
PDSim: Planning Domain Simulation and Animation with the
Unity Game Engine

Emanuele De Pellegrin, Ronald P. A. Petrick
Edinburgh Centre for Robotics

Heriot-Watt University
Edinburgh, Scotland, United Kingdom
ed50@hw.ac.uk, R.Petrick@hw.ac.uk

Abstract

Modelling planning domains that are correct and robust can
be a challenging problem, especially in real-world domains.
This paper presents an overview of the current state of the
Planning Domain Simulation (PDSim) project, an asset for
the Unity game engine to simulate plans in a 2D or 3D envi-
ronment with custom animations and graphics effects. PDSim
aims to provide an intuitive tool for users to define animations
without the need to learn a new scripting language, using
the Unity game engine’s internal and industry-standard visual
scripting language in order to quickly evaluate the validity of
planning models. PDSim fills an important gap in the area
of planning simulation and validation: simulating a planning
problem using 3D or 2D graphics and animation techniques
can help the user to quickly evaluate the quality and correct-
ness of a plan, and improve the design of a planning domain
and problem. This paper presents the current state of PDSim
development and future plans for the project.

Introduction
The task of modelling planning domains that are both correct
and robust can be a challenging problem, especially in real-
world domains. For instance, consider the following robot
planning task: a set of robots are deployed in a factory to
help with the warehouse logistics. The robots can navigate
on a predefined grid map with simple 4-way movements,
pick up and drop boxes, and deliver objects to a van parked
in the warehouse. The problem also imposes a few limita-
tions: the robots cannot cross each other, and the vans can
only accept a specific box.

The above problem could be viewed as a slightly modified
version of the sequential Floor Tile domain from the 2011
International Planning Competition (IPC):1 a real-world in-
spired problem that can be modelled using a representa-
tion language such as PDDL (McDermott et al. 1998) and
solved with classical automated planning techniques. The
grid could be modelled as a set of interconnected nodes rep-
resenting locations in the warehouse for objects and agents
(e.g., vans, boxes, and robots), as illustrated in Figure 1. A
trivial example of a goal might be to ensure that particular

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://github.com/potassco/pddl-instances/tree/master/ipc-
2011/domains/floor-tile-sequential-satisficing

objects are in specific locations, e.g., box1 is in van1. Using
this domain model, we can quickly find a valid solution to
the problem. For instance, Figure 2 (left) shows a plan gen-
erated by the FastDownward planner (Helmert 2006) for the
problem in Figure 1, where a robot moves to grid cell (1,0)
to pick up the box before delivering it to the van at (0,0).

Figure 2 (right) shows an alternative action sequence, gen-
erated using an incorrect version of the domain. Although
the plan is similar to the one on the left, it is incorrect: the
robot executes the pickup action when in grid cell (0,0) be-
fore loading the van. (This plan is the result of a missing
precondition on the pickup action which normally ensures
that the robot and object are in the same cell.) While this
kind of error can be trivial to debug and correct by an expert
knowledge engineer, this isn’t always the case for students
and newcomers to languages such as PDDL. Catching mod-
elling errors (i.e., incorrect logic in action preconditions and
effects, missed predicates in an init block, etc.) can still be
difficult due to the complexity of the knowledge that needs
to be specified and the level of abstraction that is often re-
quired for ensuring the generation of tractable solutions.

In this paper, we present the current state of the Planning
Domain Simulation (PDSim) (De Pellegrin 2020; De Pelle-
grin and Petrick 2021, 2022) system, a framework for visu-
alising and simulating classical and temporal planning prob-
lems. PDDL is used to define the domain knowledge and the
problem formulation (e.g., planner requirements, language
models used in the domain such as types and objects, plus
standard definitions of the domain and problem). A planner
then uses this information to check that a solution exists and
to generate a plan that satisfies the goal. Using the generated
plan, PDSim interprets the action effects as 3D animations
and graphics effects to deliver a visual representation of the
world and its actions during plan execution and aid the user
in assessing the validity of the plan during execution.

While several tools do exist for validating planning mod-
els (e.g., plan validation tooks like VAL (Howey and Long
2003) and formal plan verification methods such as (Ben-
salem, Havelund, and Orlandini 2014; Cimatti, Micheli, and
Roveri 2017; Hill, Komendantskaya, and Petrick 2020)), ap-
proaches based on visual simulation and visual feedback can
also play an important role in addressing the problem of cor-
rectly modelling planning domains. Visual tools can serve as
powerful environments for displaying, inspecting, and sim-



Figure 1: Warehouse planning problem example.

ulating the planning process, which can aid in plan explain-
ability for human users (Fox, Long, and Magazzeni 2017).

