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Abstract

Intelligent traffic routing is one of the key techniques that
can be used to optimise traffic, especially in urban areas. De-
liberative reasoning techniques such as Automated Planning
have shown their potential since they can take a global and
longer-term perspective on the traffic situations. Such tech-
niques have to be embedded in a urban traffic control frame-
work such that they can generate and assign routes to the ve-
hicles on the fly while considering the current traffic situation
in the area.
This paper presents an ongoing work on a framework that,
in a nutshell, integrates an automated planning component,
responsible for intelligent traffic routing, in the well known
SUMO simulator in order to evaluate and study its impact
in realistic traffic settings. In particular, the framework has
to simplify the representation of the road network provided
by SUMO, translate it into PDDL, a language for describing
planning problems, and then interpret plans and fed them in
form of vehicle routes into SUMO.

Introduction
Nowadays, traffic in urban areas becomes one of the ma-
jor economical problems due to losses from traffic accidents
and travel delays, especially during rush hours. For example,
the cost of congestion in London has exceeded £5 billion in
2020 in lost time and fuel consumption London (2022), and
has become a major health threat Chang et al. (2019). With
continuing growth of global urbanisation, the problem with
traffic congestion is expected to exacerbate. The introduc-
tion of highly innovative techniques such as Connected Au-
tonomous Vehicles (CAVs) has the potential to revolutionise
the field as we have more options for designing intelligent
traffic control techniques to mitigate the problem Vallati and
Chrpa (2018); Rasheed et al. (2017); Arena and Pau (2019).

Intelligent traffic routing aims at planning routes for ve-
hicles while minimising a given objective function such as
travel time or fuel consumption. Modern SATNAV systems
(e.g. Waze™) can utilise current information about traffic
to generate routes that have more accurate estimation of the
actual travel time. That is, such systems increase chance for
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drivers using them to avoid possible delays in heavy traf-
fic or congested roads. Centralised approaches, on the other
hand, generate routes for every CAV at once and thus take a
global perspective over the controlled urban region. In par-
ticular, centralised traffic routing techniques can plan for all
CAVs entering the controlled region or requiring a new route
inside the region at once and optimise generated routes by a
“global” objective function (e.g., average travel time).

Automated planning approaches had recently gained
promising results in centralised traffic routing Chrpa, Val-
lati, and Parkinson (2019); Vallati and Chrpa (2021) as well
as in traffic light control Vallati et al. (2016); Pozanco,
Fernández, and Borrajo (2021). That inspired us to develop
a framework that integrates an automated planning compo-
nent, responsible for intelligent traffic routing, in the well
known SUMO simulator Lopez et al. (2018) in order to eval-
uate and study its impact in realistic traffic settings. This pa-
per presents an ongoing work on that framework that at this
stage focuses on effective translation of the road network
representation of SUMO into the PDDL language in which
planning tasks can be described Fox and Long (2003). The
translation has to simplify the network by abstracting some
its elements (e.g. roundabouts) and by precomputing parts
of the road networks that can be used for routing in specific
directions. As a planning domain model we use the one de-
veloped by Chrpa, Vallati, and Parkinson (2019). Our frame-
work is evaluated on four scenarios concerning urban areas
taken from OpenStreetMap™.

SUMO Simulator
Simulation of Urban MObility (SUMO) Lopez et al. (2018)
is an open-source microscopic urban traffic simulator that
simulates traffic at the level of individual vehicles (and other
objects). In a nutshell, SUMO operates over a road network,
which can be taken from OpenStreetMap™, in which in-
dividual vehicles have their routes that they follow. Also,
SUMO takes into consideration traffic rules (e.g. giving a
way when merging from a side road) as well as traffic lights
(if present on a junction). Hence, SUMO can realistically
capture evolution of a traffic situation in a specified region
and provide useful data about how traffic evolves measured
by a number of quantities (e.g. average travel time, average
travelled distance). In the context of centralised traffic rout-
ing, SUMO can provide a valuable feedback regarding the



quality of vehicle routes (e.g. how average travel time de-
creases or increases with respect to default settings) and, for
example, where traffic jams tend to evolve if traffic is heavier
(such as in rush hours).

