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Abstract
The unsolvability of planning problems is frequently associ-
ated with errors on the representation of the domain. Knowl-
edge engineers often struggle to understand the underlying
conditions of why a planning problem cannot be solved and
which changes might be needed to reach a solution. In this
work, we discuss theoretical foundations and algorithms that
can be used to calculate minimal parts, called abstractions,
of the planning problem that preserve the unsolvability. Ad-
ditionally, our approach provides minimal sets of facts that
repair the planning problem by rendering it solvable when re-
moved. Both together can point to the source of the problem
and give a clear focus on which parts of the planning speci-
fication are problematic. In particular, our proposed method
can be used to debug planning problems that are unsolvable
due to ill-modeled effects or over-restricted preconditions.
Furthermore, we show that sets of facts inducing minimal un-
solvable abstractions and repairs are related by diametrical
hitting set properties, which allows us to exploit hitting set
tree data structures for a goal-directed computation of these
sets.

Introduction
Automated planning is a powerful approach to be employed
in a range of different applications that require an initial
state to be transformed into a goal state (Ghallab, Nau, and
Traverso 2004). Given the representation of a domain in
planning terms, here called a planning problem, an auto-
mated planner searches for a (best) path to achieve such a
goal. However, for different reasons, it is possible that a so-
lution cannot be found, e.g. the planning problem is unsolv-
able (Eriksson, Röger, and Helmert 2017; Bäckström, Jons-
son, and Ståhlberg 2013). Frequently, unsolvable problems
are associated with shortcomings in the domain representa-
tion, i.e. the knowledge engineer fails to implement some as-
pect that is required by further actions in order to get closer
to the goal state. While planners inform the knowledge en-
gineer about the unsolvability of the problem, typically not
much insight as to what went wrong and what are possible
fixes for the problem are given.

In this work, we present the theoretical foundations for
the identification of minimal unsolvable and maximal solv-
able model abstractions of an unsolvable planning problem.
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While minimal unsolvable abstractions point the knowledge
engineer to the core parts of the planning problem that are
responsible for the unsolvability, maximal solvable model
abstractions highlight parts of the planning problem that
are unproblematic. Motivated by existing works that aim at
explaining the unsolvability of planning problems (Herzig
et al. 2014; Sreedharan et al. 2020), our method lays ground
to augment and help in situations where the knowledge engi-
neer may struggle to comprehend the underlying conditions
of why a planning problem has no solution.

Our generated reductions of the input problem (i.e. gen-
erated abstractions) provide insights that may point to ill-
defined effects or over-restricted preconditions, which may
be responsible for the unsolvability of the planning problem
at hand. Additionally, the demonstrated theoretical proper-
ties for sets that induce minimal and maximal abstractions,
allow us to adapt established data structures and algorithms
to enumerate minimal unsolvable abstractions, paving the
way for an iterative and user-interactive debugging proce-
dure. In this process, the knowledge engineer would be able
to additionally guide the enumeration by selecting or exclud-
ing propositions for the continuation of our algorithm.

This work shows, to the best of our knowledge, for the
first time, that subset minimal sets of propositions induc-
ing unsolvable abstractions and super-set maximal sets of
propositions inducing solvable abstractions are related by
diametrical hitting set properties. These qualities allow us to
exploit hitting set trees and respective algorithms to not only
enumerate minimal unsolvable abstractions, but to calculate
maximal solvable abstractions “en passant” as a by-product.
This allows us to enumerate both sets of abstractions by cal-
culating only one of them.

The remainder of this paper is organized as follows: In the
next section we discuss works related to explaining unsolv-
ability as well as works that utilize hitting sets in the realm of
automated planning. Subsequently, we introduce necessary
preliminaries, followed by the introduction of our theoret-
ical propositions including the main theorem of this paper.
The adapted algorithms alongside with examples of hitting
set trees for minimal unsolvable abstractions are then pre-
sented. Finally, we demonstrate the inversion of the hitting
set trees, followed by a brief discussion and conclusion in
the last two sections of this paper.



Related Work
Automatically fixing unsolvability of a planning problem at
hand is explored on several occasions throughout the litera-
ture. The work of Yang (1992), for example, presents a the-
ory of conflict resolution for the early identification of in-
consistencies in the search process utilizing a constraint sat-
isfaction framework. The work by Göbelbecker et al. (2010)
on “good excuses” for unsolvablity focuses instead on find-
ing a suitable and, in their words, desirably “perfect” ex-
cuse, by utilizing counterfactual explanations, such that a
set of appropriate modifications of the input state eventually
renders the planning problem solvable. A similar endeavor
is the main concern of Herzig et al. (2014), who provide a
framework based on propositional dynamic logic in order to
modify the input state and, thus, find a solvable model.

