
Learning to Act for Perceiving in Partially Unknown Environments*

Leonardo Lamanna1, Mohamadreza Faridghasemnia2, Alfonso Gerevini3, Alessandro Saetti3,
Alessandro Saffiotti2, Luciano Serafini1, Paolo Traverso1

1 Fondazione Bruno Kessler, Trento, Italy
2 Center for Applied Autonomous Sensor Systems, University of Örebro, Sweden

3 Department of Information Engineering, University of Brescia, Italy
{llamanna, serafini, traverso}@fbk.eu, {mohamadreza.farid, alessandro.saffiotti}@oru.se, {alfonso.gerevini,

alessandro.saetti}@unibs.it

Abstract

Autonomous agents embedded in a physical environment
need the ability to correctly perceive the state of the envi-
ronment from sensory data. In partially observable environ-
ments, certain properties can be perceived only in specific
situations and from certain viewpoints that can be reached by
the agent by planning and executing actions. For instance, to
understand whether a cup is full of coffee, an agent, equipped
with a camera, needs to turn on the light and look at the cup
from the top. When the proper situations to perceive the de-
sired properties are unknown, an agent needs to learn them
and plan to get in such situations. In this paper, we devise a
general method to solve this problem by evaluating the confi-
dence of a neural network online and by using symbolic plan-
ning. We experimentally evaluate the proposed approach on
several synthetic datasets, and show the feasibility of our ap-
proach in a real-world scenario that involves noisy percep-
tions and noisy actions on a real robot.

Introduction
In embodied AI agents, an amount of knowledge may
emerge from the interaction with the environment. In this
manner, the knowledge provided to the agent at the begin-
ning, produced by some off-line process, may be extended
and adjusted by interacting with the environment. Symbolic
planning is an effective technique for generating sequences
of actions (i.e. plans) to achieve goals. However, in order to
use symbolic planning in embodied AI, agents need to map
their high throughput low-level perceptions of the environ-
ment (e.g., images) into properties of symbolic states. More-
over, embodied agents should be able to dynamically and au-
tonomously evaluate and improve their perceptual abilities
by actively exploring their environment. This is also a well-
known challenge in the field of active perception (Bohg et al.
2017). In partially unknown environments, certain proper-
ties can be perceived only in specific situations and from cer-
tain viewpoints. For instance, to understand whether a cup is
full of coffee, an agent, equipped with a camera, needs to
turn on the light and look at the cup from the top; it is use-
less to observe the cup from the side. An open challenge is
whether an agent can automatically recognize the situations

*This paper has been accepted to be published in the proceed-
ings of IJCAI 2023.

from which a useful perception can be made, and how such
situations can be reached by acting in the real world.

In this paper, we devise a general method to solve this
problem. We model the agent’s perception with a set of
(deep) neural networks that map perceptions (e.g., an image
of a cup), into properties of symbolic states (e.g., the cup is
empty). We propose a method to identify, via clustering, the
situations from which the predictions of the neural networks
are correct with a confidence higher than a given threshold.
Each cluster is associated with an action that can be exe-
cuted in the identified situations and reaches a proposition
considered as the goal of a symbolic planning problem. In
this way, the agent can use a symbolic planner to synthe-
sise plans reaching situations where observations are more
informative.

We define a framework that allows us to formalize the
problem of learning the set of situations in which a percep-
tion model of an agent reaches a desired level of confidence.
In such a framework, we suppose that the environment be-
haves like a probabilistic transition system unknown by the
agent. The agent knowledge about the environment is repre-
sented in terms of a symbolic planning domain. The agent
has access to the current state of the environment by a so-
called perception function that maps observations of the en-
vironment into a set of (belief) states of the symbolic model.
Based on this formal framework, we develop an algorithm
that returns a set of belief states of the symbolic model of the
agent, where prediction of the perception is more reliable.
By a technique similar to that used in epistemic planning
(e.g., (Belle et al. 2022; Petrick and Bacchus 2002; Bonet
and Geffner 2011)) we transform the problem of planning
to reach a belief state into a classical planning problem. We
then use a classical planner to find a plan that leads the agent
to a useful situation.

We experimentally evaluate the proposed approach by
showing that observing from the useful situations found by
our method results in a higher accuracy w.r.t. making the
prediction directly from the perception of the current envi-
ronment state. In our experiments, we consider several syn-
thetic datasets, and a real-world scenario that involves noisy
perceptions and noisy actions on a real robot.

Related Work
A wide variety of approaches and applications have been
proposed for enhancing robotic agents with active learn-
ing techniques (Kulick et al. 2013; Cakmak and Thomaz
2012; Cakmak, Chao, and Thomaz 2010; Chao, Cakmak,
and Thomaz 2010; Ribes et al. 2015; Hayes and Scassellati
2014; Huang, Jin, and Zhou 2010; Ashari and Ghasemzadeh
2019; Taylor, Berrueta, and Murphey 2021). In these works,
the robotic agents improve their skills or learn new concepts
by collecting and labeling data in an online way. All these
methods label data either by means of human supervision
or by relying on the prediction of a pre-trained model. In
(Ugur and Piater 2015; Lamanna et al. 2023), perceptions
are generated by executing actions and labeled with the ef-
fect specified in a symbolic planning domain. None of these
methods consider the problem of estimating the quality of
the obtained perception model under different conditions to
discriminate when perception is trustable and when it is not,
which is the main objective of this paper.