In this paper, we describe the aims, structure, and core
components of PDSim that are responsible for providing vi-
sualisations, and illustrate how PDSim can be used to sim-
ulate planning problems. PDSim is built by extending the
Unity game engine editor (Unity Technologies 2022) and
uses the components offered by the engine such as a path
planner, lighting system, and scene management, among
others. The system uses a backend server that is responsible
for parsing PDDL files and managing plan generation, pro-
viding support for a wide range of PDDL language features
(such as typing, temporal actions, action cost, etc.). This pa-
per provides a comprehensive description of PDSim, extend-
ing earlier versions of the system.

The rest of the paper is organised as follows. First, we
review work related to planning problem visualisation and
verification. We then describe the structure and main compo-
nents of PDSim, providing examples of their use in practice
by illustrating a number of planning domains. Finally, we
conclude with future work and planned additions to PDSim.

Related Work
PDSim (De Pellegrin and Petrick 2022) is part of the small
ecosystem of simulators for automated planning which use
visual cues and animations to translate the output of a plan
into a 3D environment. The closest approach to ours is Plani-
mation (Chen et al. 2020) which uses Unity as the front-end
engine to display objects and animate their position while
following a given plan. Planimation defines animations us-
ing an ad hoc language (namely, an animation profile) sim-
ilar to PDDL. This differs from PDSim, where animations

Figure 2: A correct (left) and incorrect (right) plan in the
Warehouse domain.

are defined using Unity’s visual scripting system.2
The Logic Planning Simulator (LPS) (Tapia, San Se-

gundo, and Artieda 2015) also provides a planning simu-
lation system that represents PDDL objects with 3D models
in a user-customisable environment. The approach is inte-
grated with a SAT-based planner and a user interface that
enables plan execution to be simulated while visualising up-
dates to the world state and individual PDDL properties in
the 3D environment. LPS is not based on Unity but provides
the user with a simple interface for plan visualisation. Sev-
eral user-specified files are also required to define 3D object
meshes, the relationship between PDDL elements and 3D
objects, and the specific animation effects.

vPlanSim (Roberts et al. 2021) is a similar application that
also aims to provide a 3D visualization of a plan, but with
a number of important differences. While vPlanSim offers
a simple and fast custom graphical environment for creat-
ing plan simulations with few dependencies, PDSim uses
the Unity game engine to offer the user industry-standard
tools for creating realistic scenarios. PDSim also provides a
language-agnostic tool to set up simulations which is key for
users who are not familiar with PDDL and Unity.

Several systems also exist to help users formalise plan-
ning domains and problems through user-friendly interfaces.
For instance, GIPO (Simpson, Kitchin, and McCluskey
2007), ItSimple (Vaquero et al. 2007) and VIZ (Vodrázka
and Chrpa 2010) use graphical illustrations of the do-
main and problem elements, removing the requirement of
PDDL language knowledge, to help new users approach
planning domain modelling for the first time. Other tools
such as Web Planner (Magnaguagno et al. 2017) and Plan-
ning.Domains (Muise 2016) use Gantt charts or tree-like
visualisation methods to illustrate generated plans and the
state spaces searched by a particular planning algorithm.
PlanCurves (Le Bras et al. 2020) uses a novel interface based

2https://docs.unity3d.com/Packages/com.unity.
visualscripting@1.7/manual/vs-nodes-reference.html



on time curves (Bach et al. 2015) to display timeline-based
multiagent temporal plans distorted to illustrate the similar-
ity between states. All of these tools attempt to assist users
in understanding how a plan is generated and to help detect
potential errors in the modelling process.