More recently, with the field of explainable artificial intel-
ligence planning (XAIP), the process and interaction with a
human designer and respective feedback during the model-
ing phase of a planning problem came into focus. Escorting
the modeling process and pointing out mistakes by the mod-
eler raises the need for explaining the potential reasons for a
failure to the model’s author. The work of Sreedharan et al.
(2020), for example, adopts XAIP ideas to support design-
ers in the process of model acquisition of dialogue systems.
From abstractions of a yet unsolvable model, their approach
iteratively illustrates to domain designers where the plan first
fails. This approach reduces the burden from the designers
since they can find fixes for smaller parts of the domain,
instead of debugging the whole specification while looking
for a solution. However, in this approach, the designer is in
charge of reflecting and finding a solution from the unsolv-
able point. While Sreedharan et al.’s approach also points to
minimal unsolvable and maximal solvable abstractions, the
finding of these sets is left as an open question. This matter
is closed in our work by providing (iterative) algorithms for
computing both minimal unsolvable and maximal solvable
abstractions. An important difference to their proposal is that
we use subset minimal and super-set maximal notions of ab-
stractions, whereas their definitions for minimal and maxi-
mal abstractions are cardinality-based. The ideas presented
in our approach are inspired by the aforementioned works.
However, instead of focusing on the iterative refinement pro-
cess from an initial model to a final model that matches the
designer’s ideas, we only focus on one step of this end-to-
end process by explaining only a single failing model in an
iterative and user-interactive manner. In a similar context,
the work of Käser et al. (2022) describes the software “Ma-
chetli”, a debugging tool that calculates a minimal planning
task, that still reproduces the error, i.e. unsolvability. How-
ever, the tool only produces a single minimal planning task,
which is minimal with respect to the input size and actively
removes actions and predicates in order to prune the search
space.

Our main propositions and respective algorithms are
based on finding minimal hitting sets, a well-established
research question in the communities of error diagnosis
(Reiter 1987), constraint satisfaction and program verifica-
tion (Bailey and Stuckey 2005), logic (Glimm and Kaza-
kov 2019) as well as database analysis and data-mining

(Gunopulos et al. 2003). The problem is also closely related
to computing minimal transversals of hyper-graphs (Bailey,
Manoukian, and Ramamohanarao 2003). The planning com-
munity also has explored the notion of hitting sets on various
occasions. Koehler et al. (1997), for example, mention hit-
ting sets in the introduction of an extension to their GRAPH-
PLAN system and also in the RIFO planning system (1999),
which was used in the AIPS-98 Planning Competition (Long
et al. 2000). The authors refer to the complexity of the hit-
ting set problem to explain why generating a set of initial
facts to their fact generation tree is NP-complete. Haslum,
Slaney, and Thiébaux (2012), on the other hand, use the no-
tion of minimum-cost hitting sets for disjunctive sets of ac-
tion landmarks to provide an efficient way of calculating a
h+-heuristic for deletion-free planning problems. However,
none of the above mentioned works covers the idea of subset
minimal and super-set maximal abstractions w.r.t. the sets of
the abstraction inducing facts.

Preliminaries
We base our theoretical propositions on the notion of unsolv-
ability in classic STRIPS planning. In STRIPS planning, an
automated planner is given a description of an initial state in
terms of propositional variables that are assumed to hold. A
goal state is also provided to the planner as a set of propo-
sitional variables. A plan is then to be computed, consisting
of a sequence of actions that transform the initial state, step
by step, into the goal state. The available actions to the plan-
ner are typically specified by a set of preconditions (propo-
sitional variables) that specify when the action is applica-
ble to a state. By applying an action to a state, the state is
modified by removing propositional variables listed in the
action’s delete effects and by adding the propositions of the
action’s add effects. We formally define these ideas as fol-
lows:
Definition 1. A STRIPS planning problem, short planning
problem or planning task Π, is a quadruple ⟨V,A, I,G⟩. The
set V is a (finite) set of propositions (facts) and we call any
subset s ⊆ V a state. The (finite) set A of actions is such that
each action a ∈ A is a triple ⟨pre(a), del(a), add(a)⟩ with
add(a)∩del(a) = ∅ and where pre(a), del(a), add(a) ⊆ V
denote the preconditions, delete effects, and the add effects
of the action, respectively. The sets I ⊆ V and G ⊆ V
describe the initial and the goal state, respectively.

We say that an action a ∈ A is applicable in a state s,
denoted s |= a, if pre(a) ⊆ s. The application of such an a
to s is appl(s, a) = (s \ del(a)) ∪ add(a).

Note that the above introduced notation for a state is an
abbreviation in that, strictly speaking, a state s is a function
s : V → {true, false}, which we choose to denote as s =
{v ∈ V | s(v) = true}.
Definition 2. The state space of a STRIPS planning prob-
lem Π = ⟨V,A, I,G⟩ is a tuple ⟨S,A, T, I, SG⟩ where the
(world) states S = 2V are the subsets of V , the transitions T
are {s a−→ s′ | s |= a, s′ = appl(s, a)}, and the goal states
SG are {s ∈ S | G ⊆ s}.