Concerning the problem of learning planning domains
from continuous observations, the approach by Migimatsu
and Bohg (2022) learns to map images into the truth val-
ues of predicates of planning states. Differently from us,
their approach is offline and requires a sequence of images
labeled with actions, while our approach plans for gener-
ating this sequence online. We share the idea of learning
state representations through interaction with the work by
Pinto et al. (2016), where they learn visual representations
by manipulating objects on a table. They learn these repre-
sentations in an unsupervised way, through a CNN trained
on a dataset generated by interacting with objects. However,
the learned representations lack interpretation and they are
not suitable for applying symbolic planning. Other works
have addressed the problem of learning planning domains
from perceptions in the form of high-dimensional raw data
(such as images), see, e.g., (Asai and Fukunaga 2018; Asai
2019; Janner et al. 2018; Dengler et al. 2021; Konidaris,
Kaelbling, and Lozano-Pérez 2018; Liberman, Bonet, and
Geffner 2022). In all the above-mentioned works, the ab-
stract planning domain is obtained by offline pre-training,
and the mapping between perceptions to the abstract model
is fixed, while we learn and adapt this mapping online.

Our work shares some similarity with planning under
partial observability (e.g., (Bertoli et al. 2006; Bonet and
Geffner 2014)): some state variables might not be always
observable. However in planning under partial observability
the model describes which variables are/are not observable
in which state, while in our approach, this information is
learned online. Planning with perceptions is also considered
in epistemic planning (Belle et al. 2022; Petrick and Bac-
chus 2002). In epistemic planning, the domain state encodes
the current belief of the agent by means of epistemic liter-
als; e.g., Kp (resp. ¬Kp) for some propositional variable
p states that the agent knows (resp. does not know) that p
is true. Epistemic literals can appear in the action precon-
ditions and effects, which allow for a uniform treatment of
sensing actions and “physical” actions. Epistemic planning
does not consider the problems of perceiving from continu-
ous features, and of learning and exploiting perception func-

tion. However, we exploit in our methodology a common
practice in epistemic planning that transforms planning un-
der partial observability into epistemic planning under full
observability.

Finally, active perception is a strongly studied area in
robotics (Bajcsy, Aloimonos, and Tsotsos 2018). Most work
in this area deals with reaching the best view points for a
vision sensor (Grotz 2021; Zeng et al. 2020), although some
works consider more general observation conditions like
lightning or blurring, (Tarabanis, Allen, and Tsai 1995), as
we do here. The view planning problem can be summarized
by: sampling candidate viewpoints, evaluating the quality of
the information obtained from them, and choosing the best
one. While we share the motivation and the main procedure,
we map the low-level data obtained from viewpoints into
abstract states of a symbolic planning domain, evaluate the
quality of this mapping, and we use symbolic planning to
choose the best next viewpoint. More importantly, most ap-
proaches to view planning assume that the relation between
viewpoints and observability is given: in our work, this rela-
tion is learned.

Problem Formulation
We model the partially observable environment where the
agent operates as Env = (SEnv, AEnv, γEnv, OEnv, obs), where
(SEnv, AEnv, γEnv) is a nondeterministic automaton com-
posed by the set SEnv of environment states, the set AEnv of
agent “low-level” actions executable in the environment, and
the transition relation γEnv ⊆ SEnv×AEnv×SEnv; OEnv is the
set of all possible observations from the environment; and
obs : SEnv → OEnv is a deterministic observation function.

Example 1. Consider an agent in a room that wants to see
the picture on the wall in front of it, but its view is occluded
by a circular object. The agent has the possibility to change
its viewpoint so that the object only partially occlude the
picture. Furthermore, the light in the room can be turned
on or off by the agent. The set OEnv of observations of the
agent is a set of images of size w × h; some examples of
observations are shown in Figure 1.

(a) (b) (c) (d) (e)

Figure 1: Examples of observations of the environment
states where a handwritten digit three is shown on the wall.
In (a) the light is off, while in (b)–(e) it is on; in (b) the oc-
cluding object is in the center, in (c) is on the edge, and in
(d) and (e) is in a corner.

The agent Ag is modeled by Ag =
(MAg, BAg, exAg, fAg), where MAg = (SAg, AAg, γAg) is
a finite automaton, SAg is a set of agent states, AAg are
agent “high-level” actions, and γAg is a transition relation
contained in SAg × AAg × SAg. The agent state is specified
in terms of a set of state variables x = (x1, . . . , xn). The

3(4,7)0

3(4,7)1

3(5,7)0

3(5,7)1

4(4,7)0

4(4,7)1

4(5,7)0

4(5,7)1

ligh
t←

1

digit← 4

occl← (5, 7)

ligh
t←

0 lig
h
t
←

1

digit← 4

occl← (4, 7)

ligh
t←

0lig
h
t
←

1

digit← 3

occl← (5, 7)

ligh
t←

0 lig
h
t
←

1

digit← 3

occl← (4, 7)

ligh
t←

0

Figure 2: A portion of the transition system of the agent.

automaton MAg constitutes the internal abstract repre-
sentation of the environment adopted by the agent. We
distinguish between SAg and SEnv because the internal agent
state may abstract away parts of the environment state that
are irrelevant for the agent. For instance, the agent state in
Example 1 does not consider the room temperature.