Simulators are also prevalent in robotics applications, and
multiple systems make use of game engines to provide vir-
tual environments, such as MORSE (Echeverria et al. 2011)
or Drone Sim Lab (Ganoni and Mukundan 2017). Game en-
gines also offer several benefits such as multiple rendering
cameras, physics engines, realistic post-processing effects,
and audio engines, without the need to implement these fea-
tures from scratch (Ganoni and Mukundan 2017), making
them desirable tools for simulation. For example, Unity has
been used as a tool for data visualisation, architectural pro-
totypes, robotics simulation (Green et al. 2020), and syn-
thetic data generation for computer vision (James Fort and
Davis 2021) and machine learning applications (Haas 2014;
Craighead, Burke, and Murphy 2008). There are also inter-
esting use cases of Unity related to AI and planning, includ-
ing the Unity AI Planner,3 an integrated planner being cre-
ated by Unity as a component for developing AI solutions
for videogames, and Unity’s machine learning agents,4 a so-
lution for training and displaying agents whose behaviour is
driven by an external machine learning component.

Automated Planning Background
Automated planning involves reasoning about a set of ac-
tions in order to construct a plan (usually a sequence of
actions) that achieves a goal from an initial state (Ghallab,
Nau, and Traverso 2004; Haslum et al. 2019). Planning is
often thought of as a search through a state space where ac-
tions provide a transition system between states.

PDDL (McDermott et al. 1998) provides a standard lan-
guage for modelling planning problems, by specifying a rep-
resentation for properties, actions, initial states, and goals
(among other features). PDDL splits the planning problem
into two parts: the domain, which defines the state properties
and the actions; and the problem, which defines the initial
state and the goal. A state is a set of all the properties in the
planning problem, describing the conditions of the objects
or agents at some point in time (Ghallab, Nau, and Traverso
2004). PDDL uses predicates to represent fluents that can be
true or false in a state. Predicates are typically parametrized
with a set of variable arguments that could be replaced by
objects in the problem. For example,

at(robot, location)

might be used to describe the current location of a robot.
PDDL actions are formalised following a defined schema

that specifies the parameters, preconditions, and the effects
of each action, as in Figure 3. The preconditions specify
the conditions required to perform the action, while the ef-
fects describe the changes to the state after an action is per-
formed. Together, the actions capture the state transitions

3Unity AI Planner: https://docs.Unity3d.com/Packages/com.
Unity.ai.planner@0.0/manual/index.html

4Machine Learning Agents: https://github.com/Unity-
Technologies/ml-agents

(:action
:parameters (param1, param2, ...)
:precondition (precondition-formula)
:effect (effect-formula)

)

Figure 3: PDDL action representation.

(:action pick-up-box
:parameters (?r - robot ?b - box ?c - cell)
:precondition (and

(robot-at ?r ?c)
(robot-empty ?r)

(box-at ?b ?c))
:effect (and

(not (robot-empty ?r))
(not (box-at ?b ?c))
(robot-has ?r ?b))

)

Figure 4: PDDL action for the custom warehouse domain.

move(robot_1, office, storage_room)
pick_up(robot_1, box_3, storage_room)
move(robot_1, storage_room, load_bay)
load(robot_1, van_2, box_3)

Figure 5: Plan example for Robot warehouse.

Figure 6: High-level PDSim system architecture.

that are possible in the problem. For example, Figure 4 rep-
resents the PDDL action for picking up a box in the custom
warehouse domain. The action has three parameters: ?r, the
robot, ?b, the box, and ?c, the cell. The precondition speci-
fies the robot must be located at the cell ?c, the robot must
be empty (i.e., not carrying any boxes), and the box ?b must
be located at the same cell. The effect of the action states
that r will no longer be empty, the box will no longer be at
the cell ?c, and the robot will have the box ?b. PDSim help
in visualising these textual representations with animations.

An automated planner can use the PDDL problem rep-
resentation to generate a plan by choosing actions to se-
quence together so that the plan achieves the goal from the
initial state. For instance, Figure 5 shows a plan for a robot
to achieve a goal in a warehouse problem. PDSim uses the
PDDL problem representation in order to define and animate
several aspects of its visualisation, as described below.



PDSim System Architecture
The high-level structure of the PDSim system is shown in
Figure 6. The PDSim system can be imported into Unity3D
as a common asset, where the Unity editor interface is used
to interact with PDSim components, such as setting the sim-
ulation scene, creating animations, or importing 3D or 2D
models. PDSim also relies on a Python backend implemen-
tation, which is used to parse PDDL files and generate plans.
A PDSim simulation is initialised and handled by the back-
end server running the Unified Planning Framework (UPF;
see below), which is responsible for parsing and building
a JSON representation of the planning model and running a
user-defined planner (defaulting to FastDownward) to gener-
ate a plan. UPF is a planner-agnostic framework for Python,
which increases PDSim’s modularity and lets users select
their preferred planner implementation, separating it from
the simulation stage itself which comes later in the process.
We describe the major components of PDSim below.

