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Abstract

The PDDL+ formalism supports the use of planning in ap-
plications that require the ability to perform hybrid discrete-
continuous reasoning. PDDL+ problems are notoriously chal-
lenging to tackle, and discretisation is a well-established ap-
proach to reason upon them. Existing systems rely on a sin-
gle discretisation delta or, at most, two: a simulation delta to
model the dynamics of the environment, and a planning delta,
that is used to specify when to take decisions. However, there
exist cases where this rigid schema is inefficient. To address
the needs of the mentioned class of hybrid planning prob-
lems, in this paper we introduce a reformulation approach
that allows to encapsulate different levels of discretisation
in PDDL+ models, hence allowing any domain-independent
planning engine to reap the benefits.

Introduction
The ability to represent hybrid discrete-continuous changes
is crucial to exploit automated planning in many real-world
applications. The PDDL+ language has been introduced to
support the compact encoding of models involving hybrid
changes, via the use of specialised constructs such as events
and processes (Fox and Long 2006).

Hybrid PDDL+ problems are notoriously challenging to
tackle, due to the intertwined nature of numeric variables
and time. A well-established approach to reason upon hy-
brid PDDL+ problems is discretisation (Percassi, Scala, and
Vallati 2022; Della Penna, Magazzeni, and Mercorio 2012),
which allows breaking down complexity by assuming the
time is discrete, and so are the actual numeric changes. An
important aspect of this approach is the ability to re-use
well-established and general search techniques based on for-
ward state-based exploration to tackle PDDL+ problems; it
is indeed widely exploited by existing domain-independent
planning engines such as ENHSP (Scala et al. 2016) and
UPMurphi (Della Penna, Magazzeni, and Mercorio 2012).

Existing approaches that leverage discretisation generally
consider a single delta, used for both simulating the evolu-
tion of the dynamic environment and for identifying decision
points for planning. A more advanced approach, presented
by (Ramirez et al. 2017), and supported by ENHSP, is to
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consider two deltas: a simulation delta, to be as small as pos-
sible to better approximate complex hybrid dynamics, and a
planning delta, that can be discretionally large, to reduce the
burden on the planning process by avoiding decision points
when no actions are likely to be applicable.

Notably, there can be cases where even the advanced tech-
nique of using two different discretisation deltas does not al-
low to efficiently reason upon the dynamics of the problem
at hand. In logistics, for example, it is common to have dif-
ferent means of transport each having different speeds and
different granularity of timings in which actions must be per-
formed (e.g. a plane is faster than a truck which is faster than
a delivery man) and if the different agents involved have to
coordinate, they must necessarily do it at the discretisation
step of the slowest one, making the solving extremely chal-
lenging. Even the same agent could require a different gran-
ularity in different moments of the plan: for example, a ship
must be finely controlled while manoeuvring in the harbour,
but its course can be sporadically altered while at open sea.
In this paper, as a running example, we introduce a model
consisting of two agents with different speeds that need to
interact to move an object between different locations.

To effectively deal with the described class of hybrid
problems, there is the need for approaches that can support a
variable number of discretisation deltas. In this work, we ad-
dress this need by introducing a reformulation approach that
encapsulates such multiple deltas straight into the PDDL+
models, hence allowing domain-independent planning en-
gines to exploit the benefits. Any planning engine that sup-
ports PDDL+ can reason upon the reformulated models, thus
extending the ability of existing systems to solve challeng-
ing hybrid problems.

