Scheduling Problems in PDDL

Derek Long, Jan Dolejsi and Michal Stolba
SLB, UK

Introduction

Planning and Scheduling have been seen as variants of
closely related problems for a long time and, indeed, this
conference series has acknowledged the link in its title from
its earliest foundation. Nevertheless, there are important dif-
ferences: the canonical propositional planning problem lies
in a higher complexity class than scheduling and this is
chiefly due to the fundamental issue that, in planning, the
number of actions required to solve a problem is not spec-
ified in the problem itself. Instead, the problem is specified
as a condition to be achieved and that condition might be
achieved by different plans, possibly achieving the goal in
different final states. In scheduling, in contrast, the canoni-
cal problem involves executing a specified set of actions (or,
equivalently, completing a collection of tasks). Despite these
differences, there are significant overlaps: in both cases, key
choices to be resolved are the timing of actions and the al-
location of resources to the execution of tasks or actions,
with the constraint that certain resources will not be free
to execute multiple tasks concurrently. There are often or-
dering constraints between actions, although these are fre-
quently determined in planning problems by the relation-
ship between the preconditions of actions and their achiev-
ers, while in scheduling problems these constraints are more
often specified as explicit ordering constraints on pairs of
tasks.

Scheduling via Planning

Given the close relationship between the problems, one
might expect that scheduling problems should be straightfor-
ward to model for a planner and that a planner would then be
a good solver for such problems. Unfortunately, this is not
usually the case. As a simple example, consider a problem,
introduced by Long and Fox (2001), in which a collection of
decorators must paint a collection of walls, with each wall
requiring a sequence of paints to be applied in order, and
decorators moving between walls in order to paint them.
This problem is a version of a multi-processor scheduling
problem, in which the decorators are processors and the
painting tasks are the jobs, with the ordering of paints be-
ing the equivalent of an ordering on jobs. The time for a
decorator to move between walls is equivalent to a set up
time to swap a processor from one series of jobs to another.
FF (Hoffmann and Nebel|[2001) and LPG-td (Gerevini et al.

2004) can both solve large instances of this. We explored be-
haviour on instances with tens of walls, 5-10 decorators and
a few (up to 4) jobs at each wall. All the planners could gen-
erate plans in very short times (eg a few seconds for a plan
of 140 steps with FF). However, the plans are all terrible ex-
amples of schedules: in every case, the planners allocate the
bulk of the work to a single decorator, while the other deco-
rators remain idle for the majority of the plan. POPF (Coles
et al|2010) achieves a far better parallelisation of the work,
but is slower. This is a symptom of the near symmetry be-
tween resource choices (near symmetry because the deco-
rators do not all start at the same locations), which leads
to a wide branching factor as the planner searches alterna-
tive choices of resource assignment in its attempt to keep
the makespan short.

Modelling Issues

In addition to the poor performance of these planners (which
is shared by other planners, too), the encoding of the prob-
lems is not made straightforward in PDDL (Fox and Long
2003). Ordering constraints on jobs depend on the appro-
priate construction of pre- and post-condition dependencies,
with static conditions then being used to capture which or-
derings are applicable; the movement costs of resources
(decorators) between jobs has to be encoded with explicit
function assignments to every possible path in the initial
state; the jobs that must be carried out cannot be easily re-
ferred to by name, but, instead, rely on an explicit construc-
tion of an effect of those actions that abstracts the resource,
so that the goal requires the execution of the actions, with-
out specifying the resource that will perform them. This is
all cumbersome and not intuitive.

A Way Forward

Given that there are schedulers designed for the purpose, one
might accept (albeit with some disappointment) that plan-
ners are simply the wrong tool for the job and that the right
way to proceed is to deploy a scheduler. However, it has been
our experience that there are examples of problems in prac-
tical applications that lie at the boundaries between planning
and scheduling: a large part of the problem involves schedul-
ing a collection of specific tasks, but alongside that, there
are parts of the problem that involve selecting between al-
ternative ways to achieve the goal and choosing how those

actions should be interleaved with one another and, pos-
sibly, with the scheduling problem itself. An example of
this is problems in which the primary problem is to sched-
ule a large number of tasks on a collection of resources,
but those resources require occasional planned maintenance,
with several ways to achieve the maintenance and differ-
ent requirements for the maintenance of different resources.
In examples like this, schedulers are ill-equipped to tackle
the general case, while planners remain constrained by the
awkwardness of the model, the symmetry in the scheduling
problem and, often, the scale of the scheduling problem. For
example, it is not at all uncommon to face scheduling hun-
dreds of jobs over tens of resources; the common approach
of modern planners, to proceed by grounding, leads to the
construction of many thousands of grounded actions, with
high degrees of symmetry, and offering little guidance in the
heuristics they generate.