PDSim Components
Several PDDL components are key to simulating a planning
problem, including: predicates, actions, types (not manda-
tory), and initial values. A PDDL domain file is used to build
the core elements and the animations for the simulation. The
types and objects define SimulationObjects, the visual aspect
of the simulation in Unity: 3D models or 2D sprites. PDDL’s
predicates are used to define the 2D/3D animations using the
visual scripting option that Unity offers. This visual script-
ing language is used to define common transformation oper-
ations, path planning, audio emission, particle effects, etc.

For example, Figure 10 shows an animation definition for
the earlier Warehouse planning problem, for a predicate that
captures the movement of the robot position from the cur-
rent grid to an adjacent cell. Action effects are the animated
components, where every predicate in the effects list that has
an associated animation graph will execute an animation at
simulation time. Finally, the problem’s initial values are used
during simulation time to set up the scene. Similar to the an-
imation effects, all the grounded values are animated if the
predicates are associated with an animation.

Backend System
PDSim’s backend system is a Python server that commu-
nicates with the Unity editor and supports communication
between the planning and animation components of the sys-
tem. In particular, Figure 9 shows the workflow executed
by the system when the user wants to create a new simula-
tion. The user interacts with PDSim using the Unity editor
to specify the planning domain and problem files. Unity tries
to connect to the backend server by submitting a request us-
ing these files. The planner interface can use a local planner,
such as FastDownward (Helmert 2006) (the default planner),
or the planning web service offered by Planning.Domains
(Muise 2016). If either the parsing or planning actions fail,
the interface will warn the user of the error.

PDDL domain and problem elements are converted to a
JSON representation and sent back to Unity, which will cre-
ate objects and animations that can be customised by the

{ ’predicates’:
{’in-city’:

{’args’: [’place’, ’city’],
’arity’:2}, ... },

’actions’:
{’load-truck’:

{’effects’:[
{’args’[’pkg’, ’loc’],
’fluent’: ’at’,
’negated’: true} ... ],

’params’:{’pkg’:’package’,
’truck’:’truck’,
’loc’:’place’} } ... }

’types’:
{’object’:[’city’,’place’,’physobj’],
’place’:[’airport’,’location’] ...}

}

Figure 7: Example domain representation in JSON.

{’objects’:
{’apn1’ : ’airplane’
’city1’ : ’city’, ... },

’init’:
{’at’: [

{’args’: [’obj13’, ’pos1’]
’value’: true},

{’args’: [’obj23’, ’pos2’]
’value’: true}, ... ] ... }

}

Figure 8: Example problem representation in JSON.

user. Domain entities are used to set up the core Unity sim-
ulation. For instance, Figure 7 shows the JSON code used to
establish the internal definitions of actions, types, and pred-
icates for the logistics domain. Problem entities are used to
set up a Unity-level scene, as in Figure 8. Once these com-
ponents are defined, the user can customise them using the
Unity editor, for instance configuring multiple problems for
the same domain, or multiple simulations for different plans.

At the technical level, communication between PDSim’s
backend server and Unity is provided by the ZeroMQ net-
working library,5 in particular the Python implementation
package pyzmq6 on the server side and the C# implemen-
tation netMQ7 on the Unity side.

Unified Planning Framework (UPF)
PDSim’s backend system wraps the functionality of the Uni-
fied Planning Framework (UPF) as the main tool for ma-
nipulating and solving planning problems in PDSim. UPF
is a Python library provided by the AIPlan4EU project8
that aims to simplify the use of automated planning tools
for AI application development. UPF attempts to standard-
ize aspects of the planning process, making it accessible to

5https://zeromq.org/
6https://pypi.org/project/pyzmq/
7https://github.com/zeromq/netmq/
8https://www.aiplan4eu-project.eu/



Figure 9: Simulation workflow in PDSim.

users of any level of expertise. In particular, it offers a well-
developed PDDL parser and a standard interface for com-
municating with external planners. Integration with UPF en-
ables the PDSim system to take advantage of these features
and any future updates that UPF may provide.

