
Exploring the Limitations of using Large Language Models to Fix Planning Tasks

Alba Gragera1 and Alberto Pozanco

1Computer Science and Engineering Department, Universidad Carlos III de Madrid, Spain
agragera@pa.uc3m.es, alberto.pozanco@gmail.com

Abstract

Large language models (LLMs) have revolutionized natural
language processing (NLP), enabling human-like text gen-
eration, question answering, and translation. Despite claims
of emergent reasoning capabilities, it has been demonstrated
their lack of planning skills in tasks such as plan generation,
plan reuse or replanning. In this work, we present ongoing
efforts on exploring the limitations of LLMs in another task
requiring reasoning and planning competences: that of assist-
ing humans in the process of fixing planning tasks.

Introduction
In recent years, large language models (LLMs) have signif-
icantly advanced natural language processing (NLP) tasks,
such as text generation, question answering, and translation.
These models have been trained on vast amounts of text
data and have shown remarkable abilities to understand and
generate natural language. Despite their inherent limitations,
i.e., LLMs learn statistical patterns to predict the most prob-
able next word or sentence, some works claim LLMs might
exhibit emergent reasoning capabilities (Bubeck et al. 2023;
Kojima et al. 2023). However, recent evidence strongly sug-
gests that current LLMs are poor at tasks requiring planning
capabilities such as plan generation, plan reuse or replan-
ning (Valmeekam et al. 2022, 2023).

The planning community uses a standard language to
specify planning tasks: the Planning Domain Definition
Language (PDDL) (McDermott et al. 1998). This language
is domain-independent, so that the code of the planners does
not have to be changed to solve problems of different do-
mains. PDDL separates the task definition into two parts:
domain and problem. The domain describes the object types,
predicates and actions that can be used to solve a task, while
the problem defines the objects, initial state and goals of
the specific task to be solved. Most AI planners assume an
accurate task definition specification, focusing on sequenc-
ing a set of actions that can achieve the desired goals when
applied. However, formalizing planning tasks in PDDL re-
quires a broad knowledge of the domain, the current task,
and the formal language. This process can be complex and
prone to errors, which may result in incomplete or inaccu-
rate initial state descriptions and action definitions, which
can ultimately render unsolvable planning tasks.

Although LLMs have shown limited performance in rea-
soning (currently they cannot substitute planners to find a
valid plan to achieve the goals), their web-scale knowledge
and their utility as code assistants (Feng et al. 2020) suggest
that they could assist users during the formalization phase.

Motivated by the recent surge in popularity of LLMs, in
this work we present ongoing efforts on exploring the limi-
tations of using LLMs to model planning tasks. While pre-
vious works have focused on using LLMs to model PDDL
tasks from natural language descriptions (Liu et al. 2023),
we are interested in determining whether LLMs can assist
users to fix unsolvable planning tasks resulting from incor-
rect task specifications. In particular, we explore how good
LLMs are at repairing planning tasks when the prompt is
given in PDDL and when it is given in natural language. For
both cases, we consider first incomplete initial states from
which the goal cannot be reached, and then incomplete do-
mains which lack a necessary action effect to achieve the
goals. In all cases, LLMs are used as stand-alone, and we
directly assess the correctness of the solutions it generates.

Throughout the remainder of the paper, we demonstrate
that although LLMs can in principle facilitate iterative re-
finement of PDDL models through user interaction, their
limited reasoning abilities render them insufficient for iden-
tifying meaningful changes to ill-defined planning models
that result into solvable planning tasks.

Background
Automated Planning (AP) tasks define problems whose so-
lutions are sequences of actions, called plans, that achieve
the problem goals when applied to a specific initial state.
We use the first-order (lifted) planning formalism, where a
classical planning task is a pair Π = ⟨D, I⟩, where D is
the planning domain and I defines a problem instance. A
planning domain is a tuple D = ⟨H,P,A⟩; where H is a
type hierarchy; P is a set of predicates defined by the pred-
icate name and the types of its arguments; and A is a set
of action schemas. If p(t) ∈ P is an n-ary predicate, and
t = t1, . . . , tn are either typed constants or typed free vari-
ables, then p(t) is an atom. An atom is grounded if its argu-
ments do not contain free variables. Action schemas a ∈ A
are tuples a = ⟨name(a), par(a), pre(a), add(a), del(a)⟩,
defining the action name; the action parameters (a finite set
of free variables); the precondition (pre(a)), a set of literals

representing what must be true or false in a state to apply the
action; and add(a) and del(a), that represent the changes
produced in a state by the application of the action (added
and deleted atoms, respectively). A problem instance is a
tuple I = ⟨O, I,G⟩, where O is a set of typed constants
representing problem-specific objects; I is the set of ground
atoms in the initial state; and finally, G is the set of ground
atoms defining the goals.