We have started to explore hybrid solutions that combine
the power of planning and scheduling in solving problems
with this character. In this paper, we discuss the work we
have carried out in improving the way that PDDL can sup-
port modelling the scheduling elements of these problems.
The solutions we are exploring reduce the burden on the
modeller and provide a more explict representation of the
scheduling problem for the solver, enabling a clearer sepa-
ration of the scheduling component from any planning com-
ponent, while also exposing any interactions between them.
Further important motivation for this is that, as we have
experienced the challenges in maintaining PDDL models
of domains as those domains extend and the applications
that depend on them evolve. A more explicit scaffolding
for scheduling problems avoids ad hoc models from being
developed in different applications and smooths the prob-
lems of maintenance and development of modelling skills:
aspects of the Knowledge Engineering challenges that are
associated with capturing and using planning and schedul-
ing domains.

Related Work

The relationship between planning and scheduling is, as we
note above, one that has been widely observed and explored.
There is a large body of work that examines the problems
that lie, in particular, at the boundaries, but also that focus
on scheduling as a solution to a range of planning-like prob-
lems. A review of some of the related material, but approach-
ing it from outside the planning research perspective, is work
by Tan and Khoshnevis (Tan and Khoshnevis|2000).

An early example of integration of the two can be seen in
HSTS (Muscettolal1993), the foundation of several planning
systems used at NASA AMES and developed in a system
used in the construction of plans for Mars planetary rovers,
Spirit and Opportunity. Cesta and his team of researchers
have investigated the ground in this integration for some
time, leading to examples such as workflow planning and
scheduling (R-Moreno et al.[|2007). Garrido et al (Garrido,
Onaindia, and Sapenal2008) have also invested research in
this integration challenge.

Space applications have proved a rich source for problems
in this area. While HSTS was originally designed to work

with Hubble, and later inspired the development of MAP-
GEN (Ai-Chang et al.[2004) for the Mars rovers, the James
Webb Space Telescope has also inspired a collection of work
exploring similar problems (Johnston and Lad|2018)). These
problems share a need to follow a significant collection of
procedural operations, but also to combine them with goal-
directed planned activity in which science data is collected
using activities organised through causal linkages.

Approaching the problem from a more scheduling fo-
cused end, Laborie (Laborie/[2003) has also considered the
question of hybrid planning-scheduling problems, leading
to work on scheduling with a wide range of interesting re-
source and capacity constraints and, significantly, the ILOG
Scheduling tool from IBM (Laborie et al.|2018)).

This work is generally focused on solving the integrated
problems and, where it considers modelling, does so with
languages unique to those tools. We are interested in making
the modelling of hybrid problems accessible within a more
broadly used language and providing tool support for both
modelling and, subsequently, solving these problems.

PDDL for Scheduling

It is well understood in the Knowledge Engineering commu-
nity that encoded ontologies can provide powerful and flex-
ible frameworks for capturing models of domains and prob-
lems. An ontology can supply the core structure for repre-
sentation of a domain, with the modeller then taking respon-
sibility for the elements that are specific and particular to a
given model, while relying on the ontological structure as
scaffolding for the model. This approach allows the model
to be expressed more concisely, since it need only focus on
particular details, while supporting a more easily maintain-
able representation, since the ontology can be maintained,
corrected and extended as an independent process, benefit-
ing all the users simultaneously. Thus, we adopt an approach
in which PDDL is extended syntactically with elements to
support the scheduling ontology.

We use the requirements field in PDDL to explicitly note
the use of the extension. We have found that planners are
often very permissive with requirements: they typically
ignore the field, but even if they do not, they do not reliably
check that the requirements are respected in the domain
model, or reliably reject models that demand more than
the planner can support. This is largely a consequence of
planners being primarily a research tool. In deployed use.
respecting the requirements has more significant value,
helping users to understand the limits of the planner and,
potentially, supporting tailored deployment of solutions
within the planner. We add the :job-scheduling
requirement that determines that a domain uses the (ex-
perimental) scheduling extension of PDDL. The use of
this requirement automatically causes the inclusion of
ontological elements of scheduling problems: the types and
predicates that are relevant. These types are available,
resource and location. The first of these is the type
of objects that can have windows of availability specified
for them (which include resources and locations). Locations
are the places at which jobs are performed, with resources
being required to move between locations in order to

perform the jobs. This same concept can also be seen as
set-up time, as the resources move into a state from which
the jobs become accessible. The automatically generated
predicates are (is_available ?a - available),
(located.-at ?r - resource ?1 - location)
and (busy ?r - resource). In addition, we generate
the function (travel_time ?2f 2t - location
?r — resource), used to capture the time it takes for a
given resource to move between the locations of different
jobs.