Example 2 (Agent’s transition system). The set of states
SAg of the agent can be described by three states variables:
digit that takes values in {0, . . . , 9}, occl that takes values
in {(i, j) | 0 ≤ i ≤ w, and 0 ≤ j ≤ h}, and light that takes
boolean values. For instance, the state 3(4,7)0 is a state in
SAg that represents the situation where the digit 3 is on the
wall, the occluding object is centered in (4,7), and the light
is off. The set of high-level actions in AAg allows the agent
to switch the light on and off, to change the picture on the
wall with another digit, and to move the occluding object in
different positions. More precisely, for every state variable
x ∈ {digit, occl, light}, the action effect x ← v, where v is
a value in the domain of x, sets the value of x to v. We sup-
pose that all the actions with the exception of the switching
the light on/off, can be performed only if the light is on. A
portion of the transition system of the agent, which consid-
ers only digits 3 and 4 and the occluding object in (4,7) or
(5,7), is shown in Figure 2.

In addition to the internal representation of the environment,
the agent is equipped with a subset of states BAg ⊆ SAg that
represent the belief state of the environment. Furthermore,
the agent can carry out its high-level actions in AAg by exe-
cuting the corresponding low-level actions in AEnv. This ca-
pacity is represented by the function exAg, which associates
to each pair (s, a) ∈ SAg × AAg a program exAg(s, a) of
actions in AEnv executable in Env. Since the environment
is nondeterministic, the state of the environment resulting
from the execution of exAg(s, a) is also nondeterministic.
Finally, the agent is associated with a perception function
fAg : OEnv → Pr(SAg) that returns a probability distribu-
tion fAg(s | o) on a state s in SAg given an observation o in
OEnv.

Example 3 (Agent perception function). Continuing with
our example, we can represent the perception function of the
agent with three separate perception functions, one for each

state variable, i.e., fAg = (fdigit, foccl, flight), defining

fAg(s | o) = (fdigit(sdigit | o), foccl(soccl | o), flight(slight | o))

where sx for every x ∈ {digit, occl, light} denotes the value
of x in the state s.

The agent state variables are grouped into control vari-
ables and observable variables. The control variables are
such that their values can be known in every state, while
the values of the observable variables can be known only
in some states. For example, variable light is a control vari-
able because its value can be always known; while variable
digit is observable because when the light is off its value
is unknown. Therefore, in general, not all environment ob-
servations can provide to the agent sufficient information to
discriminate, by means of fAg, the values of the observable
variables. Indeed, as for our example, if the environment is
observed when the light is off, the agent cannot discriminate
the value of the observable state variable digit by means of
fdigit. Therefore, to rely on the prediction of the perception
function fAg, an agent should know (believe) that the envi-
ronment is in a state where such a prediction is sufficiently
confident. This leads us to the definition of confidence of a
perception function in a belief state BAg ⊆ SAg.

Definition 1 (Confidence in a state). The confidence of the
agent perception function fAg in a state s ∈ SAg, denoted by
conf(fAg, s), is defined as

1

|γ−1
Ag (s)|

∑
(s′,a)∈γ−1

Ag (s)

Eo∼exAg(s′,a)fAg(s | o) (1)

where γ−1
Ag (s) = {(s′, a) | (s′, a, s) ∈ γAg}.

Definition 2 (Confidence in a belief state). The confidence
of the agent perception function fAg in a belief state BAg ⊆
SAg is the average of the confidence of fAg in each state s ∈
BAg.

The intuitive reading of (1) is that, for every way to reach
s, i.e., for every (s′, a, s) ∈ γAg, Eo∼exAg(s′,a)fAg(s | o) is
the expectation of the agent believing to be in s from the
observation o obtained after executing a in s′. The higher its
value the higher the agreement between the abstract model,
the perception function and the concrete execution of the
high-level action a. This expectation is averaged on all the
possible ways of reaching s.

The agent perception function can be modeled as fAg =
(fx1

, . . . , fxn
). We denote by x−i = v−i the assignments

to all the state variables but xi. The confidence of fxi
con-

ditioned to x−i = v−i is defined as the confidence of fAg in
Sx−i=v−i = {s ∈ SAg | sxj = vj ∀j ̸= i}.
Definition 3 (Viewpoint). A viewpoint with confidence at
least t ∈ [0, 1] for a state variable x is a belief state BAg ⊆
SAg such that conf(fx, BAg) ≥ t.

Example 4. Suppose that fdigit, flight and foccl are neu-
ral networks trained with labelled observations like those
shown in Figure 1. For instance, the network flight is trained
with a set of observations similar to the first shown in Fig-
ure 1 and labeled with 0, and a set of observations similar

to the other four (possibly with different digits and different
positions of the occluding object) and labeled with 1. Simi-
larly, the network foccl is trained with observations like (a)
and (b) labeled with (w2 ,

h
2) (the occluding object is in the

center, though in (a) it is not visible), with observations sim-
ilar to (c) with label (w2 , h), and with observations similar
to (d) and (e) with label equal to (w, h) and (w − 4, 4), re-
spectively. One can reasonably expect that the confidence
of flight is high for every belief state B since the visual
difference of the observations, independently from the digit
and the occluding object, is evident. Differently, the confi-
dence of foccl will be high only in the belief states where
the light is on (i.e, the state variable light has value 1).
Finally, fdigit will be highly confident when the light is on
and the occluding object is in a corner, less confident when
the object is on the edge, and not confident when it is in
the middle. Globally the confidence of fAg will be the best
when the light is on, and the occluding object is on a corner,
i.e., in the belief set Bcorner = {s ∈ SAg | slight = 1 and
soccl ∈ {(0, 0), (w, 0), (0, h), (w, h)}}.