Motivating Example
In this section, we present a novel domain, COOPROVERS,
in which two agents operate at different speeds and need to
coordinate in order to reach the stated goals. Figure 1 pro-
vides an example of an initial state (top) and a goal condi-
tion (bottom) in which two rovers (Red and Green) are per-
forming two experiments (A and B) in two separate locations
and need to exchange a tool. For safety reasons, the rovers
are only allowed to move from the base camp to their work-
ing zone, hence they can only meet at base camp to exchange
the mentioned tool. The two rovers are equipped with a bat-
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Figure 1: A representation of the initial state and goal con-
dition of the COOPROVERS motivating example.

tery and solar panels that allow them to recharge. Since the
location of Experiment B is α times more distant than Exper-
iment A, the Green rover has been equipped with a more ef-
ficient and light battery (discharges at 20

α %/m), consuming
less than the Red rover (20%/m) and allowing longer trips.
At any point, while moving between the locations, the rovers
can deploy their solar panels and recharge (at the speed of
1%/s) for some time before restarting their trip. The bat-
tery must always stay above 20% to allow emergency opera-
tions and the deployment of solar panels. The rovers are also
equipped with a holding container for transporting tools.
The speed of the two rovers is the same (1m/s) but, given
the differences in distances to be covered and discharging
rates, their movements should be modelled and controlled
with different granularities. For example, with α = 100 the
Green rover would need to move 1.2 km at a velocity of
1m/s, discharging at 0.2%/m. In this case, it is easy to notice
that the Green robot would better benefit from a discretisa-
tion step one hundred time bigger than the Red one.

Background
A PDDL+ problem is a tuple Π = ⟨F,X, I,G,A,E, P ⟩,
where:
• F and X are the sets of Boolean and numeric variables,

respectively.
• I and G are the description of the initial state, expressed

as a set containing the full assignment to all variables in
X and F , and the description of the goal, expressed as a
formula, respectively.

• A and E are the sets of actions and events, respec-
tively. Actions and events are pairs ⟨p, e⟩, where p is a
propositional formula and e is a set of conditional ef-
fects of the form c ▷ e, where c is a formula and e is
a set of Boolean (f = {⊥,⊤}) or numeric assignments
(⟨{asgn, inc, dec}, x, ξ⟩, with x ∈ X , ξ being an expres-
sion over X and Q) .

• P is a set of processes. A process is a pair ⟨p, e′⟩, where
p is a formula and e′ is a set of numeric continuous ef-
fects expressed as pairs ⟨x, ξ⟩ with the meaning that ξ
represents the net derivative of x ∈ X when time flows.

Let a = ⟨p, e⟩ be an action or an event or a process, we
use pre(a) to denote the precondition p of a, and eff (a) the
effect e of a. In the following we will use a, ρ and ε for
denoting an action, process and event, respectively.

Motivating example (cont’d). We are now in the posi-
tion to illustrate how to model COOPROVERS using PDDL+.
The movement of a rover r from two connected loca-
tions a and b is managed trough the usual triplet of action
startMoving(r,a,b), process moving(r,a,b) and
event endMovement(r,a,b). moving(r,a,b) is ac-
tive only when the battery is above the threshold of 20% and
keeps updating a variable dRun(r,a,b) whose role is to
track the progress of the rover in going from a to b. Dur-
ing the movement, process discharge(r) models the
draining of the battery, and does so with a rate of cRate(r).
The planning engine can decide to interrupt and restart the
movement through action startCharging(r) and ac-
tion stopCharging(r), respectively. Between these two
actions, the process charging(r) gets activated, and the
rover battery charges with a rate of 1%/s. Since a large dis-
cretisation can cause the battery of the rover to go above
100%, an event overflowBattery(r) sets it back to
100% when this happens. In order to collect and exchange
tools, the actions drop(r,o) and pick(r,o) model
the handling of object o by rover r. The full PDDL+ for-
mulation is available at https://anonymous.4open.science/r/
deltaExperiments-F380.

Dynamic Planning-Discretised PDDL+
To address the kind of hybrid problems that require the abil-
ity to deal with different dynamics, here we characterise the
dynamic planning-discretised PDDL+ problem.

A dynamic planning-discretised PDDL+ problem
(PDDLδ+) is the tuple ⟨Π,Kδ = ⟨J,∇⟩⟩, where Π is
a PDDL+ problem defined as above and Kδ is the dis-
cretisation knowledge detailed as follows. J is a function
A ∪ E → {1, ...,m} which partitions the set of actions
and events in m classes such that A =

⋃
j∈{1,...,m} Aj and

E =
⋃

i∈{1,...,m} Ej , where Aj = {a ∈ A | J(a) = j}
and Ej = {ε ∈ E | J(ε) = j}. The number of partitions
induced by J defines the number of discretisation variables,
i.e., δm = {δ1, ..., δm}, which take value in Q>0. Intu-
itively, every δj manages a different aspect of the problem
by controlling when actions from Aj can be executed.

