior Tree algorithm
proposed by French et al. (2019). Although the algorithm
can convert the DT’s if-then rules into a BT’s hierarchical
structure, it does not fully leverage the interpretable and ex-
pressive power of the BT architecture. Wathieu et al. (2022)
partially addressed this issue by removing some of the logi-
cal redundancies in the generated BT.

We have developed a novel framework for automatically
extracting and representing the implicit action knowledge
encoded in execution traces within a BT. This framework is
comprehensively detailed in (Gugliermo et al. 2023), where
we provide the detailed algorithm, link to the source code
and include examples to aid understanding of the method-
ology. In detail, the method is based on decision trees and
logic factorization techniques, resulting in an interpretable
BT that can be inspected by a human expert.

Interactive validation of BT
By involving a human planning expert, it is possible to en-
sure that the learned BT is correct (verification), satisfies the
requirements (validation), and is free of errors and bugs (de-
bugging). Tools are available for interactive validation of be-
havior trees such as, Behavior3 Editor 1, which is a simula-
tion editor that includes a simulation mode for interactive
validation, and PyTree 2 and Groot3, which are Python and
C++ libraries, respectively, that include tools for interactive
validation. These methods are primarily based on testing and
simulating BTs to assess them.

What is currently missing is a well-defined way to mea-
sure and evaluate a BT and its properties through specific,
quantifiable metrics. The use of such metrics would aid the
human expert in a more immediate and efficient evaluation.

From BT to planning domains
Once we have a validated BT, we need to extract an abstract
planning domain from it. In the field of AI planning, causal-
ity holds a fundamental role in defining the planning do-
main, as it enables the definition of dependencies between
different actions and their effects.

BTs do not inherently possess a causal structure, but it
is possible to incorporate causal relationships between the
different behaviors represented in the tree. Therefore, to ex-
tract a planning domain from a BT, it is necessary either to
embed causal relationships into the BT’s design or to en-
rich the BT with a causal structure. One possible approach
to enhance the causal structure of a BT is by using causal
inference techniques (Nogueira et al. 2022) to automatically
extract causal relationships between actions and variables.
This can be achieved by analyzing the statistical dependen-
cies between actions and changes in state variables, thus in-
ferring the underlying causal mechanisms that give rise to
these dependencies. Once the causal relationships have been
identified, they can be leveraged to ensure that the plan is
consistent with the causal structure of the domain, resulting
in more effective and robust planning.

Current Results and Next Steps
Our research efforts so far have been focused on the au-
tomatic extraction of BTs from execution traces, while we
have only recently begun exploring methods to identify and
extract causal dependencies between actions and variables
in the domain.

1https://www.behaviortrees.com/#/dash/home
2https://py-trees.readthedocs.io/en/devel/
3https://www.behaviortree.dev/groot/



Table 1: Results of correctness experiments for BT-Factor
and RE:BT-Espresso. The table shows the percentage of
simulations in which each system achieved correct behav-
ior. BT-Factor achieved 100% correct behavior in all 200
simulations, while RE:BT-Espresso achieved correct behav-
ior in 62.5% of simulations when selecting the BT based on
the amount of material delivered, and in 72% of simulations
when the learned tree was not pruned.

Method % correct behavior
BT-Factor 100%
RE:BT-Espresso 62.5%
RE:BT-Espresso (no pruning) 72.0%

Table 2: Results of efficiency experiments for BT-Factor and
RE:BT-Espresso. The table shows the mean and variance
values for all simulations, as well as for the subset of sim-
ulations where RE:BT-Espresso learned correct behaviors
(in parentheses). Higher mean values indicate better perfor-
mance, while lower variance values indicate more stability.

Mean Variance
BT-Factor 38.505 (37.928) 22.642 (24.151)
RE:BT-Espresso 32.433 (36.704) 108.348 (24.084)

BT extraction
To evaluate our approach (Gugliermo et al. 2023), we con-
ducted experiments in a simulated environment that closely
mirrors realistic industrial logistics applications. The envi-
ronment features an autonomous agent equipped with a bat-
tery, two loading areas, a depot, and a charging station. Em-
pirical evidence demonstrates that our method captures the
logical elements implicitly encoded in the historical data and
generates correct behavior in the simulated scenario, where
correctness denotes the agent’s ability to execute the pol-
icy during the entire duration of the simulation. Further-
more, we examine the generalization ability of our frame-
work by introducing noise into executed traces to disrupt de-
terminism. The framework generalizes and discards outliers
when the signal-to-noise ratio (SNR) is higher than 5, allow-
ing for generalization across possible task executions. Fi-
nally, we conducted a comparison between our method and a
recent state-of-the-art algorithm, RE:BT-Espresso (Wathieu
et al. 2022). It is worth noting that the latter is incapable
of identifying the appropriate pruning level for the extracted
BT, resulting in the extraction of multiple BTs and requir-
ing the user to select the desired one. Our method outper-
forms RE:BT-Espresso across various key aspects. Firstly,
in terms of domain-dependent measures, such as correctness
(Table 1) and efficiency (Table 2), which is quantified by the
amount of material delivered. Additionally, our method im-
proves BT synthesis and enhances its readability, resulting
in a reduction in the number of nodes.

Overall, the key innovations of the developed method are
(i) the use of C5.0 as an algorithm for learning the Decision
Tree and (ii) the introduction of a logical factorization step

based on a state of the art method developed for designing
logic circuit (Wang 1989).

Causal inference
To write a planning domain, it is essential to infer causal
relationships between actions and state variables, which are
encoded in the form of preconditions and effects. In order to
deduce the preconditions, the DT obtained with the previous
method can be used, as it expresses the conditions neces-
sary for an action to be performed. In contrast, inferring the
effects of an action on a state is a more complex task.

We are currently investigating an approach that makes
use of observable historical data, as illustrated in Figure 3.
The underlying idea is that some state variables change even
without performing any action, such as the agent’s battery
level. Therefore, we initially analyze the changes of the state
variables when no action, denoted by Σ, is performed. This
study is then repeated for each action a ∈ A. The effects
of an action a incorporate the effects of the null action Σ,
which do not depend on the action a itself. This approach is
inspired by the Difference-in-Differences (DID) technique
(Hausman 1978). Note that this is applicable when the sta-
tistical assumption of parallel trends holds, which requires
that the trend of the state variables would have been parallel
in the absence of action.

𝑆 𝑡+1

Σ

Α

𝑆𝑡+1𝑆𝑡

𝑆𝑡

Figure 3: Schematic representation of the proposed approach
for inferring action effects, drawing inspiration from the
Difference-in-Differences technique.

Conclusions
By automating the generation of planning domains and for-
malizing expert knowledge, our approach can facilitate the
transfer of knowledge among multiple individuals respon-
sible for planning in industrial contexts. The initial steps
presented here suggest that BTs are a suitable intermediate
structure to automate this generation. We envision that BTs
will also help to bridge the gap between human knowledge
and machine representation, making the planning process
more efficient and transparent for real-world applications.
Finally, we hope that our learning approach will help indus-
trial automated planning and scheduling systems to scale up,
and produce high-quality plans across diverse domains such
as mining, construction, and material transport.
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