Knowing the belief states where the perception function
is sufficiently confident is a crucial aspect for the agent to
correctly perceive the current state of the environment. In-
deed, if fAg has a high confidence on BAg, then the agent can
rely on fAg to derive its current state from the environment
observation, e.g., by selecting s∗ = argmaxs(fAg(s | o)),
where o is the current observation of the environment state,
and obtaining the least ambiguous (total) belief state equal to
{s∗}. A more cautious selection would be to select the first k
most probable states obtaining the belief state {s∗1, . . . , s∗k},
where s∗i denotes the i-th best prediction of f(s | o). When,
instead, fAg is not confident in BAg, then making a measure
in BAg does not provide reliable information about the en-
vironment. In this situation, the agent might find a plan π
that leads to a new belief state γ(π,BAg) where fAg is confi-
dent. However, notice that π should not modify the observ-
able state variable that the agent wants to perceive in BAg,
but only change the state control variables that allow for a
better perception.

Example 5. Suppose that the agent is placed in the environ-
ment described in Example 1 (a), where the light is off and it
wants to know which digit is on the wall. Its initial belief set
is the entire SAg (it is completely ignorant, i.e., no beliefs).
The current perception is the black image shown in Figure 1.
Since flight is confident for any belief state, then the agent
can rely on the prediction of flight. Therefore, the perception
of flight will lead to a belief set Slight=0 = {s ∈ S | slight=0}.
Since in this belief state fdigit is not confident, the agent
needs to find a plan that leads to a belief state where flight is
more reliable. Such a belief state is Bcorner as defined at the
end of Example 4. To reach this belief state it can execute (in
sequence) two actions with effects light ← 1, and occl ← c
for some c = (0, 0), (0, h), (w, 0), (w, h). This plan will not
modify the value of the state variable digit. Therefore, after
executing the plan the agent will see an observation similar
to the two rightmost pictures of Figure 1, and by the percep-
tion function fdigit it can obtain that digit = 3 with a high
confidence.

The aim of our work is addressing the following task.

Problem. Given an agent Ag = (MAg, BAg, fAg, exAg)
and a state variable x, find a set of viewpoints B1, . . . , Bk

for x with confidence greater than t, and compute a plan
π that does not change the value of x and such that
γ(π,BAg) = Bi for some 1 ≤ i ≤ k.

Method
We describe our approach assuming that the perception
function is in the form fAg = (fx1 , . . . , fxn). For the sake of
presentation, we assume that x1, . . . , xn−1 are control vari-
ables, and therefore the perception function fxi

is perfect in
any belief state, i.e., it always returns the ground-truth value,
and only variable xn is observable. However, the method can
be applied for any partition of the state variables in control
and observable variables. The agent has to find the belief
states where xn can be observed with high confidence by
fxn . For instance, in Example 3 the agent is provided with
the perception function for all state variables; we assume
that the perception function of foccl, and flight are perfect,
while the agent has to find the belief states where the confi-
dence of fdigit is above a given threshold.

Estimating the Perception Confidence
In order to estimate the confidence of fxn

in an agent state
s ∈ SAg, the agent can approximate Equation (1). To this
purpose, the agent needs a set of observations Os ⊆ OEnv
labeled with the value of xn in s. The agent can construct
the set of observations Os by executing a plan that leads to
s and collecting observations from the reached environment
state. In Example 1, if the agent is in state 4(4, 7)1, it can
construct the observation set O3(4,7)1 by executing the action
with effect digit← 3 and adding the observation taken from
the resulting state to O3(4,7)1.

We focus on the problem of finding a set of belief states
B = {B1, . . . , Bk} where the state variable xn is observ-
able. For this purpose, we have to select a set B ⊆ 2SAg . One
possibility could be to consider all the belief states obtained
by assigning the control variables x−n to any possible value
v−n. In our running example, the agent considers the be-
lief states where the values of the control variables light and
occl are fixed to some values; an example of belief state is
Slight=1,occl=(0,0) = {0(0, 0)1, 1(0, 0)1, . . . , 9(0, 0)1}.

To estimate the confidence conf(fxn , Bi) in each belief
state Bi, the agent computes :

1

|Bi|
∑
s∈Bi

1

|Os|
∑
o∈Os

fxn(s | o).

In Figure 3, we report the perception function confidence
of the neural network predicting the state variable digit con-
sidered in our running example. The control state variables
are light, occl. For instance, the heatmap in Figure 3 shows
the confidence of the network evaluated on images collected
in states where light = 1 and the values of occl vary among
the coordinates of all image pixels. Specifically, each pixel
(i, j) of the heatmap reports the confidence of the network
averaged over all images where the occluding circle is cen-
tered in position (i, j). As expected, the confidence is lower

Figure 3: Heatmap of the confidence of the perception func-
tion fdigit in our running example.

when the occluding circle is centered in the middle area of
the image.