∇ is the function which controls the dynamic of the dis-
cretisation steps, that is, how the δm variables change ac-
cording to the actions applied and the triggered events. Such
a function maps every action and event into a positive ra-
tional number plus a special symbol κ, i.e., ∇ : A ∪ E →
Q>0 ∪ {κ}; the special symbol κ is the persist value and
it represents that the affected discretisation variable remains
unchanged. With a little abuse of notation, we allow the ∇
function to also accept the initial state as input and return a



full assignment of δm, i.e., ∇(I) = {⟨δi := δ0i ⟩ | δi ∈ δm}
where ⟨δ01 , ..., δ0m⟩ ∈ Qm

>0. This allows us to initialise the
discretisation variables in the initial state.

A discretisation knowledge Kδ may induce a non-
deterministic behaviour w.r.t. events. In particular, it is
known that events can generate non-determinism in PDDL+
problems (Fox and Long 2006) and this can also affect the
discretisation variables δm. That said, we define a discreti-
sation knowledge Kδ as well-defined iff for each state s,
ε, ε′ ∈ E and J(ε) = J(ε′), such that s |= pre(ε) ∧ pre(ε′),
then ∇(ε) = ∇(ε′).

Intuitively, solving a PDDLδ+ problem ⟨Π,Kδ⟩ consists
in finding a PDDL+ plan for Π such that every executed ac-
tion is compatible with the discretisation steps prescribed by
Kδ .

Motivating example (cont’d). We now show how
the discretisation knowledge Kδ can be expressed
in the COOPROVERS domain. Intuitively, the ac-
tions and events can be partitioned by the rover
which performs the action or is subject to the
events. For example, J(startCharging(red))
and J(startMoving(red,expA,bc)) are set
equal to 1 and J(startCharging(green)) and
J(startMoving(green,expB,bc)) equal to 2. This
partition induces the set δ2 = {δ1, δ2}. The function ∇ is
set allowing for (i) differentiating the different time scales
of the two rovers when they are moving, and (ii) allowing
for the same timescale when the two rovers are charging.
For this reason, ∇(startMoving(red,expA,bc) (and
the symmetric action for moving from bc to expA) is set
to be 3 while ∇(startMoving(green,expB,bc)
(and symmetric) is set to be 3α, allow-
ing for (i). ∇(startCharging(red)) and
∇(startCharging(green)) are both set to 30, allow-
ing for (ii). For all the other actions and events, ∇ returns κ.
The initial condition sets the initial deltas to their respective
delta of movements: ∇(I) = {⟨δ1 := 3⟩, ⟨δ2 := 3α⟩}.

Encoding of Kδ in PDDL+
Let ⟨Π = ⟨F,X, I,G,A,E, P ⟩,Kδ = ⟨J,∇⟩⟩ be a
PDDLδ+ problem. To address such problem, here we in-
troduce the FLAT translation, that produces an equivalent
PDDL+ problem ΠFLAT = ⟨F,Xδ, Iδ, G,Aδ, Eδ, Pδ⟩, where:

Xδ = X ∪ {ck} ∪
m⋃
j=1

{δj , tkj}

Iδ = I ∪∇(I) ∪ {⟨ck := 0⟩} ∪
m⋃
j=1

{⟨tkj := 0⟩}

Aδ =
⋃
a∈A

{⟨pre(a) ∧ ⟨ck = tkJ(a)⟩, eff(a) ∪ u(a)⟩}

Eδ =
⋃
ε∈E

{⟨pre(ε), eff (ε) ∪ u(ε)⟩} ∪
m⋃
j=1

{ticj}

u(h) =

{
∅ if ∇(h) = κ

{⟨δJ(h) := ∇(h)⟩, ⟨tkJ(h) := ck⟩} otherwise

ticj = ⟨⟨ck = tkj + δe⟩, {⟨tkj := ck+ δj − δe⟩}⟩
Pδ = P ∪ {t}
t = ⟨⊤, {⟨inc, ck, δe⟩}⟩