Related Work

AP assumes well-defined planning tasks that are solvable.
However, producing complete model descriptions can be
challenging and time-consuming, and there may be scenar-
ios where neither completeness nor correctness of the plan-
ning task specification can be ensured (Kambhampati 2007;
McCluskey, Vaquero, and Vallati 2017). These issues can
result in an incomplete specification of the initial state or
actions, rendering the planning task unsolvable. Providing
users with comprehensive explanations that (i) outline the
reasons why the planning task does not have a solution; and
(ii) guide users in how to fix the initial state / domain to
turn the task solvable, is a important research challenge for
the planning community (Fox, Long, and Magazzeni 2017;
Chakraborti, Sreedharan, and Kambhampati 2020). Regard-
ing incomplete initial state specifications, (Sreedharan et al.
2019) propose to assist the user in understanding why a
given AP task is infeasible by identifying unreachable sub-
goals of the problem. Since it is challenging to extract sub-
goals from a unsolvable problem, the authors derive them
from abstract and solvable models of the given task by us-
ing planning landmarks (Hoffmann, Porteous, and Sebastia
2004). Given an unsolvable initial state, it is also possible
to provide several alternatives that can transform it into a
solvable one. This approach is addressed in (Göbelbecker
et al. 2010) where, based on counterfactuals theory (Gins-
berg 1985), the authors explain why a plan fails and what
can be done to prevent it, creating excuse states from which
the given task is solvable.

Fixing planning tasks in cases where the error lies in the
domain model is not trivial due to the number of poten-
tial changes to the set of actions (Lin and Bercher 2021).
Most works assume guidelines from users, often in the
form of a suggested valid plan that helps in modifying the
original set of actions (Simpson, Kitchin, and McCluskey
2007; Nguyen, Sreedharan, and Kambhampati 2017; Lin,
Grastien, and Bercher 2023). More recently, (Gragera et al.
2023) removed this assumption, being able to repair incom-
plete domain models without user inputs by compiling the
unsolvable task into a new extended task that includes oper-
ators to fix any domain action.

As we can see, fixing initial states or domains to turn plan-
ning tasks solvable is far from trivial, and is an active re-
search field within the planning community. Now we will
try to understand to what extent LLMs can help to alleviate
the human effort in fixing planning models.

Experimental Setting
We use CHATGPT at its March 14, 2023 version. We se-
lect four domains from the IPC, namely GRIPPER, TRANS-
PORT, BLOCKSWORLD and BARMAN, with 3, 3, 4 and 12
lifted actions, respectively. All domains contain descriptive
action and predicate names that should be easy to interpret
by LLMs. We structure the evaluation as follows.

PDDL Prompts. The prompt consists of an lifted domain
description, followed by an instance of a planning prob-
lem. For each domain, we generate 5 problems of increasing
difficulty (Seipp, Torralba, and Hoffmann 2022), and pro-
vide CHATGPT with each one, along with the correspond-
ing domain. The prompts are designed to ask CHATGPT
to solve two different tasks: fix incomplete initial states,
and fix incomplete domains. In the former, we randomly
delete one to three facts from the initial state, making sure
that deleting these facts results in an unsolvable planning
task, and ask CHATGPT to provide an alternative PDDL
initial state that will make the task solvable. For example,
we omit the handempty predicate from the initial state in
BLOCKSWORLD. In the latter task, we randomly delete one
action effect from one of the actions in the domain, making
sure that deleting the effect results in an unsolvable planning
task, and ask CHATGPT to provide an alternative PDDL do-
main that will make the task solvable. For example, we omit
the holding predicate from the effects of the pick-up action in
BLOCKSWORLD. When we delete predicates from the ini-
tial state, we preserve the correct domain. Likewise, when
we delete effects from the actions in the domain, we pre-
serve the original problem.