Find Viewpoints via Clustering
The straightforward methodology described before is not
feasible when the number of possible combinations of val-
ues of the control variables is large. In this case, the number
of states in SAg is huge, and hence it is not feasible to collect
a set of observations for each state s. Furthermore, the set of
belief states with the control variable fixed to some values
is exponentially large with respect to the number of control
variable values. To deal with the problem of collecting a set
of observations for each state, we collect observations from
a subset of states, which is a good representative sample for
the domain of the control variables. Afterward, we cluster
the collected observations into a set of belief states, one for
each cluster, and we select the clusters where the perception
function confidence is sufficiently high. To apply clustering,
we assume that the values of the control variables are numer-
ical (e.g., light on/off is encoded by light equal to 1/0), and
we denote the distance measure between a pair of values v,
v′ of the control variables as dist(v,v′). Such a procedure is
detailed in Algorithm 1.

In the first part of the algorithm (Lines 2–11), for every
possible value vn of the observable variable xn, the agent
collects the confidence y of observing vn from m states
where xn = vn. Each y is associated with the value v−n

of the control variables in the state where xn has been ob-
served. To this aim, the agent iteratively samples m assign-
ments v−n to the control variables x−n (Line 4); it computes
a plan for reaching the state x = (v−n, vn) from its current
belief state BAg (Line 5). Then, it executes the plan, observes
the reached environment state (Line 6), and, on Line 7, com-
putes the confidence y = fxn

(vn | o) of observing vn. Fi-
nally, on Line 9, the agent updates its belief state BAg.

In the second part of the algorithm (Lines 13–17), for ev-
ery element v−n appearing in F , the algorithm computes the
average confidence y∗ of the prediction done from the neigh-
bor states N(v−n), i.e., from states where dist(v−n,v

′
−n) ≤

r for a given distance threshold r ∈ R+.1
In the last part of the algorithm (Lines 18–25), the agent

computes a set of belief states B starting from F ∗. The ele-
ments of F ∗ are clustered in C1, . . . , Ck sets (in our exper-
iments we applied the K-mean algorithm). The agent builds

1Further details about the hyperparameter values used in the
experiments are reported in the supplementary material.

Algorithm 1: FIND BELIEF STATES

Require: Ag = (MAg, BAg, exAg, fAg)
Require: t ∈ [0, 1]: confidence threshold
Require: r ∈ R+: belief state radius
Require: m: number of sampled values for xn

1: F ← ∅
2: for vn ∈ Dom(xn) do
3: for i ∈ {1, . . . ,m} do
4: v−n ← uniformly sample values for x−n

5: π ←PLAN(MAg, BAg, Sx=(v−n,vn))
6: o← exAg(π)
7: y ← fxn(vn | o)
8: F ← APPEND(F, ⟨v−n, y⟩)
9: BAg ← γAg(π,BAg)

10: end for
11: end for
12: F ∗ ← ∅
13: for (v−n, y) ∈ F do
14: N(v−n)← {(v′

−n, y
′) ∈ F | dist(v′

−n,v−n) ≤ r}
15: y∗ ← 1

|N(v−n)|
∑

(v′
−n,y′)∈N(v−n) y

′

16: F ∗ ← APPEND(F ∗, ⟨v−n, y
∗⟩)

17: end for
18: C1, . . . Ck ← CLUSTERING(F ∗)
19: C ← {Ci | 1

|Ci|
∑

⟨v−n,y∗⟩∈Ci
y∗ > t}

20: B ← ∅
21: for Ci ∈ C do
22: ci ← 1

|Ci|
∑

⟨v−n,y∗⟩∈Ci
v−n

23: Bi ← {s ∈ SAg | dist(sx−n , ci) ≤ r}
24: B ← B ∪ {Bi}
25: end for
26: return B

the set C of clusters by selecting the clusters with an average
confidence higher than the given threshold t. For each cluster
in C, the agent computes the cluster centroid ci by averaging
the values v−n of the control variables (Line 22). Afterward,
the agent builds the belief state Bi associated with the clus-
ter Ci by selecting the states in SAg whose control variables
distance from ci is less than threshold r (Line 23). The set of
belief states B is finally extended with the computed belief
state Bi.

Planning to Reach a Belief State
For perceiving the observable variable xn, the agent needs to
construct and execute a plan π from its current belief state to
reach a state of a belief state in the set B returned by Algo-
rithm 1. To this aim, we adopt symbolic (PDDL) planning.
In particular, the agent’s automaton MAg is specified as a
(PDDL) planning domain. The specification of the planning
domain contains a set of operators for modifying the values
of the state variables x1, . . . , xn. For instance, in our run-
ning example, the agent can change the value of the control
variable light by executing the action with effect light← 1.