In general, SUMO supports intermodal simulation that
besides traffic simulates behaviour of other entities such as
pedestrians or public transport. In the current state of devel-
opment of our framework, we resort only to traffic simula-
tion without taking other modalities (e.g. pedestrians) into
an account.

SUMO contains a number of useful components that al-
low users to operate with the simulator. We introduce those
that are relevant to our framework.

• osmWebWizard can be used to capture regions on Open-
StreetMap™; however, the resulting representation con-
tains much more data that are not necessary for our pur-
pose (e.g. geometry of the buildings).

• netconvert is an alternative to osmWebWizard that allows
to convert maps from OpenStreetMap™, VISSUM and
other sources into the SUMO representation (in XML).
Netconvert is a command-line application that is simple
to use by specifying only a type of the file together with
the “map” file.

• netedit is an application with Graphical User Interface
that can visualise and edit road networks (in SUMO rep-
resentation). The tool also can be used to fix the issues in
the road network that were introduced while importing it,
or to update the network reflecting possible changes (e.g.
road closure for maintenance).

• Traffic Control Interface (TraCI) is an interface that can
connect SUMO with reasoning techniques (e.g. plan-
ning). TraCI gives an online access to the simulation to
retrieve the current traffic situation and allows modifying
behaviour of the vehicles or objects (e.g. by assigning a
different route).

Centralised Traffic Routing Problem
Formulation

In a nutshell, the problem of centralised traffic routing deals
with finding a route for each individual vehicle that goes
from its location of origin to its destination location while
optimising a given “global” objective function (such as av-
erage travel time).

The road network is represented by a directed graph in
which vertices represent junctions and edges road links (or
segments) that connect the neighbouring junctions. Then,
there is a set of vehicles such that each vehicle has its loca-
tions of origin and destination, which are, in our case, ver-
tices of the graph, and the time in which it “appears” in the
location of origin. The task is to find a path in the graph for
each vehicle such that the path goes from vehicle’s location
of origin to its destination location such that it optimises the
given objective function (e.g. average travel time). From the
paths in the graph, we can straightforwardly get routes that
are provided into SUMO. SUMO then simulates the traffic
in which each vehicle follow its generated route in order to

retrieve the actual value of the given objective function (e.g.
average travel time).

Planning for Centralised Traffic Routing
Automated Planning is a prominent field of artificial intelli-
gence that, in a nutshell, deals with the problem of finding
a sequence of actions that modify the state of the environ-
ment to achieve a given goal M. Ghallab and D. Nau and
P. Traverso (2004). A planning task can be specified in the
PDDL language Fox and Long (2003) such that one spec-
ifies a domain model, consisting of description of the en-
vironment (by predicates, for example) and actions, and a
problem instance consisting of an initial state and a goal.
Actions are specified via preconditions, i.e., what has to hold
to make the action applicable, and via effects, i.e., how the
state is modified by applying the action.

In this paper, we rely on the model introduced by Chrpa,
Vallati, and Parkinson (2019) that is based on a microscopic
traffic representation, i.e., it represents each (relevant) indi-
vidual vehicle. The road network is represented in the model
in the same way as mentioned in the previous section, i.e., by
a directed graph. Vehicles are navigated between graph ver-
tices (junctions) by drive actions that move a vehicle from
one junction (j1) to another (j2) if there is an edge going
from the j1 vertex to the j2 vertex in the graph, i.e., the
junctions are connected by a road link. The drive actions
also consider traffic intensity on the road links such that a
drive action increases the counter that counts the number of
routed vehicles on a corresponding road link by one when-
ever the action is applied. Note that the model uses “pred-
icate counters” instead of numeric fluents to represent the
vehicle counters.

The model distinguishes three levels of traffic intensity
– light, medium and heavy – that are derived from the ca-
pacity of the given road segment (i.e., the maximum theo-
retical number of vehicles that can physically fit onto the
road link). According to the traffic intensity level on a given
road link determined by the number of vehicles on it, one
of four variants of the drive action is applied, i.e., drive-
light, drive-medium, drive-heavy and drive-congested. Note
that the drive-congested action allows the use of road links
where the number of vehicles exceeds their capacity. How-
ever, in cases of heavy traffic, it might not be always possi-
ble to route traffic around “bottleneck” road links. In order
to minimise traffic intensity on road links, the cost of drive
actions depends on the traffic intensity such that the cost is
higher for drive actions concerning a higher traffic intensity
level (e.g. drive-heavy is more expensive than drive-medium
which is more expensive than drive-light).