Natural Language Prompts. The prompt consists of a
natural language domain description, followed by a natural
language description of an instance of a planning problem.
For each domain, we select only one of the 5 tasks we previ-
ously defined in PDDL, formulate the domain and problem
in natural language, and ask CHATGPT to solve the same
two tasks as before: fix incomplete initial states and fix in-
complete domains.

We mainly aim to investigate how CHATGPT responds
to PDDL prompts, as we believe this is the most realistic
and useful setting for planning practitioners. On the input
side, modeling and debugging PDDL tasks is typically eas-
ier compared to their natural language counterparts due to
inherent ambiguity in the latter. More importantly, while
checking the validity and solvability of a PDDL task is
straightforward (requiring only a call to the planner), doing
the same with a task described in natural language is very
time consuming, if not impossible. However, one might con-
jecture that CHATGPT has not seen many examples of plan-
ning tasks described in PDDL, and natural language prompts
are presumed to be more amenable for CHATGPT, reason
why we also formulate the tasks in natural language, as done
by previous works (Valmeekam et al. 2022). In this way, we
aim to observe if CHATGPT can identify the flaw from the
narrative and provide a comprehensive description of the do-
main without omitting the crucial detail that renders the task
unsolvable. We provide quantitative metrics for the PDDL
prompts, while we will just report a qualitative analysis in

the case of natural language prompts. In the case of PDDL
outputs, we use the seq-opt-lmcut configuration of Fast-
Downward (Helmert 2006) to try to solve the PDDL tasks
returned by CHATGPT. We report two metrics: whether the
new tasks compile or not, meaning whether they are cor-
rectly parsed by the planner; and whether the new tasks have
a solution or not, meaning if the provided solution renders
the tasks solvable. All domains, problems, prompts and out-
puts are available at https://github.com/albagragera/LLMs-
planning-repair.

PDDL Prompts
In this section we explore the use of LLMs as modeling as-
sistants when the incomplete (unsolvable) task is inputted
in PDDL and the output is required to be a new (hopefully
solvable) PDDL task.

Incomplete Initial States
The template prompt is shown in Listing 1. We provide the
LLM with a lifted definition of a planning task, followed
by an explanation about the unsolvability of the task due
to missing information in the initial state. Then, we request
the LLM to propose a reformulation, also in PDDL, of the
initial state that would make the problem solvable. We un-
derstand that the most straightforward way to achieve this is
to directly include the goals in the initial state. To avoid this
type of solution, we introduce in the prompt a final state-
ment to encourage alternative (non-trivial) approaches. We
repeat this process 5 times (5 problems) per domain, using
the same domain and changing the problem as well as the
fact removed from it.

Listing 1: Incomplete initial state user prompt (PDDL).
Consider this domain description:

[PDDL DOMAIN DESCRIPTION]

And this problem associated to it:

[INCOMPLETE PDDL PROBLEM DESCRIPTION]

The planning task is unsolvable due to an incomplete

initial state description. Can you provide an

alternative initial state in PDDL from which the goals

are achievable? This state must not include the goals

directly.

The results over the 20 planning tasks are shown in Ta-
ble 1. In all cases the output was a complete PDDL prob-
lem or initial state, of which 84% compiled and just 50%
made the planning task solvable. CHATGPT manages to
fix the initial state in most BLOCKSWORLD and GRIP-
PER tasks. We conjecture this good performance can be ex-
plained by two factors. First, the problem sizes in these do-
mains were small, with initial states described by few pred-
icates. Second, CHATGPT has likely been trained on some
BLOCKSWORLD descriptions (as it is the archetype of plan-
ning problems), thus being able to retrieve initial state pat-
terns (such as the hand being empty). On the other hand,
CHATGPT struggled with TRANSPORT and BARMAN. In

Domain Compile Solvable
GRIPPER 4 4

TRANSPORT 4 1
BLOCKS 5 5
BARMAN 3 0

#Total 16 10

Table 1: Results show the number of alternative problems
returned by the LLM that compiled and made the task solv-
able. The scores are over a total of 20 tasks (5 tasks per do-
main).

BARMAN, which comprises the most complex tasks, CHAT-
GPT consistenlty created predicates that were not defined in
the PDDL domain such as mixed or handright, which pre-
vented the task to compile. An excerpt of one of these out-
puts is shown in Listing 2. In TRANSPORT domain, CHAT-
GPT was sometimes able to add the missing predicates to
the initial state. However, it also deleted information such
as the position of packages, thus keeping the planning task
unsolvable.