We extend the durative action concept to include a : job.
The use of this concept automatically implies the structure
of a durative action with a particular pattern for its dura-
tion. The construction of a job automatically generates struc-
ture for the implied durative action, some of which can be
modified by explicit declaration. This includes the duration,
which is set, by default, to take the value of an automati-
cally generated function xxx_job_duration, where xxx
is the name of the job structure, and with parameters taken
from the job, but, by default, excluding the resource param-
eter(s). Appropriate over—all conditions are generated to
ensure that the resource and location are available through-
out and that the resource is at the location throughout. Ef-
fects are created to record that the job has started, at the be-
ginning, and completed at the end: xxx_job_started and
xxx_job_done. Additional actions are automatically gen-
erated to model the movement of resources between jobs
(with appropriate default preconditions, effects and dura-
tion).

It is important to emphasise that the automatic genera-
tion of content, which reflects the ontology of the underly-
ing scheduling problem, is not rigid: the user is free to add
parameters to jobs, preconditions and effects, and to mod-
ify the durations or other elements of the jobs as they are
generated. Where necessary, these modifications propagate
into the automatically generated content. For example, in the
fragment of automatically generated PDDL shown in Fig-
ure [T} the user has chosen to add arguments to the job to
capture that the decorating job is defined by both a house
and floor — this is propagated into the duration constraint
automatically. Where a model explicitly captures particu-
lar constraints, automatically generated elements are either
extended appropriately, or disabled to allow the modeller’s

choices to dominate. . .
The default goal definition for the scheduling problem

makes use of standard PDDL syntax in the shape of a quanti-
fied condition, such as (forall (?h - house ?f -
floor) (paint_job_done ?h ?2f)). However, the
requirement that some jobs be ordered is more difficult to
capture in straightforward standard PDDL. This is because
the constraints are most intuitively captured as ordering on
jobs, but PDDL currently has no terms to refer to grounded
actions. So, for example, we might want to say “paint this
wall before that wall”, raising two problems: firstly, the con-
straint refers to actions that, at least from the perspective of
standard planning problems, might or might not appear in a
solution, and might appear multiple times and, secondly, the
reference to the actions implicit in this constraint leaves the
resource intentionally unspecified. To support the specifica-
tion of constraints of this form, we propose an extension of
the constraints offered in PDDL3 (Gerevini et al.|[2009). We

allow start of and end of as specifiers for the start
or end time points of an action instance, referring directly
to action instances using grounded parameters. However, to
allow the use of such terms without forcing grounding of re-
source choices, we use an anonymous variable, 2, to refer to
an (implicitly) existentially quantified value. An example of
the use of this is as follows:

(:constraints
(ordered
(end of (remove-old-paint houseA ?))
(start of (drill-antenna-hole houseA ?))
(end of (drill-antenna-hole houseA ?))
(start of (paint houseA ?))))

This constraint indicates that the relevant start or end
points of these actions will be ordered in the solution. The
constraint is, in the context of other assumptions underly-
ing a scheduling problem structure, more specific than if we
were to attempt to use it in a general planning problem. In
particular, the actions referred to in the constraint are jobs,
so the automatically generated PDDL ensures that the solu-
tion must contain an instance of each of these jobs exactly
once (with some resources used in the instances according
to the scheduled solution). Thus, the anonymous resource
variable indicated by the ? argument in the two end points
of the drilling action term must, in fact, take the same value,
since the instance of this action must be unique. If we were
to attempt to use a constraint of this form in a general plan-
ning context, it would be far less clear how to interpret it:
would it imply that these actions must appear in the solution
and be ordered, or that only if they do appear must they be
ordered this way? If multiple copies of the actions appeared
in a solution, would they all have to satisfy the constraint,
or only in each sequence, and how would we interpret the
binding of the end points of the drilling action in the context
of multiple instances? These ambiguities mean that this con-
straint syntax can only be reliably exploited in the context of
a scheduling problem, where the ambiguities are resolved.
The unbound variables in this structure can, of course, be
bound, which then enforces both an ordering and a choice
of parameter values as constraints on the schedule. As we
will discuss later, this mechanism also serves to convey con-
straints on scheduled parts of a solution into a planner when
resolving the planning part of a hybrid problem.