Planning Domain Simulation in Unity
Unity (Unity Technologies 2022) is a popular state-of-the-
art game engine used for building 3D projects across a range
of diverse applications. In PDSim, Unity provides the fron-
tend interface and is responsible for handling all of the
2D/3D graphics and animations related to the simulation.

One of the fundamental design concepts used by Unity is
the idea of composition, which means that an object can be
composed of different types of objects. In particular, Unity’s
component system provides the capability for every object
in a Unity scene to be assigned custom scripts or modules,
such as a rigid body for the physics simulation, a collision
volume, an audio source, etc. Every object in Unity can also
be scripted using the C# language, meaning that an object
can have a user-defined behaviour in the scene. For example,
an object can respond to user inputs from a mouse or key-
board, or can be translated, rotated and scaled, or have its
colour changed, based on conditional events. Object script-
ing in Unity is key to the modularity of the simulation, espe-
cially for the custom representation of PDDL elements.

Scripting can also be applied to the editor window, where
users interact with the engine and where it is possible to set
the properties of the objects in the scene by using Unity’s
user interface. PDSim make heavy use of all the features pro-
vided by Unity, such as the Visual Scripting Language used
to create animations and events. As a result, users do not
need to learn a new language for developing animations, and
animation graphs can be modified on-the-fly without waiting
for scripts to be recompiled.

PDDL to PDSim
To use PDDL in the Unity Game Engine, there is a need
to translate the PDDL specification into a format that can

Figure 10: Animation definition example.

be used within the Unity environment. This involves creat-
ing custom C# classes and objects that represent the knowl-
edge specified in the PDDL domain. Taking the warehouse
domain example, the PDDL specification includes a set of
objects, such as robots, boxes and vans. There is a need to
create corresponding C# classes to represent these objects.
Including properties to represent the various attributes of the
objects, such as their transform (position, rotation and scale),
colour, and other relevant visualization features. In addition,
methods to perform various operations on the objects and
perform updates on the object attributes. Similarly, PDDL
predicates and actions need to be mapped using C# dictio-
naries to animations that visualise a change in the world
state.

Simulation Objects

A PDDL type in PDSim is represented by a simulation ob-
ject, a structure that shares similar information for all the ob-
jects defined in a planning problem. A simulation object is
defined by two main components: models and control points.
Models are used to visually represent the object type in the
virtual world (e.g., block, airport, player, robot, etc.). These
can be 3D meshes or 2D textured sprites that can be im-
ported in the Unity editor. A user can add as many models
as they like. A collision box that wraps all the models is au-
tomatically calculated to be used later in the simulation to
detect the interaction with the user inputs and the collisions
calculated by the physics engine. Control points are 3D vec-
tors that represent particular points of interest in the object
type representation (e.g., the cardinal points of an object, a
point that represents the arm position of an agent, etc.).



Figure 11: Simulation Manager diagram.

Animations
One of the most important aspects of PDSim is the visual
script animation system. As shown in Figure 10, users can
create their own particular behaviour in the virtual scene for
every predicate they want to animate. The example shows a
simple translation animation from an object position to a tar-
get position. In particular, the example shows one of the cus-
tom animation nodes developed in PDSim to help simplify
the creation of animations for new users. Every predicate in
an action’s effect can have one of these graphs linked to it,
and every graph comes with an EffectEvent that is invoked
during plan simulation with the corresponding objects from
the Unity scene (i.e., the objects in the plan’s action).

To simplify the development of new animations, and to
help new users with visual scripting, a set of predefined an-
imation nodes has been created which cover a number of
useful simulation cases that frequently arise, such as:
1. TranslateTo: An animation for moving a particular ob-

ject in the scene to a specific point in the world or to
another object position.

2. RotateTo: An animation to rotate a particular object in
the scene to an angle or to look at another object in the
world.

3. PathTo: An animation for moving an object using
Unity’s path planning system.

4. Spawn: A node to instantiate an object (i.e., a 3D mesh)
in the scene.

5. GetObjectFromScene: A node mainly used to access
the components added by the user that aren’t part of the
PDDL definition.

These predefined animation nodes aim to reduce the size
and complexity of the scripting graph, and simplify the ani-
mation process for new Unity users. From a technical point
of view, these animations use Unity Coroutines that allow
the user to write functions that can run concurrently in the
main Unity thread and be suspended or resumed either by
user choice or if a condition is met.

Simulation Manager
Figure 11 shows a diagram of the simulation manager, a
component that handles simulations on the front-end side.