Listing 2: Excerpt of a new initial state in BARMAN as gen-
erated by CHATGPT.
....

; Additional facts to make the goal achievable

(contains cocktail1 ingredient1)

(contains cocktail1 ingredient2)

(used shaker1)

(handright right)

(handleft left)

(at shaker1 left)

(at shot1 right)

(at dispenser1 right)

(at dispenser2 left)

(dispensed dispenser1)

(dispensed dispenser2)

(mixed shaker1)

(shaker-level shaker1 l2)

)

Incomplete Domains
The template prompt is shown in Listing 3. Following a sim-
ilar process, we provide the LLM with a lifted definition of a
planning task, followed by an explanation about the unsolv-
ability of the task. In this case, we state that the domain is
missing some action effects essential to achieve the goal. We
requested the LLM to provide a PDDL domain description
for the same domain using STRIPS classical planning, but
rewritten to make the task solvable. We emphasize the word
same used in the prompt because in previous tests where we
requested alternative domains, CHATGPT generated solu-
tions for completely different domains such as one to buy
fruits, which is definitely not what we were looking for. We
repeat this process 5 times (5 problems) per domain, using
for each problem a different version of the domain, with dif-
ferent effects removed from it.

Listing 3: Incomplete domain user prompt (PDDL).
Consider this domain description:

[INCOMPLETE PDDL DOMAIN DESCRIPTION]

And this problem associated to it:

[PDDL PROBLEM DESCRIPTION]

The planning task is unsolvable because some domain

actions are missing effects. Can you provide the same

domain in PDDL using STRIPS classical planning, but

including new action effects that would make the task

solvable?

The results over the 20 planning tasks are shown in Ta-
ble 2. As expected, CHATGPT struggles in repairing do-
mains more than in repairing initial states, being able to only
turn solvable 3 out of the 20 tasks. We conjecture this bad
performance can be explained again by two factors. First,
repairing PDDL actions is a more challenging task (Lin and
Bercher 2021). Second, the number of tokens in the incom-
plete initial states was lower than the number of tokens in the
incomplete domains. CHATGPT only performs acceptably
in the GRIPPER domain, which is the smallest among the
domains. Common errors that we observed included omit-
ting the definition of types (resulting in compilation errors)
or incorrectly deleting other effects necessary for the task
to be solvable. We present some notable incorrect fixes pro-
posed by CHATGPT for the BARMAN domain in Listing 4,
where it suggests to introduce a new make-cocktail action
that is syntactically wrong. Effects use object types not de-
fined in the parameters, and include the negation of nested
predicates. The original predicate (contains ?c - container
?b - beverage) is also reformulated in a semantically incor-
rect way as (contains ?c - cocktail ?x - container).

Domain Compile Solvable
GRIPPER 3 2

TRANSPORT 1 1
BLOCKS 0 0
BARMAN 0 0

#Total 4 3

Table 2: Results of alternative domains returned by the LLM
that compiled and made the task solvable. The scores are
over a total of 20 tasks (5 tasks per domain).

Listing 4: CHATGPT output that generates a new Make-
cocktail action in BARMAN

(:action make-cocktail

:parameters (?c - cocktail ?x - container ?i1 ?i2 -

ingredient)

:precondition (and (contains ?c ?x) (holding ?i1 ?h)

(holding ?i2 ?h))

:effect (and (contains ?c ?x) (not (contains (make-

cocktail) ?x)) (not (holding ?i1 ?h)) (not (

holding ?i2 ?h))))

)

Natural Language Prompts
In this section we explore the use of LLMs as modeling
assitants when the incomplete (unsolvable) task is inputted
in natural language and the output is required to be a new
natural language description of the fixed task. First, we use
CHATGPT itself to generate a draft of the domain and prob-
lem in natural language from the PDDL description, that we
manually verify and refine. The prompts to do so are shown
in Listings 5 and 6. Listing 7 shows an excerpt of the result-
ing output generated by CHATGPT for the BLOCKSWORLD
domain.