For variable xn, we extend the planning domain with a
predicate known xn, which indicates that the agent knows
the value vn of xn. For each learned belief state Bi ∈ B,
and values v−n ∈ s for all s ∈ Bi, we add to the planning
domain an action observe xn(v−n) with preconditions xi =
vi for all 1 ≤ i < n, and effect known xn. Finally, we define

Dataset #Train images #Test images #Object types #Images per type

Cifar10 50000 10000 10 6000
Cifar100 50000 10000 100 600
EuroSAT 21600 5400 10 [2000, 3000]
FER 28709 3589 7 [400, 7000]
MNIST 60000 10000 10 7000
OxfordPet 3731 3669 37 200

Table 1: Datasets of object images used for object classifi-
cation. For each dataset, we report the number of images in
the training and test set (2nd, 3rd columns), the number of
object types (4th column), and the number of images per ob-
ject type (5th column).

a planning problem as follows. In the initial state, xi = vi
with 1 ≤ i < n and vi ∈ s for all s ∈ BAg; the goal of the
planning problem is known xn.

Example 6. Suppose xn = digit,
BAg = Slight=0,occl=(w

2 ,h2)
, and B =

{Slight=1,occl=(0,0), Slight=1,occl=(w,h)}. Then, the planning
domain is extended with two actions observe digit(1, (0, 0))
and observe digit(1, (w, h)). Their preconditions
are respectively {light = 1, occl = (0, 0)}, and
{light = 1, occl = (w, h)}; their (positive) effect is
known digit(). In the initial state of the planning prob-
lem light = 0, occl = (w2 ,

h
2); the problem goal is

known digit().

Experimental Analysis
We investigate the effectiveness of our approach for deter-
mining the belief states where an agent can perceive observ-
able state variables. In our experiments, we consider vari-
ables representing object types and object properties. More-
over, we evaluate the agent’s capabilities of planning and
acting to reach a belief state form which it can perceive the
values of the observable variables. We experiment our ap-
proach on several datasets of images for object classifica-
tion, and perform a real-world demonstration using a robot
with noisy sensors and noisy actions. For evaluating our ap-
proach, we adopted standard machine learning metrics, i.e.,
accuracy, precision, and recall of the perception function
w.r.t. the ground truth variable values.

Learning to Perceive Object Types
For learning to perceive and classify objects, we considered
6 datasets with both synthetic and real-world RGB images
of objects that are labeled with their types. The considered
datasets are reported in Table 1. For each dataset of images,
we modified perceptual aspects of the images by changing
their brightness and blur, and by adding an occluding circle.
These perceptual aspects correspond to the control variables
of the agent state, and can be controlled through agent’s
actions. For example, an agent equipped with an on-board
camera can change the brightness of its camera image by
turning on/off a light; similarly, the blur can be changed by
calibrating the camera; and the occlusion of an object can be
changed by moving the agent to a different point of view. In
particular, all images have been modified by: (i) decreasing

Figure 4: Accuracy of the object type predictions for each
dataset.

the brightness by 90% with a 0.5 probability; (ii) blurring
the image by 50% with a 0.5 probability; and (iii) adding an
occluding circle centered in a position uniformly sampled
from the image size and with a diameter equal to 70% of the
image size. We refer to the original and modified datasets as
noisy and clean datasets, respectively.

As a perception function for classifying object types,
we adopted a neural network architecture composed by a
ResNet (He et al. 2016) followed by a linear layer with a
number of output perceptrons equal to the number of object
types, and the SoftMax activation function.2 For symbolic
(PDDL) planning, we used planner FastDownward (Helmert
2006).

We consider each image in the noisy training set as an ob-
servation. For each of these images, the agent computes the
values of the control variables x1, . . . , xn−1 corresponding
to the image brightness, blur, and occluding circle position.
Then, the agent evaluates its perception function fxn

(xn|o).
In our experiments, xn is the type of the object in the image.
Finally, the agent computes the set of belief states B where it
can observe the object types by clustering the collected ob-
servations as described in Algorithm 1. The agent does the
same for the noisy test set, but in addition it checks if its
current belief state is in B; if this is not the case, it plans to
reach a state in B; finally, the agent predicts the object type.

We compare our approach with the following baselines:

• Perception function trained on the Noisy training set and
evaluated on the Noisy test set (NN): the agent assumes
that all the state variables can be always observed, and
hence it does not plan to reach a state where the con-
fidence of its perception function is sufficiently high.
This baseline provides a lower bound of the performance
achievable with our approach.

• Perception function trained on the Clean training set and
evaluated on the Noisy test set (CN): as in NN, the agent
assumes all the state variables can be observed. However,
w.r.t. NN, the agent is provided with a perception func-
tion trained in fully observable environments.

• Perception function trained on the Noisy training set and
evaluated on the Clean test set (NC): the agent can reach

2Further details about the hyperparameters used for training the
neural network models are reported in the supplementary material.

Object type Property Precision Recall

cup filled 1 0.66
mug filled 1 0.94
laptop on 0.61 0.98
big bowl full 1 0.18
small bowl full 1 0.31
chair free 1 0.28
Average - 0.94 0.56

Table 2: Precision and recall of the viewpoints w.r.t. the ob-
servability of a number of properties of different objects.

states where the object type is perfectly observable (i.e.,
the image has its original brightness, there is no blur,
and no occluding circle). This version provides an upper
bound of the performance achievable with our approach.

• Perception function trained on the Clean training set and
evaluated on the Clean test set (CC): as in NC, the agent
can reach states where the object type is perfectly observ-
able. This version provides a measure of the complexity
of the classification task.