Modelling Support

As part of the VSCode PDDL support project being main-
tained and developed by the authors (Dolejsi et al.[[2019),
the extensions described in this paper have been prototyped
in the editor and are supported by a variety of quality-of-life
elements. In Figure[T|can be seen examples of the presenta-
tion of the information, mostly available decoration wedging
itself within the white-space and as pop-ups when hovering
over relevant parts of the encoding. This keeps the model
from being cluttered, but gives the modeller easy access to
the content. The content can be expanded explicitly in or-
der to modify or extend it to suit a specific context. Auto-
matically generated predicates and functions join the user-
declared components of the model and are accessed through
the same menus and auto-completion support in the editor.

The tool is functional and we have confirmed that it al-
lows us to construct and manipulate models of scheduling

this experimental synta

house - location

painter - resource
floor - object

constants
ground first - floor
Auto-generated predicates to
describethe location, resource

= and available types
jous ?h - house 1

experienced #p - painter) 1w

- house *f - floor ?p - painter)

1y (luxurious ?h) (experienced ?p)

at start (increase (cost) (paint_job_duration ?h 3F)))

Proposed requirement to trigger the decoration inthe
editorand PDDL code injection for / in the planner

ctions :typing :negative-preconditions :universal-preconditions :disjunctive-preconditions

Three buift-in types are injected

Predicatesauto-generated for
each (:job)

Auto-generated functions forthe (zjob) action
and the move action durations

If : duration is not specified, itis injected,

Boilerplateconditions and effects are auto-
generated for each job-action

Resource moving actionis injected to the
domain, if not defined.

Figure 1: Example of auto-generated PDDL scheduling structure. Highlighted content is automatically inserted as a decoration
by the editor and compiled-in by/for the solver, while the darker font content is written by the modeller.

and hybrid scheduling-planning problems with relative ease.
Of course, work remains to be done to ensure that the mod-
els continue to support the user as the complexity of hybrid
interactions increases. As an illustration of the easy drift
from scheduling problem into planning problem, the orig-
inal decorators problem is a useful example. The original
paintwall action is declared as follows (note that this
domain was not defined as a temporal variant in its original
form):

(raction paintwall

:parameters (?d - decorator ?x - wall ?f ?t - colour)
:precondition
(and (painted ?x ?f)
have ?t)

Ecanfcover ?t ?f)
(by_wall 2d ?x))
ceffect (and
(painted ?x ?t)
(not (painted ?x ?f))))

The can_cover predicate allows the sequence of paints
that must be applied to a wall to be structured according to
static relations defined in the initial state of the problem. The
goal for this problem requires that the walls each arrive at
a final colour, but these requirements imply that the walls
must be painted with a sequence of colours to arrive there,
so the schedule will include not only the final painting ac-
tions, but also the preparatory sequences of actions, all or-
dered by the can_cover relations between colours. As we
will briefly discuss below, it is simple enough to identify
the implied jobs for scheduling if the paint sequences are
unique (which will be the case if the can_cover relation
is a tree structured partial ordering). On the other hand, if
the ordering constraints allow for alternative paths in the or-
dering between colours, then the collection of implied jobs
depends on finding the shortest paths in that graph for each

wall to be painted in its sequence of jobs (this was, in fact,
the subject of discussion in the original work presenting this
domain (Long and Fox|2001)). It requires a very small mod-
ification to the domain model to make supply of the rele-
vant paint (encoded by (have ?p - colour)) become
a dynamic property of the domain (for example, allowing
decorators to have access to a supplier from which it can
be acquired) to make the decision about the precise colour
sequences to adopt become a trade off between the number
of paints required and the number of painting jobs that are
required, so that the problem switches from being an obvi-
ous scheduling problem into the grey area between planning
and scheduling. With a simple model in which paint has ei-
ther been acquired or not, the problem remains NP-hard (the
space is finite and no actions need to be repeated), but rel-
atively minor extensions such as making the painting con-
sume the paint and limiting the capacity for carrying paint
will already risk pushing the problem further into the plan-
ning space and certainly makes its solution inaccessible to a
straightforward scheduling approach.