Listing 5: Prompt to generate natural language description
of a domain from its PDDL definition.
Consider this domain in PDDL:

[PDDL DOMAIN DESCRIPTION]

Give me an informal description of the domain following

this template:

- Summary of the domain

- Available actions

- Restrictions over actions

Listing 6: Prompt to generate natural language description
of a problem from its PDDL definition.
And this problem instance in PDDL, associated to it:

[PDDL PROBLEM DESCRIPTION]

Give me an informal description of the problem following

this template:

- Objects

- Initial state

- Goals

Listing 7: BLOCKSWORLD domain description generated
by ChatGPT.
The "blocks" domain is a classic problem in Artificial

Intelligence where we have a set of blocks that can be

stacked and unstacked to form towers. The objective is

to create a particular configuration of blocks by moving

them around. The blocks can be picked up, put down,

stacked on top of each other, or unstacked from each

other.

Available actions:

The domain provides four actions: pick-up, put-down,

stack, and unstack. The "pick-up" action allows the

agent to pick up a block that is on the table and has

no other block on top of it...

Initially, we attempted to introduce the PDDL domain
description with missing information, such as the effect of
holding in the pick-up action, to directly obtain an incom-
plete natural language description. However, we found that
in most cases the domain explanation went beyond simply
describing the information represented in the given PDDL
domain, and it provided a complete and accurate description
instead. This is not surprising given that LLMs only provide

the most likely text completion for a given prompt based on
the training data, so even if the prompt is not entirely accu-
rate, the functionality of actions such as pick-up can still be
perfectly described by interpreting its meaning. Therefore,
we had to manually supervise and remove some information
from the generated output. After that, we reintroduce the de-
scription into CHATGPT and ask for modifications to the
domain in order to make it complete and accurate.

For this analysis, we select just one of the five problems
used in the previous evaluation to see if natural descriptions
are more suitable for the LLM to fix the planning tasks.
Since the generated output is also presented in natural lan-
guage, it cannot be solved or compiled, so the results will be
discussed qualitatively.

Incomplete Initial States
We introduce the generated informal planning task descrip-
tion generated by CHATGPT in a similar prompt that the
one used in the PDDL case. The template prompt is shown
in Listing 8. We omit essential information from the use case
description as follows. For the GRIPPER task, we removed
the location of the ball2 from the initial state. Similarly, in
the TRANSPORT task, we deleted paths between cities from
the problem. In the BLOCKSWORLD task, we removed the
effect handempty from the initial state. Finally, in the BAR-
MAN task, we deleted empty shot1 from the initial state. In
total, we repeat this process 4 times, one per domain.

Listing 8: Incomplete initial state user prompt (natural lan-
guage).
Consider this domain description:

[NATURAL LANGUAGE DOMAIN DESCRIPTION]

And this problem associated to it:

[INCOMPLETE NATURAL LANGUAGE PROBLEM DESCRIPTION]

The resulting planning task is unsolvable due to an

incomplete initial state description. Can you provide

an alternative initial state in natural language from

which the goals are achievable? This state must not

include the goals directly. Be as concise as possible.

Listing 9: Natural language description for an alternative
solvable initial state in GRIPPER generated by CHATGPT.
An alternative initial state that makes the goals

achievable could be:

Ball2 is located in "roomb" and all other balls are

located in "rooma".

From the 4 planning tasks, CHATGPT manages to pro-
vide a solvable initial state for the GRIPPER and BAR-
MAN tasks. Listing 9 shows the reformulation of the state
for the GRIPPER task, where we removed the location of
ball2 and it provides an accurate explanation. On the other
hand, CHATGPT cannot return valid initial states for the
TRANSPORT and BLOCKSWORLD tasks. For example, the
BLOCKSWORLD task is unsolvable due to the hand not be-

ing empty. However, CHATGPT does not realize this in
its output, and just propose another unsolvable initial state
where it re-arranges the blocks without emptying the hand.

Incomplete Domains
In this case, we use as prompt the planning tasks in natural
language by omitting certain information from the domain
descriptions. The template prompt is shown in Listing 10.
For the GRIPPER domain, we removed the description of
the gripper state as free in the drop action. Similarly, in the
TRANSPORT domain, we deleted the package as in the truck
in the pick-up action. In the BLOCKSWORLD domain, we
removed the effect holding from the pick-up action. Finally,
in the BARMAN domain, we deleted the effect handempty
from the leave action. In total, we repeat this process 4 times,
one per domain.