The average accuracy of the object classifier predictions
achieved by our approach (with a confidence threshold t =
0.9) w.r.t. the baselines is shown in Figure 4. Our approach
achieves good accuracy in all domains when compared to the
NC version, i.e., the agent computes and executes plans that
effectively lead to belief states where the perception func-
tion for the object types is more reliable. The overall perfor-
mance of our approach decreases in domain FER because
the classification task is more complex for this domain, as
CC provides the worst performance for FER. Our approach
improves the performance of the NN baseline significantly:
it is at least 10% better in all domains but FER. Such im-
provement is an empirical evidence of the importance of
planning and acting to reach states from which the agent can
better observe a state variable. Finally, the CN baseline pro-
vides the worst accuracy, which is significantly lower than
the NN accuracy. This is because the perception function for
CN has been trained in fully observable environments and
then tested in partially observable environments.

Real world experiments
To experimentally show the applicability of our approach in
a real-world environment, we performed an experiment with
a Softbank Robotic’s Pepper humanoid robot with noisy sen-
sors (e.g., RGB and depth camera) and actuators. Pepper is
placed in a living room where there is a table with some
objects on top of it (e.g., a mug, a laptop). The task is per-
ceiving an object property that is observable. For example,
the property filled for objects of type mug can be perceived
only when looking at the mug from the top. Firstly, Pepper
trains a neural network for recognizing the object property,
by collecting online a number of observations (set to 200 in
our experiments) according to the implementation proposed
by Lamanna et al. (2023). Pepper labels the observed im-
ages by means of human supervision. For instance, Pepper
asks a human to fill the mug, takes a number of pictures of
the resulting situation, and finally labels these images with

Figure 5: Accuracy of the predictions of the object properties
averaged over all properties and objects reported in Table 2.
The width of the colored areas measures the standard devia-
tion of the accuracy.

the action effect specified in a PDDL domain. The control
variables associated with each observation are the distance,
yaw angle, and pitch angle between the Pepper camera and
the object. The control variable values are computed by the
Pepper’s noisy depth image, and noisy odometry position.
Pepper evaluates the confidence of the neural network for the
collected observations, and clusters the observations accord-
ing to the associated values of the control variables and the
neural network confidence. For clustering, we adopted the
K-means algorithm with K = 8. The viewpoints where the
property is observable are obtained by selecting the clusters
with an average confidence higher than a threshold t = 0.8.

In Table 2, we evaluate the determined viewpoints by
computing their precision and recall w.r.t. the observability
of a number of properties of different objects. To do this,
we manually annotated the observations collected by Pep-
per as observable and not observable. Therefore, true pos-
itives consist of observations in the viewpoints determined
by our approach where the property can be observed; false
positives are observations in the determined viewpoints from
which the property cannot be observed. Similarly, true nega-
tives are observations in states that are not determined view-
points from which the property is labeled as non observable;
whereas false negatives are observations in states that are not
determined viewpoints, but from which the property is ob-
servable. The results in Table 2 provide empirical evidence
that our approach effectively finds the viewpoints where the
properties are observable. For all object types but laptop, the
found viewpoints contain observations where the property is
always observable (i.e., the precision equals 1). However, for
object types big/small bowl and chair, the recall is low, i.e.,
the agent does not find all the viewpoints where the proper-
ties are observable.

We also evaluate the capability of Pepper to plan and act
for reaching a viewpoint and observing the object proper-
ties. For this purpose, Pepper is placed in a random position,
and asked to predict the object properties. Firstly, Pepper ob-
serves the object and checks if its current state belongs to the
set of previously learned viewpoints. If this is not the case,
Pepper plans and acts to reach a viewpoint. Finally, Pepper
predicts the truth value of the property. The above proce-
dure is repeated 20 times for each object property. In this
experiment, we compare our approach with the NN base-
line. Essentially, such a baseline assumes that the property

can be always observed and hence does not plan to reach a
viewpoint before predicting the truth value of the property.
The accuracy of the predictions achieved by our approach
w.r.t. the NN baseline is shown in Figure 5. In particular, we
report the performance of property predictors trained for dif-
ferent epochs. The results show that planning and acting for
reaching the learned viewpoints enables Pepper to improve
its capability to correctly predict the truth value of the object
properties.

Conclusions
We proposed a method for enabling an agent in a partially
unknown environment to learn the situations where a state
variable is observable, and reach such situations by plan-
ning and acting. We formalized the problem of learning the
situations where the perception model of the agent is more
confident. Afterward, we developed an algorithm for find-
ing the agent states where the perception model is confident
enough, and plan to reach such states by means of symbolic
planning.

We experimentally evaluated the effectiveness of our ap-
proach for recognizing object types in a number of syn-
thetic datasets, and object properties in a real-world envi-
ronment involving noisy perceptions and noisy actions on a
real robot.

In this work, we assume that the agent can always change
the truth value of the observable variables, eventually asking
for the help of a human. In future work, we will investigate
how the agent can change such value without knowing it.