The tool support is focused on extension of PDDL2.1 as
the basis for the experimental syntax, because scheduling
is inherently a temporal problem (not withstanding the dec-
orators example above). An example of the view provided
through the tool in support of scheduling model construc-
tion is shown in Figure

Some common elements of scheduling problems (includ-
ing practical problems we have encountered) include reser-
voir or pooled constraints: materials that are used in amounts
measured continuously rather than discretely and are drawn
from an available capacity limit. We have only considered

examples in which the materials are leased by a job and re-
turned on completion, but there are obviously use-cases in
which materials are consumed from a capacity constrained
supply over time. We have not yet considered extensions to
support such cases.

Quality of Schedules

Although the quality of plans is sometimes less significant
than simply finding a feasible plan with a reasonable length,
it is much more likely that there are many feasible sched-
ules and the challenge is to find a high quality solution.
PDDL offers some tools for capturing the quality of plans
and supporting comparison of plans based on these values,
but these tools do not instrument all of the properties of a
plan and some of the values that could be of interest are dif-
ficult to measure or access. For example, resource idle time
— the time spent by a resource waiting between jobs — is
not associated with any value that can be easily accessed
in PDDL plans. This is because, other than total-time,
which measures the makespan of a plan, no instruments are
available other than during the execution of actions. This has
the awkward property of requiring some sort of background
acivity to be running in order to measure gaps between other
actions, and even this requires machinery to invoke (clips
and envelope actions (Fox, Long, and Halsey|2004)) or con-
tinuous effects). We support secondary metrics through ex-
ternal use of these constructs, rather than wrapping them into
the models used for actual planning or scheduling, but our
current means to convey metric parameters to a scheduler is
programmatic: work remains to be completed on resolving a
simpler way to encode and convey this information.

As part of the support in our VSCode module, the end-
user interface can show the quality metric or parts of it, us-
ing line plots of material consumption and cumulative cost.
Where metrics are declared as additional or secondary met-
rics in the PDDL problem file (currently supported by the
VAL toolset), the solver can be used to also export the data
for the line plot and the plan/schedule (currently supported
by the PDDL extension for VSCode, leveraging VAL

Hybrid Planning and Scheduling

One of the motivations for our work on modelling schedul-
ing problems in a PDDL framework is that we have en-
countered real problems that lie on the boundaries between
scheduling and planning. We have been frustrated to see that
planners, despite solving problems that include scheduling
problems as a subset, are typically not very good at find-
ing useful schedules. However, schedulers are not equipped
with the necessary capacity to solve planning problems, so
the hybrid problems lie outside their scope. Although the
primary focus of this paper has been on presenting our pro-
posals and prototype for aiding modellers in the construction
of scheduling problems within planning problems, we here
offer a brief account of the work we have conducted in ex-
ploring the solution of such problems.

Thttps://github.com/jan-dolejsi/vscode-pddl#line-plots-for-
multiple-metric-expressions

We begin with a few observations: the grounding strategy
used by planners is challenged by scheduling problems at
scale — a few tens of resources and hundreds of jobs, each
paremeterised by, say, a job type and a location, already cre-
ates a setting that is difficult for planners, even if only be-
cause of the symmetries it creates. The choices a planner
is typically best equipped to make are the choices between
causal paths to a goal that lies multiple actions from the cur-
rent state; scheduling has a rather different character, since
the common challenge is not to thread together an intricate
web of causality, but to ensure efficient division of labour
between the appropriate resources, squeezing the necessary
actions into as compact a block of time as possible. Goals in
planning are often compact, requiring a conjunction of just a
few key conditions to be achieved, while goals in scheduling
are both sprawling (a large enumerated set of jobs must all
be completed) and structurally simple, but focused on what
must be done, rather than on why. At the boundary between
these problems lie many realistic use-cases in which many
actions are mandated by operating procedures, or prescribed
by the lack of choices about how to achieve key conditions,
while others provide logistic support that offers opportuni-
ties for clever planned efficiency gains and interleavings of
activity to achieve goals by carefully coordinated action.

It is useful to note that, if a scheduling problem is em-
bedded within a planning problem, then identifying it and
solving it as a stand-alone problem offers a relaxation of the
hybrid problem. In the same way that other relaxations have
been demonstrated to have high value in planning, this relax-
ation can offer valuable insights into the structure of the so-
lutions to the hybrid problem. A second way in which relax-
ations can play an important role is that, if we know which
actions within a domain form the jobs to be scheduled, and
we also know which parameters of those actions are the re-
sources, we can relax the problem to remove the resource
argument (and all the pre- and post-conditions that affect it),
yielding a problem whose solution tells us which jobs must
be scheduled and what ordering constraints apply. In fact,
the first relaxed plan generated by a planner using delete-
relaxations to guide search will usually contain all this in-
formation, making it easy to extract and already offering a
powerful way to reduce the number of actions that must be
grounded in the domain.