{’status’ : ’OK’,
’plan’:[
{

’action’: ’pick-up’,
’attributes’ : [’b’]

},
{

’action’: ’stack’,
’attributes’ : [’b’, ’a’]

},
{

’action’: ’pick-up’,
’attributes’ : [’c’]

}, ...]}

Figure 12: A parsed plan in JSON format.

The main responsibilities of the simulation manager include:

• Starting or pausing the simulation (during plan time),

• Holding references of all the PDDL descriptors in the
scene (predicates, actions, objects),

• Holding references of all animation graphs defined by the
user,

• Keeping track of the existing types (if defined) in the do-
main file, and

• Sending request to the backend server to update or ini-
tialize the PDDL representation.

If types are specified in the PDDL domain file, then the
simulation manager creates simulation object blueprints for
all the leaf types of the type tree that is built when the do-
main is parsed for the first time. These types are replicated
for each object in the PDDL problem file that matches the
particular type, using the user configuration of simulation
objects, as described above.

The simulation manager is initialised using the JSON data
from the backend server containing the PDDL elements and
the representation of the plan, as shown in Figure 12, us-
ing a plan for a Blocks World domain problem. Every action
effect will have an associated list of animation graphs repre-
senting the effect of the PDDL action. The simulation man-
ager will execute the animations using the attributes in the
plan representing the simulation objects involved in the sim-
ulation of that action. As the first step in every simulation,
PDDL’s init block is animated. Init represents the starting
state of a planning problem and is defined by a list of fluents
describing the current state of the world. These fluents are
represented in the form of fluent name(arguments) where
the arguments are the objects that are present in the environ-
ment. The simulation manager will publish events with the
corresponding fluent name and objects from the simulation
scene that will be used by the visual scripting language to
map which animation to execute and the graphical objects
to use. The same process is then repeated for every action
effect from the plan.



Planning Domain Examples
PDSim has been tested using the published benchmark do-
mains from the International Planning Competition (IPC).9
We illustrate the capabilities of PDSim to simulate planning
problems using the Blocks World, Logistics, and Sokoban
domains, plus the custom Warehouse domain introduced
earlier in the paper.

Blocks World: The Blocks World domain (IPC 2000) is
one of the simplest planning domains: blocks can be stacked
on top of each other and only one block can be picked,
moved, and dropped at a time. The goal is achieved when
the specified stack sequence is reproduced.

Figure 13 shows an example of a Blocks World action se-
quence being simulated in PDSim. The three snapshots rep-
resent different steps in a plan and demonstrate the interac-
tion with objects in the scene. The user interface shows the
transition of fluents that describe an object after the action
effects are applied during plan execution. In the example,
the object d starts with the fluent on table describing the ini-
tial condition of the problem for that object. The third image
in Figure 13 shows how the fluents change after the plan has
finished executing.

Logistics: The Logistics domain (IPC 2000) describes a
problem involving packages that need to be transported be-
tween cities using an aeroplane, and within cities using
trucks. This domain steps up the complexity of the simula-
tion environment while keeping simple definitions of predi-
cates and actions (e.g., the predicates InCity, At, In are used
to respectively describe if a location is inside a city, if an
object is in a location, and if a package is in a vehicle). Fig-
ure 15 shows a snapshot of the Logistics simulation, high-
lighting the animation of boxes and aeroplanes.

Sokoban: The Sokoban domain (IPC 2008) describes the
Sokoban game problem,10 where a player needs to move an
object to a predefined goal on a grid. Figure 16 illustrates a
typical problem level for Sokoban with a player and stone
that need to be moved. This domain adds to the complexity
of the previous example, illustrating the functionality of this
simulation in Unity and its ability to rapidly provide an in-
game agent.

Custom Warehouse Domain: To demonstrate the use of
user-defined domain models, the warehouse planning prob-
lem presented in the introduction has been simulated in
PDSim as illustrated in Figure 14. Both correct and incor-
rect domain models have been tested with PDSim, showing
the robot picking up the box in the correct cell position and
executing the non-intuitive action of picking up the box from
the wrong cell (as represented in the images).

Real World Robot Application: PDSim has been used as
part of a robotics project involving robots acting in a hu-
man environment. Figure 17 show the simulation for a cus-
tom planning problem involving a robot operating in a flat

9https://github.com/potassco/pddl-instances
10https://en.wikipedia.org/wiki/Sokoban

equipped with a different type of sensors. PDSim can sim-
ulate the change in the environment state (as shown in the
bottom image).