References
Asai, M. 2019. Unsupervised Grounding of Plannable First-
Order Logic Representation from Images. In ICAPS.
Asai, M.; and Fukunaga, A. 2018. Classical Planning in
Deep Latent Space: Bridging the Subsymbolic-Symbolic
Boundary. In AAAI.
Ashari, Z. E.; and Ghasemzadeh, H. 2019. Mindful active
learning. In Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence, 2265–2271.
Bajcsy, R.; Aloimonos, Y.; and Tsotsos, J. K. 2018. Revisit-
ing active perception. Autonomous Robots, 42(2): 177–196.
Belle, V.; Bolander, T.; Herzig, A.; and Nebel, B. 2022.
Epistemic planning: Perspectives on the special issue.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2006.
Strong planning under partial observability. Artif. Intell.,
170(4–5): 337–384.
Bohg, J.; Hausman, K.; Sankaran, B.; Brock, O.; Kragic, D.;
Schaal, S.; and Sukhatme, G. 2017. Interactive Perception:
Leveraging Action in Perception and Perception in Action.
IEEE Transactions on Robotics, 33: 1273–1291.
Bonet, B.; and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In Twenty-Second International Joint Conference on Artifi-
cial Intelligence.
Bonet, B.; and Geffner, H. 2014. Belief tracking for plan-
ning with sensing: Width, complexity and approximations.
Journal of Artificial Intelligence Research, 50: 923–970.

Cakmak, M.; Chao, C.; and Thomaz, A. L. 2010. Designing
interactions for robot active learners. IEEE Transactions on
Autonomous Mental Development, 2(2): 108–118.
Cakmak, M.; and Thomaz, A. L. 2012. Designing robot
learners that ask good questions. In 2012 7th ACM/IEEE In-
ternational Conference on Human-Robot Interaction (HRI),
17–24. IEEE.
Chao, C.; Cakmak, M.; and Thomaz, A. L. 2010. Transpar-
ent active learning for robots. In 2010 5th ACM/IEEE In-
ternational Conference on Human-Robot Interaction (HRI),
317–324. IEEE.
Dengler, N.; Zaenker, T.; Verdoja, F.; and Bennewitz, M.
2021. Online object-oriented semantic mapping and map
updating. In 2021 European Conference on Mobile Robots
(ECMR), 1–7. IEEE.
Grotz, M. 2021. Active Vision for Scene Understanding. KIT
Scientific Publishing.
Hayes, B.; and Scassellati, B. 2014. Discovering task con-
straints through observation and active learning. In 2014
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 4442–4449. IEEE.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Huang, S.-J.; Jin, R.; and Zhou, Z.-H. 2010. Active learning
by querying informative and representative examples. Ad-
vances in neural information processing systems, 23.
Janner, M.; Levine, S.; Freeman, W. T.; Tenenbaum, J. B.;
Finn, C.; and Wu, J. 2018. Reasoning about physical inter-
actions with object-oriented prediction and planning. arXiv
preprint arXiv:1812.10972.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Pérez, T. 2018.
From Skills to Symbols: Learning Symbolic Representa-
tions for Abstract High-Level Planning. J. Artif. Intell. Res.,
61: 215–289.
Kulick, J.; Lang, T.; Toussaint, M.; and Lopes, M. 2013.
Active Learning for Teaching a Robot Grounded Relational
Symbols. In International Joint Conference on Artificial In-
telligence.
Lamanna, L.; Serafini, L.; Faridghasemnia, M.; Saffiotti,
A.; Saetti, A.; Gerevini, A.; and Traverso, P. 2023. Plan-
ning for Learning Object Properties. arXiv preprint
arXiv:2301.06054.
Liberman, A. O.; Bonet, B.; and Geffner, H. 2022. Learning
First-Order Symbolic Planning Representations That Are
Grounded. CoRR, abs/2204.11902.
Migimatsu, T.; and Bohg, J. 2022. Grounding Predi-
cates through Actions. In 2022 International Conference
on Robotics and Automation (ICRA), 3498—-3504. IEEE
Press.
Petrick, R. P. A.; and Bacchus, F. 2002. A Knowledge-
Based Approach to Planning with Incomplete Information
and Sensing. In Ghallab, M.; Hertzberg, J.; and Traverso, P.,

eds., Proceedings of the Sixth International Conference on
Artificial Intelligence Planning Systems, April 23-27, 2002,
Toulouse, France, 212–222. AAAI.
Pinto, L.; Gandhi, D.; Han, Y.; Park, Y.-L.; and Gupta, A.
2016. The curious robot: Learning visual representations via
physical interactions. In European Conference on Computer
Vision, 3–18. Springer.
Ribes, A.; Cerquides, J.; Demiris, Y.; and de Mántaras, R. L.
2015. Active learning of object and body models with time
constraints on a humanoid robot. IEEE Transactions on
Cognitive and Developmental Systems, 8(1): 26–41.
Tarabanis, K. A.; Allen, P. K.; and Tsai, R. Y. 1995. A survey
of sensor planning in computer vision. IEEE transactions on
Robotics and Automation, 11(1): 86–104.
Taylor, A. T.; Berrueta, T. A.; and Murphey, T. D. 2021.
Active learning in robotics: A review of control principles.
Mechatronics, 77: 102576.
Ugur, E.; and Piater, J. 2015. Bottom-up learning of object
categories, action effects and logical rules: From continu-
ous manipulative exploration to symbolic planning. In 2015
IEEE International Conference on Robotics and Automation
(ICRA), 2627–2633. IEEE.
Zeng, R.; Wen, Y.; Zhao, W.; and Liu, Y.-J. 2020. View
planning in robot active vision: A survey of systems, algo-
rithms, and applications. Computational Visual Media, 6(3):
225–245.