Once the jobs relevant to the scheduler have been identi-
fied (and the entanglement between these actions and any-
thing relevant to the planning problem has been relaxed)
a scheduler can be applied to generate a reasonable allo-
cation of jobs to resources and time slots. These decisions
can then be used to pass constraints to a planner, restricting
the choices of resources to those identified by the scheduler,
constraining the order of application of actions to that iden-
tified by the scheduler and including, once again, all the pre-
viously relaxed preconditions on the jobs that link the prob-
lem to the planning component. It is useful that the same
ordering constraint identified as the means to communicate
constraints to the scheduler can also be used to communicate
the scheduler decisions to the planner (the resource param-
eters now instantiated). This workflow is illustrated in the
sequence diagram in Figure

https://github.com/jan-dolejsi/vscode-pddl#line-plots-for-multiple-metric-expressions
https://github.com/jan-dolejsi/vscode-pddl#line-plots-for-multiple-metric-expressions

compaosite
solver

‘ planner ‘ ‘ scheduler ‘

Lser
I

E PDDL :jeob-scheduling E E
domain and problem | .

Extract scheduling sub-problem)

Generate jobs needed by :goal

stripg resource type from domain

« |

solve domain+problem without resource type

3
| Plan ‘ ‘
<

extract jobs with predcessor-successor constraints
T 1

b woooee |
find candidate resources for each job !

ground the original domain

>
< groundings for each action ‘ ‘

extract objects from action groundings

loo [until feasible plan is found]

solve scheduling sub-problem)
extract scheduling sub-problem from orig PDDL domain

allocate candidate resources and job start times

-
solves the scheduling sub-problem, which contains all jobs greedy allocation
but omits some other planning actions

local search

| schedule (job start times and resource allocations)
<

extract resource allocation |
| and order of jobs for each resource !
T. i |
| r
solve planning problem within constraints from shceduler)

solve original PDDL domain within constraints from the scheduler

-
€

inject resource allocations to PDOL domain using a synthetic predicate =.g.
(paint_job_p_allocated ?h - house ?1 - laver ?p - painter)

inject action order per resource using (:constraint (ordered ...j)

solve orig FDDL domain+problem
with pre-decided job-action groundings
respecting order of jobs for each resource

>
plan or no-plan-found or timeout ‘ ‘

__ plan

i i
| |
< T | |
| |

UsEr composite ‘ planner l ‘ scheduler l

salver

Figure 2: Sequence diagram showing the interactions between a planner and a scheduler, managed via a composite solver.

In the context of the planner, we refer to the ordering con-
straints generated by the scheduler as an external (partial)
plan. The external plan provides guidance to the planner by
informing it that the solution to the planning problem is ex-
pected to contain the given actions with the given grounding
in the given order. This information is used in the following
two ways.

First, the information that the provided actions are to be
grounded in this particular way, that is, the resources should
be assigned to the jobs at the locations, can be used to prune
the grounding process. The planner need not ground all the
combinations of jobs and resources but instead relies on
the information supplied by the scheduler and fills in only
the parameters that were not provided by the output of the
scheduler because they were not part of the scheduling prob-
lem (having been relaxed out of the problem).

Second, the external solution can be used to guide the
heuristic search. One possibility is to integrate it into the
relaxed plan heuristic (based on the same TRPG used by
POPF (Coles et al.[[2010)) as follows. The relaxed plan is
forced to contain the suffix of the external plan, where the
suffix is obtained from the original external plan by succes-
sively removing fist appearances of actions encountered dur-
ing the search (if present in the external plan). This ensures,
that the heuristic estimate includes all the remaining actions
from the external plan which we know will be present in the
final solution, even though they might not be required in the
relaxed plan computed in a standard way.

In general, the inclusion of an external solution provided
by the scheduler (or directly by the user) can cause the plan-
ner to fail to find a solution, even though one exists. This can
be caused by two main issues. Firstly, the restricted ground-
ing might exclude an action grounding that is needed to find
a solution. This can be mitigated by informing the grounder
about the actions explicitly required by the partial plan at
that point encoded in the (:constraints ..). Sec-
ondly, the external solution might contain an action which
is not reachable in the planning problem. Such a situation
is easily detected in the first relaxed plan computation. The
overarching issue in these cases is that the scheduling prob-
lem is too intertwined with the full planning problem and
cannot be solved completely independently — for example,
resource availability might depend on the actions which are
not part of the scheduling problem, resources might be con-
sumed, etc. This class of problems needs a closer integration
between the planner and the scheduler where, in the above
cases of planning failures, the given schedule is marked as a
nogood for the scheduler and the scheduler is re-run to find
a different solution.