The first Equation augments the set of numeric predicates
X with new fluents, producing Xδ . The fluent ck represents
the clock of the system, which keeps track of the flowing of
time. Two fluents δj and tkj are inserted for every partition
induced by J : the fluent δj keeps track of the value of the
discretisation step of the actions of the partition j during the
plan and tkj keeps track of the next time an action will be
applicable in that partition (tk stands for tick). The Iδ Equa-
tion expands the initial state of the original problem with (i)
the set given by ∇(I) which states the initial value of δm,
and (ii) the initialisation of the clock and all the ticks of the
system to zero. The next equation redefines every original
action a of Π, augmenting its precondition with a condition
enforcing the action to be applicable only when the clock
reaches the correct point, established by the value of tkJ(a);
here J(a) returns the index of the partition containing a. The
effects set of an action or an event h is augmented with the
set u(h), in which (i) the value of δJ(h) is changed to its
respective value defined by ∇(h) only if its value is differ-
ent from the persist value κ, and (ii) the value of tkJ(h)
is reset in order to realign the ticks with the correct value of
δJ(h) set by ∇(h) (this because events are not constrained by
the ticks). The Equation which defines Eδ adds also n novel
events ticj which represent the metronome of the system:
the event ticj is fired when the value of the clock ck has
just surpassed the value of tkj by the simulation delta of the
planner δe (i.e., we are in the falling edge) and, in the effects,
it sets the timing (tkj) in which the raising edge will happen
again, taking into consideration the already passed simula-
tion delta. Finally, a new process t is added, whose job is to
increase the value of ck by the simulation delta δe.

It is worth noticing that the FLAT translation yielding
ΠFLAT is polynomial on the size of ⟨Π,Kδ⟩. Specifically,
FLAT introduces 2m + 1 numerical variables (δj , tkk for
each j ∈ {1, ...,m} and ck), m events ticj , where m is the
number of partitions of A ∪ E induced by J , and a single
process, i.e., t. Additionally, the preconditions and effects
of action/events are extended with at most 2 numeric condi-
tions and effects. Also, it is easy to see that FLAT preserves
the length of a plan exactly; as highlighted by (Nebel 2000),
this is a desired property when we talk about compilation
from one planning problem into another. Let ⟨Π,Kδ⟩ be a
PDDLδ+ problem and let ΠFLAT be the PDDL+ obtained by
using FLAT. We expect that ⟨Π,Kδ⟩ admits a solution iff
ΠFLAT does so. The demonstration is left for future work.

Experimental Analysis
Our experimental analysis aims at assessing how the pro-
posed encoding can affect the performance of PDDL+
domain-independent planning engines. This is done by fo-
cusing on the COOPROVERS, where the use of the proposed
encoding is expected to deliver a significant performance
boost due to the characteristics of the domain.

We consider two state-of-the-art domain-independent
planning engines: ENHSP (Scala et al. 2016) and UPMurphi



α = 1 α = 10 α = 100 α = 500 α = 1k α = 5k α = 10k
1δ 2δ Kδ 1δ 2δ Kδ 1δ 2δ Kδ 1δ 2δ Kδ 1δ 2δ Kδ 1δ 2δ Kδ 1δ 2δ Kδ

E+HADD 0.7 0.3 0.5 4.5 0.3 0.5 TO 40.2 0.7 TO TO 7.5 TO TO 16.8 TO TO 95.4 TO TO 195.6
E+AIBR 0.6 0.3 2.7 1.4 0.4 4.2 10.7 1.1 12.2 99.0 8.2 151.3 290.2 27.2 TO TO TO TO TO TO TO

E+BLIND 0.5 0.3 0.5 2.8 0.4 0.5 TO TO 2.9 TO TO 24.2 TO TO TO TO TO TO TO TO TO
U+BLIND TO - 18.3 TO - 18.6 TO - 65.5 TO - TO TO - TO TO - TO TO - TO

Table 1: Average runtime (CPU-time seconds) achieved by informed and uninformed search approaches implemented in
ENHSP (E) and UPMurphi (U) while relying on different discretisation approaches on the COOPROVERS benchmarks. TO
indicates that no solution was found in the cut-off of 300s, - indicates that the approach is not available for the planner. Bold
indicates the best results.