The model also introduces an allowed predicate that rep-
resents whether a road link can be used by a vehicle with a
certain destination location. The allowed predicate is added
into the precondition of the drive actions. It should be noted
that the allowed predicates forbids routing of vehicles to
road links that do not lead to the destination locations of
these vehicles. That prunes some unpromising alternatives
in the search space and improves efficiency of planners.

The task is to “move” all the vehicles from their loca-
tion of origin to their destination locations while minimis-



ing the total cost of used drive actions in the plan. It means
that the plans aim at minimising traffic intensity levels for
all road links in the network. Although a plan contains drive
actions for all vehicles, the routes for individual vehicles can
be straightforwardly extracted from the plan by “projecting”
to a sequence of drive actions for a particular individual ve-
hicle (one by one). For details about the model the interested
reader is referred to Chrpa, Vallati, and Parkinson (2019).

Architecture of the Framework
Our framework is designed to connect the SUMO simulator
with a planning component that is responsible for generat-
ing routes for vehicles in order to optimise traffic flows. The
architecture of our framework is depicted in Figure 1.

Converting Road Network Maps to SUMO
The left hand side of the architecture is responsible for
generating road network representation from a selected ur-
ban area on OpenStreetMap™ (technically, other sources
of maps can be used as well if supported by netconvert).
We have used osmfilter, which is a tool provided by Open-
StreetMap™, to preprocess the data by filtering out unnec-
essary information (e.g. buildings). Then, we leveraged the
netconvert component of SUMO that can process the pre-
processed data capturing the road network in the area and
output it into a xml file that SUMO uses. This step can be
done offline and needs to be done only once for a given re-
gion unless the road network in that region changes (then a
new xml file representing the road network has to be gener-
ated).

It should be noted that the road network (in an xml
file) can be visualised and edited in the netedit component.
Besides the graphical visualisation of the network (in the
SUMO format), it might be important to sometimes fix is-
sues (e.g. incorrect number of lanes) that might arise dur-
ing the automated acquisition of the road network data from
OpenStreetMap™. Also, netedit can be used to amend the
road network to account for planned road closures or to con-
sider some minor changes in the road network (e.g. changes
in the right of way).

Simplifying Road Networks
The GraphLauncher component of our framework is re-
sponsible for simplifying the SUMO representation of the
road network such that the planning component can more ef-
fectively reason with it. Although it is possible to convert the
road network in SUMO representation directly into a plan-
ning task specification (in PDDL), it is useful to simplify
the road network in a preprocessing step, so a planning en-
gine needs to reason only with promising alternatives while
routing traffic.

One way how the road network can be simplified is to
abstract certain elements of it. Junctions with one incom-
ing and one outgoing road segments can be abstracted out
and the road segments are merged into one. These junc-
tions might occur in the SUMO representation due to, for
instance, graphical reasons or some glitches in the Open-
StreetMap™ model. Also, more complex junctions such as

roundabouts consist of, in the SUMO representation, a num-
ber of (individual) junctions connected by road segments
(e.g. parts of a roundabout). We abstract such complex junc-
tions into a single one. The above two simplifications usu-
ally simplify the networks by about 10% (measured the the
number of junctions and road segments).

To further simplify the network we investigated how rea-
sonable routes between given origin and destination loca-
tions can look like. At this stage of the development we
considered routes that are at most c times longer than the
optimal (shortest) route (between a given origin and des-
tination location). For this purpose, we have developed a
variant of the well known A* algorithm Hart, Nilsson, and
Raphael (1968) that after finding the shortest route contin-
ues the search until either the current node value is greater
than c times the shortest route length, or the number of found
routes is higher than K. The output of that variant of A* is
a set of routes (from a given location of origin to a given
destination location) that forms a subgraph of the graph rep-
resenting the road network. An example depicting a map of
a part of Dejvice in Prague, Czech Republic, is in Figure 2
left. The result of our variant of A* for each traffic flow,
determined by a given location of origin and a destination
location (illustrated by arrows of a different colour in Fig-
ure 2) is depicted in Figure 3.