Another completely orthogonal possibility to integrate a
scheduling solver into the planner is to use a post-processing
phase. Optimal temporal planning is often prohibitively
complex and even respecting metrics is often not easy.
Moreover the partial-ordering logic in the forward action-
chaining algorithm of the temporal planner sometimes is not
powerful enough to recognize that two actions should not be
ordered, because the nature of their interaction is not tangi-
ble in the outcome. By feeding the solution temporal plan
into a scheduling solver which understands PDDL, the so-

lution can be optimised within the constraints given by the
planner, lifting resources and rescheduling by reallocating
them, subject to the structural limitations imposed by the
causal links in the plan.

Integrating Planning into Scheduling

A planner benefits from integration with a scheduler, but
there are also opportunities vice versa. The relaxation-based
reachability analysis often used by planners can be used to
prune unreachable job-resource assignments, thus reducing
the search space of the scheduler. For example, if painters
must be trained before allowed to decorate a luxury house,
and some painters cannot meet the preconditions for train-
ing, then grounding will reveal which painters can be con-
sidered. The expressivity of PDDL combined with the fil-
tering by advanced grounding or relaxed reachability allows
the user to specify jobs more concisely without the need to
explicitly enumerate candidate resources for each job.

Scheduling solvers typically rely on a feasible initial so-
lution and resource allocation. In some use cases (where it
is fast enough), planners can be used to come up with the
initial solution without having to implement such an algo-
rithm in the scheduling solver. This can be done either on
the simpler scheduling problem, or, if the scale allows it, on
the original problem including all the planning and schedul-
ing constraints. As mentioned earlier, the FF (Hoffmann and
Nebel2001) and LPG-td (Gerevini et al.2004)) planners are
fast enough to generate valid, though sub-optimal, resource
assignments for the Decorators (2001) domain.

These ideas can play a role in the interplay between plan-
ning and scheduling in both directions. We have already im-
plemented prototypes of these couplings to explore further.

Example

We briefly illustrate the use of the tool to generate PDDL. A
simple example is shown, from the perspective of the mod-
eller, in Figure[3]

The associated problem file, including a user-imposed
constraint, which adds the goal to have coffee with the owner
of the blue house in between of the two paint actions is
shown below.

(define (problem paint-two-houses
(:domain job-scheduling-example)
(:requirements :timed-initial-literals)
(:objects
red blue - house
jay pro - painter
pub - location)

(:init
; red house (only available in a time window)
(at 3 (is_available red)
(at 13 (not (is_available red)))
(= (paint_job_duration red ground) 4)
(= (paint_job_duration red first) 4)
(= (clean-up_job_duration red) 1)
; blue house
is_available blue)
luxurious blue)
= (paint_job_duration blue ground) 4)
= (paint_job_duration blue first) 4)
= (clean-up_job_duration blue) 2)

; Jay (inexperienced) painter
(is_available jay)
(located_at jay pub)

Due ® o

t supporting this experinental syntax, so you will see validation errors

s +typing inegative-preconditions :universal-preconditions :disjunctive-preconditions

p - patnter)

(ot (had-coffee-uitn-oumer 1)) (over a1l (a0t (busy 7)) (over a1l (Located_at 7p 21)))
d-coffee-uith-cuner 1))

Figure 3: Full listing of a PDDL domain including the editor-rendered auto-generated PDDL syntax. The example can be found
in this repository: https://github.com/jan-dolejsi/vscode-pddl-samples/tree/master/JobScheduling

; pro painter

(is_available pro)

(experienced pro)

(located_at pro pub)

= (travel_time pro pub blue) 1)

travel_time pro pub red) 3)

travel_time jay pub blue) 1) I ove jay pub red

travel_time jay pub red) 3) Il move pro pub blue

paint blue ground pro
paint red first jay

(
(
(
(

(is_above first ground)

Il coffee blue pro
(= (cost) 0)) paint blue first pro
paint red ground jay
(:goal (and (forall I cican-up biue pro
(?h - house) I clean-up red jay
(clean-up_job_done ?h))))
house
(:constraints (and red move jay pub... paint @ ground jay
(ordered paint @ first jay
(end of (paint_job blue first ?)) blue [OH Cof.] Clean-u... |

start of (had-coffee-with-owner blue))