Listing 10: Incomplete domain user prompt (natural lan-
guage).
Consider this domain description:

[INCOMPLETE NATURAL LANGUAGE DOMAIN DESCRIPTION]

And this problem associated to it:

[NATURAL LANGUAGE PROBLEM DESCRIPTION]

The resulting planning task is unsolvable because some

domain actions are missing some effects. Can you provide

the same domain description in natural language, but

including new action effects that will make the task

solvable? Be as concise as possible.

In all cases, CHATGPT is able to fix the domain by
providing complete descriptions of the actions. Just as it
occurred with the generation of the natural language de-
scription from the PDDL code, this is not entirely unex-
pected, since the names of the actions and predicates re-
tain their semantic meaning. For example, it is able to fix
the pick-up action by accurately describing it because pick-
up has an English meaning. We hypothesized that remov-
ing direct meanings from predicates and actions would pre-
vent the LLM from utilizing common-sense knowledge in
generating repairs or explanations. This was demonstrated
in (Valmeekam et al. 2023), where they employed a ver-
sion of the MYSTERY BLOCKSWORLD domain created by
Drew McDermott. They altered the names of predicates
and actions to unrelated entities, resulting in a decrease in
the number of successful plans generated by the LLMs in
the MYSTERY BLOCKSWORLD compared to the original
BLOCKSWORLD.

Although in this case CHATGPT was able to provide
complete descriptions, the explanations provided are not en-
tirely clear and require users to dive into the narrative. List-
ing 11 shows an example of the modifications proposed for
the BARMAN domain. Only one of the changes is correct,
the one regarding the leave action, which sets the hand as
free to make the task solvable. The other modifications are
not necessary, since the domain was originally defined in
that way.

Listing 11: Natural language description for an alternative
domain that makes the problem solvable in BARMAN gener-
ated by CHATGPT.
To make the planning task solvable, the following

effects need to be added to the actions:

grasp: the barman is holding the container

leave: the container is on the table and the hand is

empty

fill-shot: the shot glass is filled with the

ingredient and the dispenser is empty

refill-shot: the shot glass is refilled with the

ingredient and the dispenser is not empty

empty-shot: the shot glass is empty

clean-shot: the shot glass is clean and not used

pour-shot-to-clean-shaker: the shaker is filled with

the shot glass contents and is clean

pour-shot-to-used-shaker: the shaker is filled with

the shot glass contents and has been used to make a

cocktail

empty-shaker: the shaker is empty, unshaked, and

shaker-empty-level is set to 1

With these new effects, the planning task becomes

solvable.

Conclusions and Future Work

This paper presents an exploratory study on the usefulness
of LLMs as assistants to fix ill-defined planning tasks. Our
preliminary results show that, far from their performance as
code assistants, current LLMs do not provide much assis-
tance to repair planning models regardless of the way in
which they are specified. We conjecture this occurs due to
two main reasons. First and most important, LLMs cannot
plan (Valmeekam et al. 2022, 2023), and fixing planning
tasks often require planning competences. Secondly, while
LLMs have been trained in vast amounts of code examples,
they have not seen many planning tasks, especially described
in PDDL. Interestingly, even when the outputs were wrong,
CHATGPT did not make many syntactic mistakes, respect-
ing most of the PDDL syntax and even adding comments to
its changes. These changes were also supported with some
kind of natural language explanations. However, these ex-
planations did not aid in understanding the solution, as in
most cases they did not correspond to the model’s modifica-
tions.

The evaluation we conducted in the paper is limited and
preliminar, and we would like to improve it in future work.
For example, we did not focus on prompt engineering or in-
teractive refinement of outputs, which has been shown to
improve the performance of LLMs on different tasks. We
would also like to explore the performance of LLMs in fix-
ing planning tasks if trained with PDDL domains, problems
and plans. Finally, we would like to understand the perfor-
mance of these models in assisting humans with simpler (but
still time consuming) tasks such as generating PDDL do-
mains and problems from natural language (Xie et al. 2023).

Acknowledgements
This work has been partially funded by PID2021-
127647NB-C21 and PDC2022-133597-C43 projects,
MCIN/AEI/10.13039/501100011033/ and by “ERDF A
way of making Europe”. Also by the Madrid Government
under the Multiannual Agreement with UC3M in the line
of Excellence of University Professors (EPUC3M17) in the
context of the V PRICIT (Regional Programme of Research
and Technological Innovation).