Then, the subgraphs generated for each origin/destination
pair are merged into a graph representing a simplified road
network. An example of the result of the simplification can
be seen in Figure 2 right. Also, we can set the allowed predi-
cates in the planning model (see the above section) such that
for each flow we consider only road links in its correspond-
ing subgraph.

Both pre-processing steps can be done once as long as the
topology of the road network or considered traffic flows does
not change. Hence, this step can be done offline and does not
introduce any overhead during planning (or traffic routing).

Generating Traffic Scenarios
The ScenarioLauncher component of our framework is re-
sponsible for generating traffic scenarios. In particular, it
takes into account traffic flows determined by locations of
origins and destinations (usually where a given flow enters
the region and where it leaves the region) and by traffic in-
tensity measured by the number of vehicles per minute. At
this stage of the development we consider uniform and in-
creasing flows while taking some (small) fluctuations into
account (e.g. for a uniform flow the number of vehicles is not
exactly the same for every minute). Increasing vehicle flows
simulate situations in which the traffic intensity increases in
a given time span (e.g. beginning of a rush hour).

Each traffic scenario considers a defined time span (e.g.
30 seconds) in which a number of vehicles is expected to en-
ter the region. From the defined flows, we can determine the
number of vehicles for each direction and then for each vehi-
cle we specify its initial location (where the corresponding
flow starts) and its goal location (where the corresponding
flow ends).



Figure 1: Architecture of our framework

Figure 2: An example of an urban road network with arrows of different colours determining the considered origin and desti-
nation locations (left) and a simplified variant by our variant of the A* algorithm (right).

Planning Component
The right hand side of our architecture contains the plan-
ning component that is responsible for generating routes
for the vehicles. The planning component considers the do-
main model of Chrpa, Vallati, and Parkinson (2019), men-
tioned in the previous section. Problem instances, generated
by ScenarioLauncher, which is responsible for vehicle infor-
mation, and GraphLauncher, which is responsible for road
network information, represent planning episodes that con-
sider vehicles that need routing (e.g. when they enter the
region) in a given time span (e.g. 30 seconds). For plan

generation, we used the Mercury planner that is a domain-
independent planning engine that incorporates Red-black
heuristics Domshlak, Hoffmann, and Katz (2015) as it is
efficient in the given domain Chrpa, Vallati, and Parkinson
(2019). Generated plans are then translated into routes of the
vehicles that are passed to the SUMO simulator, which is de-
picted in the bottom side of our architecture, via the TraCI
interface.



Figure 3: Subgraphs of the road network generated by our variant of A* for particular flows – green, blue, red, yellow (from
left to right).

Map Simplified size (%) Plans (%) Distance (m) Speed (m/s) Travel time (s) Waiting time (s)
1282.83 2.68 1140.28 873.46

Dejvice (Praha) 71 100 1329.01 4.12 989.26 767.51
2280.52 1.09 4077.99 3447.53

South Bronx (New York) 71 74 2469.07 1.9 2384.96 1887.96
2088.74 2.12 1549.7 1076.7

Clerkenwell (London) 61 55 2221.15 2.1 1718.83 1220.76
2593.68 3.02 1610.0 1215.98

Clovelly (Sydney) 34 25 2671.83 3.17 1573.53 1173.32

Table 1: Results of the simulation on the four considered scenarios. Values for Distance, Speed, Travel and Waiting time are
averages per a vehicle. First line refers to a naive routing (shortest route) while the second line refers to centralised routing via
planning.

Experiments
Our experimental analysis aims at evaluating possible im-
pact of centralised routing techniques on traffic in urban ar-
eas in a rush hour. We considered four maps of metropoli-
tan urban areas, namely Dejvice (Praha), South Bronx (New
York), Clerkenwell (London) and Clovelly (Sydney), that
range from about 90 junctions and 180 road segments to
more than 440 junctions and 1000 road segments per a map.
For each map, we considered a one hour simulation that is
split into 120 planning episodes where one episode routes
vehicles coming to the network in a 30 second time span.
We consider 3 different flows (4 for Dejvice map) – pairs
of origin and destination locations – that are randomly as-
signed with uniform or increasing traffic with the number of
vehicles per hour ranging from 2700 to 3700 (per map). For
each map, we generated 10 scenarios with different flows.
The parameters for our variant of A*, c and K, were set to
1.3 (1.4 for Dejvice map) and 3000, respectively. Planning
time was limited to 25 seconds (so we can get the routes
for each 30-second episode on time). If the planner (Mer-
cury) failed to generate routes in some case, then the short-
est routes were assigned to the vehicles for that planning
episode. Experiments were run on Intel i7-8700 (3.2 GHz)