(paint @ ground pro paint @ first pro
(end of (had-coffee-with-owner blue))
(

location
. start of (paint_job_started blue ground ?)) pubt _
mo..
(:metric minimize (cost))) painter
Jay _ paint red ground @ -
Finally, a planner generates the solution in Figure paint e fist @
y. a planner g gure 4 o = S
paint blue ground ... paint blue first @
Conclusion floor
. . . L. . ground paint blue @ pro paint red @ jay
Modelling is a challenging activity. The construction and fist paint red @ jay
maintenance of domain models relies on the same discipline peintblie e
n ritin . h n moti X-
and support as w ting code We ave been mot vat'ed toe Figure 4: Resulting plan showing the two painters busy dec-
plore the construction and maintenance of scheduling prob-

orating two houses, while one of them has the prescribed

lems and hybrid planning-scheduling problems, using a fa- coffee break.

miliar modelling language, and providing consistent mod-
elling choices and scaffolding for the construction of these
problems. Much work remains to be completed, but we have
a prototype illustrating both the modelling process and one
strategy for solving such hybrid problems.

https://github.com/jan-dolejsi/vscode-pddl-samples/tree/master/JobScheduling

References

Ai-Chang, M.; Bresina, J.; Charest, L.; Chase, A.; Hsu, J.-J.;
Jonsson, A.; Kanefsky, B.; Morris, P.; Rajan, K.; Yglesias,
J.; Chafin, B.; Dias, W.; and Maldague, P. 2004. MAPGEN:
mixed-initiative planning and scheduling for the Mars Ex-
ploration Rover mission. [EEFE Intelligent Systems, 19(1):
8-12.

Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Proc. International
Conf. on Automated Planning and Scheduling.

Dolejsi, J.; Long, D.; Fox, M.; and Muise, C. 2019. From
a Classroom to an Industry From PDDL “Hello World” to
Debugging a Planning Problem. In System Demonstrations

at the Twenty-Ninth International Conference on Automated
Planning and Scheduling (ICAPS).

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelliigence Research, 20: 61-124.

Fox, M.; Long, D.; and Halsey, K. 2004. An Investi-
gation into the Expressive Power of PDDL2.1. In Pro-
ceedings of the 16th European Conference on Artificial In-
telligence, ECAI’04, 328-332. NLD: IOS Press. ISBN
9781586034528.

Garrido, A.; Onaindia, E.; and Sapena, O. 2008. Planning
and scheduling in an e-learning environment. A constraint-
programming-based approach. Engineering Applications of
Artificial Intelligence, 21(5): 733-743. Constraint Satisfac-
tion Techniques for Planning and Scheduling Problems.

Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P. 2004.
LPG-td: a Fully Automated Planner for PDDL 2.2 Domains.
In Proc. Int. Conf. on Al Planning and Scheduling (ICAPS).

Gerevini, A. E.; Haslum, P; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. Artificial Intelligence, 173(5):
619 — 668. Advances in Automated Plan Generation.

Hoffmann, J.; and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research, 14: 253-302.

Johnston, M.; and Lad, J. 2018. Integrated Planning and
Scheduling for NASA’s Deep Space Network—from Fore-
casting to Real-time. In 2018 SpaceOps Conference, 2728.

Laborie, P. 2003. Algorithms for propagating resource con-
straints in Al planning and scheduling: Existing approaches
and new results. Artificial Intelligence, 143(2): 151-188.
Laborie, P.; Rogerie, J.; Shaw, P.; and Volim, P. 2018. IBM
ILOG CP optimizer for scheduling. Constraints, 23: 210—
-250.

Long, D.; and Fox, M. 2001. Multi-Processor Scheduling
Problems in Planning. In Proc. Int. Conf. on Al
Muscettola, N. 1993. HSTS: Integrating planning and
scheduling. Technical report, CARNEGIE-MELLON
UNIV PITTSBURGH PA ROBOTICS INST.

R-Moreno, M. D.; Borrajo, D.; Cesta, A.; and Oddi, A. 2007.
Integrating planning and scheduling in workflow domains.
Expert Systems with Applications, 33(2): 389-406.

Tan, W.; and Khoshnevis, B. 2000. Integration of process
planning and scheduling -— a review. Journal of Intelligent
Manufacturing, 11: 51—63.

	Introduction
	Scheduling via Planning
	Modelling Issues
	A Way Forward

	Related Work
	PDDL for Scheduling
	Modelling Support
	Quality of Schedules

	Hybrid Planning and Scheduling
	Integrating Planning into Scheduling

	Example
	Conclusion