(Della Penna, Magazzeni, and Mercorio 2012). ENHSP in-
corporates a range of heuristics and search techniques, hence
providing the ideal ground to compare them within the same
infrastructure. In our analysis, we used the default A∗ search
paired with the default AIBR heuristic (Scala et al. 2016), the
add heuristic (Scala, Haslum, and Thiébaux 2016), and a tra-
ditional blind search. UPMurphi is a very different planning
engine, based on the planning via model-checking paradigm.
It automatically translates discretised PDDL+ to a model-
checking formulation, and then uses blind search to find a
solution. Experiments are run on Intel Xeon Gold 6140M
CPUs with 2.3 GHz, with a cut-off time of 300 CPU-time
seconds, and 8 GB of RAM.

In the COOPROVERS domain model, choosing the right
discretisation step is crucial to efficiently generate a valid
plan: larger discretisation can lead to draining the battery
of the fastest robot, while the use of a smaller discretisa-
tion step makes the search space deeper and requires more
resources to be explored. Table 1 shows the results achieved
by the considered planning engines when a range of discreti-
sation options are exploited: 1δ, the traditional approach in
which there is a unique discretisation step to model the gran-
ularity of the agent and the environment, i.e., δe = δp = 1;
2δ, the approach where environment and agent are natively
decoupled by the planner by using δe = 1 and δp = 3 (avail-
able only in ENHSP), and the proposed Kδ approach. The
Kδ approach is run with δe = 1 over the PDDL+ problems
obtained by using the FLAT translation and exploiting the
discretisation knowledge provided for the motivating exam-
ple in the corresponding section. The experiments show that
in the informed search settings (E+HADD and E+AIBR),
the proposed approach is beneficial in large and challeng-
ing problems. These are indeed the cases where the Kδ ap-
proach shows its potential, as the gap between using a small
and a large discretisation step increases. In fact, Kδ is the
only discretisation approach that allows solving instances
with α ≥ 5k. The performance improvement is more pro-
nounced when an uninformed search is used, where the im-
provements are noticeable with smaller values of α. The dis-
played results confirm that the proposed approach can ef-
fectively support the reasoning of domain-independent plan-
ning engines in cases where dynamics evolving at different
speeds are present in a single planning problem.

Conclusion
Discretisation is a well-established approach to reason upon
challenging hybrid PDDL+ problems. The vast majority of
existing approaches are based on a single discretisation step,

and only ENHSP can leverage two different discretisation
steps in a domain-independent fashion. With the aim of
taming complex PDDL+ problems where multiple deltas are
needed to efficiently generate solutions, in this paper we for-
malised the notion of dynamic planning-discretised PDDL+
problem and presented a reformulation approach that allows
any domain-independent planning engine to exploit multi-
ple discretisation deltas. The formalised notion also let us
categorise different levels of discretisation control. The per-
formed experimental analysis highlights the benefits of Kδ

in instances where different dynamics are included.
As future work, we are interested in (i) demonstrate that

FLAT is sound and complete w.r.t the PDDLδ+ problem
⟨Π,Kδ⟩, (ii) show the merits of the introduced reformula-
tion on a broader range of PDDL+ benchmarks and planning
approaches, and (iii) investigate synergies that can be gen-
erated between multiple discretisation reformulations and
domain-independent heuristics, to design models that can
generate search spaces easier to be navigated by search en-
gines.
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for numeric planning via subgoaling. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, 3228–3234.
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