Figure 17: PDSim using Human Support Robot (Yamamoto
et al. 2019).

Discussion
In general, PDSim offers a powerful and flexible framework
for visualising planning problems using a state-of-the-art
graphical engine. More specifically, PDSim aims to fill a gap
in current systems that provide plan simulations, by offering
users a simplified environment to develop 3D or 2D simula-
tions, compared with current approaches that come with the
overhead of learning and using an ad hoc scripting language
to interact with a custom simulator (Tapia, San Segundo, and
Artieda 2015; Chen et al. 2020; Roberts et al. 2021). PDSim
is designed as a support system for automated planning by
providing intuitive tools to interface with a plan solution.
One main limitation of PDSim is the lack of an automated
and formal validation tool for planning, which could be inte-
grated in the future. However, our approach offers a practical
and human-centred way to check if a plan is valid and can
be executed (Howey and Long 2003) using a graphical en-
gine to gamify the process of validating a planning solution.
Approaches like (Le Bras et al. 2020; Fox, Long, and Maga-
zzeni 2017) also suggest that answering the question of why
an action has been successfully executed or has failed, fur-
ther increases the explainability of a plan. In this context,
PDSim provides intuitive hints about possible errors using
visual cues, by displaying an interface with the transitions
of each action and how they modify the state of a particu-
lar object or agent. It is important to reiterate, however, that
PDSim is primarily aimed at planning-agnostic users like
students. Within this group, as (Chen et al. 2020) indicates,
there is a difference between the mental model the user has
of the planning problem and the actual implementation. In
fact, PDDL is often approached as a traditional program-



Figure 13: PDSim Blocks World simulation sequence.

Figure 14: PDSim Warehouse Robot simulation with correct (left) and incorrect (right) action simulation.

Figure 15: PDSim Logistics simulation.

Figure 16: PDSim Sokoban simulation.

ming language by beginners, rather than a knowledge defi-
nition language. With this in mind, PDSim aims to simplify
the learning curve of PDDL by assisting with components
that provide information about the state of planning entities
in real-time.

Conclusion and Future Work
This paper presented the structure and operation of PDSim,
a simulation system for animating PDDL-based planning
domains and plans. PDSim uses the Unity game engine to
animate PDDL predicates through an action’s effects, by
linking a visual scripting graph to each of them. The user
can modify and customise the behaviour by effectively pro-
gramming an animation from scratch or by quickly using the
high-level animations provided. Created simulations can be
exported in an executable and, given the cross-platform na-
ture of Unity, all major operating systems can be targeted
(e.g., Windows, Mac, Linux).

As future work, we plan to introduce a more intuitive way
to create and modify the knowledge model, using the same
visual scripting paradigm, and thus completely removing the
need to know the PDDL language syntax. This will be inter-
nally used together with an in-engine planner that the user
can interact with at planning time to change object properties
and replan on the fly. Given the close relationship between
PDSim and Unity, it will also be possible to use applications
such as extended reality (XR) to interact with the plan. An-
other planned direction for PDSim will also be to include ex-
tensions for visualising the current state of an agent’s knowl-
edge and beliefs to support epistemic planning, allowing vi-
sualisations to be generated from different agent perspec-
tives. Finally, we also plan to evaluate the use of PDSim in
an education setting, and gather feedback about the overall
helpfulness and usefulness of PDSim as a development aid
for students learning about automated planning in an intro-



ductory AI course. To further simplify the accessibility of
PDSim, we think that an evaluation with a group of students
is needed to gather feedback about the overall helpfulness
and easiness of use in respect of the standard approach to
planning with PDDL.