References
Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.;
Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y. T.; Li, Y.; Lundberg,
S.; Nori, H.; Palangi, H.; Ribeiro, M. T.; and Zhang, Y. 2023.
Sparks of Artificial General Intelligence: Early experiments
with GPT-4. arXiv:2303.12712.
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2020.
The Emerging Landscape of Explainable Automated Plan-
ning & Decision Making. In Proceedings of IJCAI 2020,
4803–4811. ijcai.org.
Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.;
Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. 2020. Codebert: A
pre-trained model for programming and natural languages.
arXiv preprint arXiv:2002.08155.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. CoRR, abs/1709.10256.
Ginsberg, M. L. 1985. Counterfactuals. In Joshi, A. K., ed.,
Proceedings of the 9th International Joint Conference on
Artificial Intelligence. Los Angeles, CA, USA, August 1985,
80–86. Morgan Kaufmann.
Göbelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming Up With Good Excuses: What to
do When no Plan Can be Found. In Proceedings of ICAPS
2010, Toronto, Ontario, Canada, May 12-16, 2010, 81–88.
AAAI.
Gragera, A.; Fuentetaja, R.; Garcia-Olaya, A.; and Fernan-
dez, F. 2023. A Planning Approach to Repair Domains with
Incomplete Action Effects. In Proceedings of ICAPS 2023,
Prague, Czech Republic (To Appear).
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191–246.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. J. Artif. Intell. Res., 22: 215–278.
Kambhampati, S. 2007. Model-lite Planning for the Web
Age Masses: The Challenges of Planning with Incom-
plete and Evolving Domain Models. In Proceedings of
AAAI 2007, July 22-26, 2007, Vancouver, British Columbia,
Canada, 1601–1605. AAAI Press.
Kojima, T.; Gu, S. S.; Reid, M.; Matsuo, Y.; and Iwasawa,
Y. 2023. Large Language Models are Zero-Shot Reasoners.
arXiv:2205.11916.
Lin, S.; and Bercher, P. 2021. Change the World - How Hard
Can that Be? On the Computational Complexity of Fixing
Planning Models. In Proceedings of IJCAI 2021, Virtual
Event / Montreal, Canada, 19-27 August 2021, 4152–4159.
ijcai.org.

Lin, S.; Grastien, A.; and Bercher, P. 2023. Towards Auto-
mated Modeling Assistance: An Efficient Approach for Re-
pairing Flawed Planning Domains. In Proceedings of AAAI
2023, Washington, USA.
Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.; Biswas, J.;
and Stone, P. 2023. LLM+ P: Empowering Large Language
Models with Optimal Planning Proficiency. arXiv preprint
arXiv:2304.11477.
McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. En-
gineering Knowledge for Automated Planning: Towards a
Notion of Quality. In Proceedings of K-CAP 2017, Austin,
TX, USA, December 4-6, 2017, 14:1–14:8. ACM.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL–the
planning domain definition language–version 1.2. Technical
report, Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational
Nguyen, T.; Sreedharan, S.; and Kambhampati, S. 2017. Ro-
bust planning with incomplete domain models. Artif. Intell.,
245: 134–161.
Seipp, J.; Torralba, Á.; and Hoffmann, J. 2022. PDDL Gen-
erators. https://doi.org/10.5281/zenodo.6382173.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. Knowl. Eng. Rev.,
22(2): 117–134.
Sreedharan, S.; Srivastava, S.; Smith, D. E.; and Kambham-
pati, S. 2019. Why Can’t You Do That HAL? Explaining
Unsolvability of Planning Tasks. In Proceedings of IJCAI
2019, Macao, China, August 10-16, 2019, 1422–1430. ij-
cai.org.
Valmeekam, K.; Olmo, A.; Sreedharan, S.; and Kambham-
pati, S. 2022. Large Language Models Still Can’t Plan
(A Benchmark for LLMs on Planning and Reasoning about
Change). arXiv:2206.10498.
Valmeekam, K.; Sreedharan, S.; Marquez, M.; Olmo, A.;
and Kambhampati, S. 2023. On the Planning Abilities of
Large Language Models (A Critical Investigation with a Pro-
posed Benchmark). arXiv:2302.06706.
Xie, Y.; Yu, C.; Zhu, T.; Bai, J.; Gong, Z.; and Soh, H. 2023.
Translating Natural Language to Planning Goals with Large-
Language Models. arXiv:2302.05128.