and 4GB of RAM1.
The results in Table 1 show that centralised routing via

planning has a potential to improve road traffic in the South
Bronx scenario by about 40% (measured by average travel
time) where nearly 3/4 of planning episodes were success-
fully solved. In the Dejvice scenario, the improvement of
the average travel time was about 14% with all planning
episodes being solved in the time limit. In other scenarios
the results are not that great, which is caused by a smaller
number of solved planning episodes and some peculiarities
of the road network that the planning model does not prop-
erly capture. It can be seen that our simplification techniques
can reduce the size of the road network representation that
the planning engine has to consider by 30− 65%.

Manhattan-like topology of the South Bronx road net-
work allows for more effective distribution of traffic and
hence cetralised routing techniques achieved very good re-
sults. In Clerkenwell, however, using shorter routes even
with (slightly) higher traffic intensity is better than trying to
reroute some traffic to longer routes. Another peculiarities
that might not be captured well by the planning model are
situations in which vehicles from a side road have to merge

1Source code of the framework and benchmark data can be
found at https://github.com/Matyxus/FLAIRS



(or cross) a main road on an uncontrolled junction. If the
traffic on the main road is intense enough, then vehicles on
the side road get stuck for a long time (albeit in reality in
such situations drivers on the main road allow the vehicles
on the side road to merge, SUMO does not capture such a
behaviour).

Discussion and Conclusion
Centralised traffic routing techniques in the light of new rev-
olutionary technologies such as CAVs are getting more im-
portance due to their ability to look at the problem of traffic
routing from a global perspective which might be important
to prevent traffic congestion in some area by smart routing of
the vehicles. Recently, automated planning techniques have
shown some promise in centralised traffic routing Chrpa,
Vallati, and Parkinson (2019); Vallati and Chrpa (2021).
Such an advancement motivated our work that aims at in-
corporating centralised routing techniques into the SUMO
simulator that provides a realistic simulation of urban traf-
fic Lopez et al. (2018).

In this paper, we report an ongoing work on the frame-
work that at this stage of the development allows to “con-
nect” SUMO with a planning component responsible for
centralised routing. That involved acquiring data about the
road network from OpenStreetMap™ by components of
SUMO (e.g. netconvert) into an xml format. The xml rep-
resentation of the road network has to be simplified before
being translated into PDDL and on top of that an information
about vehicles needing routing has to be provided within
the PDDL problem file as well. That the PDDL problem
file alongside the PDDL domain model (taken from Chrpa,
Vallati, and Parkinson (2019)) is fed into a planning engine
(e.g. Mercury Domshlak, Hoffmann, and Katz (2015)) and
plans are translated into an xml file describing vehicle routes
which is an input to SUMO that simulates the routes. Since
the SUMO representation might be too complex (large) to be
straightforwardly compiled to PDDL and used by planners,
we have designed and developed a variant of the A* algo-
rithm that generates a subnetwork in which vehicles navigat-
ing in a given direction are very likely to stay. Then the plan-
ner might need to reason only on parts of the road network
relevant to the direction of vehicles that need to be routed.
Our preliminary experiments have shown some promise of
the use of planning techniques in centralised traffic routing
(especially, in the South Bronx scenario).

The preliminary results also identify some opportunities
for improvement. For instance, simplification of road net-
works has to be stronger in order to accommodate larger net-
works. One possibility is to generate several diverse routes
for each direction (instead of a subnetwork) that the vehi-
cles can navigate, where we have already achieved promis-
ing results Švadlenka, Chrpa, and Vallati (2023). The routes
should be diverse enough to mitigate the risk of routing traf-
fic via the same bottlenecks (junction or road segments that
are prone to traffic jams). Also, the model should better cap-
ture some aspects that can (strongly) influence traffic such
as merging from a side road onto a main road in an uncon-
trolled junctions. Last but not least, different types of ve-

hicles (e.g. trucks, buses) should be also considered in the
routing techniques as they have different demands and influ-
ence traffic flows in a different way.
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