References
Bach, B.; Shi, C.; Heulot, N.; Madhyastha, T.; Grabowski,
T.; and Dragicevic, P. 2015. Time curves: Folding time to
visualize patterns of temporal evolution in data. IEEE trans-
actions on visualization and computer graphics, 22(1): 559–
568.
Bensalem, S.; Havelund, K.; and Orlandini, A. 2014. Veri-
fication and validation meet planning and scheduling. Inter-
national Journal on Software Tools for Technology Transfer,
16: 1–12.
Chen, G.; Ding, Y.; Edwards, H.; Chau, C. H.; Hou, S.; John-
son, G.; Sharukh Syed, M.; Tang, H.; Wu, Y.; Yan, Y.; Gil,
T.; and Nir, L. 2020. Planimation.
Cimatti, A.; Micheli, A.; and Roveri, M. 2017. Validating
domains and plans for temporal planning via encoding into
infinite-state linear temporal logic. In Proceedings of AAAI,
3547–3554.
Craighead, J.; Burke, J.; and Murphy, R. 2008. Using the
unity game engine to develop sarge: a case study. In Pro-
ceedings of the 2008 Simulation Workshop at the Interna-
tional Conference on Intelligent Robots and Systems (IROS
2008).
De Pellegrin, E. 2020. PDSim: Planning Domain Simulation
with the Unity Game Engine.
De Pellegrin, E.; and Petrick, R. P. 2021. Automated Plan-
ning and Robotics Simulation with PDSim.
De Pellegrin, E.; and Petrick, R. P. 2022. What Plan? Virtual
Plan Visualization with PDSim.
Echeverria, G.; Lassabe, N.; Degroote, A.; and Lemaignan,
S. 2011. Modular open robots simulation engine: Morse. In
2011 IEEE International Conference on Robotics and Au-
tomation, 46–51. IEEE.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. In Proceedings of the IJCAI Workshop on Ex-
plainable AI.
Ganoni, O.; and Mukundan, R. 2017. A framework for visu-
ally realistic multi-robot simulation in natural environment.
arXiv preprint arXiv:1708.01938.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: theory and practice. Elsevier.
Green, C.; Platin, J.; Pinol, M.; Trang, A.; and Vij, V. 2020.
Robotics simulation in Unity is as easy as 1, 2, 3!
Haas, J. K. 2014. A history of the Unity game engine.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An introduction to the planning domain definition
language. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 13(2): 1–187.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.

Hill, A.; Komendantskaya, E.; and Petrick, R. P. A. 2020.
Proof-Carrying Plans: A Resource Logic for AI Planning.
In International Symposium on Principles and Practice of
Declarative Programming (PPDP), 1–13.
Howey, R.; and Long, D. 2003. VAL’s Progress: The Au-
tomatic Validation Tool for PDDL2.1 used in the Interna-
tional Planning Competition. In Proceedings of the ICAPS
Workshop on The Competition: Impact, Organization, Eval-
uation, Benchmarks.
James Fort, J. H.; and Davis, N. 2021. Boosting computer
vision performance with synthetic data.
Le Bras, P.; Carreno, Y.; Lindsay, A.; Petrick, R. P. A.; and
Chantler, M. J. 2020. PlanCurves: An Interface for End-
Users to Visualise Multi-Agent Temporal Plans. In Proceed-
ings of the ICAPS Workshop on Knowledge Engineering for
Planning and Scheduling (KEPS).
Magnaguagno, M. C.; Fraga Pereira, R.; Móre, M. D.; and
Meneguzzi, F. R. 2017. Web planner: A tool to develop clas-
sical planning domains and visualize heuristic state-space
search. In ICAPS Workshop on User Interfaces and Schedul-
ing and Planning (UISP).
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL—
The planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Muise, C. 2016. Planning.domains. ICAPS System Demon-
stration.
Roberts, J. O.; Mastorakis, G.; Lazaruk, B.; Franco, S.;
Stokes, A. A.; and Bernardini, S. 2021. vPlanSim: An Open
Source Graphical Interface for the Visualisation and Simula-
tion of AI Systems. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 31,
486–490.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. The Knowledge
Engineering Review, 22(2): 117–134.
Tapia, C.; San Segundo, P.; and Artieda, J. 2015. A PDDL-
based simulation system. In Proceedings of the IADIS Inter-
national Conference Intelligent Systems and Agents.
Unity Technologies. 2022. Unity.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An Integrated Tool for Designing Plan-
ning Domains. In Proceedings of ICAPS, 336–343.
Vodrázka, J.; and Chrpa, L. 2010. Visual design of planning
domains. In Proceedings of ICAPS Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS), 68–69.
Yamamoto, T.; Terada, K.; Ochiai, A.; Saito, F.; Asahara, Y.;
and Murase, K. 2019. Development of human support robot
as the research platform of a domestic mobile manipulator.
ROBOMECH journal, 6(1): 1–15.