A sequence of actions a⃗ = ⟨a1, . . . , an⟩ is a solution for
a state s ∈ S, if s a1−→ s1, . . . , sn−1

an−−→ s′ ∈ T and s′ ∈
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Figure 1: Sketches for Example 1, with Π1 (left, problematic
parts highlighted), and Π2 (right), where the delete effect g
is denoted as ¬g

SG. A solution for I is a plan for Π. A planning problem
Π = ⟨V,A, I,G⟩ is solvable if a plan for I exists and it is
unsolvable otherwise.
Example 1. As (running) examples, consider the planning
problems Π1 = ⟨V1, A1 = {a11, a21}, I1, G1⟩ and Π2 =
⟨V2, A2 = {a12, a22}, I2, G2⟩ (cf. Figure 1) with

V1 = {a, b, c, g, g′} V2 = {b, c, g, g′}
a11 = ⟨{a, b}, ∅, {c, g}⟩ a12 = ⟨{b}, ∅, {c, g}⟩
a21 = ⟨{c}, {g}, {g′}⟩ a22 = ⟨{c}, {g}, {g′}⟩
I1 = {b} I2 = {b}
G1 = {g, g′} G2 = {g, g′}

Both planning problems differ only in the proposition a,
which is used as a precondition for a11 in Π1, but which does
not occur in Π2. The planning problem Π1 is unsolvable:
For the initial state I1 in Π1, no action is applicable as nei-
ther the preconditions of a11 nor the preconditions of a21 are
satisfied and G1 ̸⊆ I1.

The planning problem Π2, on the other hand, is solvable:
For the initial state I2 in Π2, the action a12 is applicable, i.e.
I2 |= a12, and s1 = appl(I2, a

1
2) = {b, c, g}. One can now

apply a22 to get s2 = appl(s1, a
2
2) = {b, c, g′}. While this

removes one of the goals, action a12 is still applicable and
applying it again yields the goal state s3 = appl(s2, a

1
2) =

{b, c, g, g′}. Hence, ⟨a12, a22, a12⟩ is a solution for Π2.
In the remainder, it will be convenient to restrict planning

problems to certain subsets of facts, which are or should be
in the focus of the knowledge engineer. Hence, we introduce
the notion of abstractions of planning tasks:
Definition 3. Let Π = ⟨V,A, I,G⟩ be a planning problem.
For P ⊆ V , the abstraction of Π w.r.t. the projection P ,
denoted Π|P , is the planning problem ⟨P,A′, I ∩ P,G ∩
P ⟩ with A′ = {⟨pre(a) ∩ P, del(a) ∩ P, add(a) ∩ P ⟩ |
⟨pre(a), del(a), add(a)⟩ ∈ A}. We say that the abstraction
respects the goal if G ⊆ P .

We introduce the notion of goal-respecting abstractions
since preserving goal states might sometimes be important
to knowledge engineers, although it is not required for our
method.
Example 2. Considering again our planning problems
Π1 and Π2 from Example 1. We see that the projection
{b, c, g, g′} w.r.t. Π1 yields exactly Π2 = Π1|{b,c,g,g′}, i.e.
Π2 abstracts away the proposition a. Note again that while
Π1 is unsolvable, its abstraction Π2 is solvable.

Hitting Set Properties of Solvable and
Unsolvable Abstractions

As previously mentioned, debugging an unsolvable planning
problem without tool support can be very hard. In order to
support a knowledge engineer with this task, we now present
our approach of computing minimal unsolvable and maxi-
mal solvable abstractions for an unsolvable planning prob-
lem. While, on the one hand, the minimal unsolvable ab-
stractions provide the core of the planning problem that is
unsolvable, the maximal solvable abstractions, on the other
hand, highlight which parts of the planning problem are
“free of problem”, i.e. solvable as desired.

Definition 4. Let Π = ⟨V,A, I,G⟩ be a planning problem
and P ⊆ V a projection. We call Π|P a solvable (unsolv-
able) abstraction if Π|P is solvable (unsolvable). An unsolv-
able abstraction Π|P is a minimal unsolvable abstraction, if,
for each proper subset P ′ of P , Π|P ′ is solvable. A solv-
able abstraction Π|P is a maximal solvable abstraction if,
for each proper super-set P ′ of P , Π|P ′ is unsolvable.

Note that for finding a minimal unsolvable abstraction,
we can minimize the projection P . We can, however, equiv-
alently phrase the problem of finding maximal solvable ab-
stractions as a minimization problem (which we find con-
venient in the remainder) by finding a solvable abstraction
Π|V \P such that P is minimal, i.e. for any P ′ ⊊ P , Π|V \P ′

is unsolvable. We formalize this complementary notion of
abstractions as follows:

Definition 5. Let Π = ⟨V,A, I,G⟩ be a planning problem.
For a projection P ⊆ V , we call Π|V \P the complement ab-
straction of Π w.r.t. P and V . If the complement abstraction
Π|V \P is a maximal solvable abstraction, we simply refer
to Π|V \P as maximal solvable complement abstraction. A
projection P that induces a (maximal) solvable complement
abstraction Π|V \P is also called a (minimal) repair for Π.

Following the notion of explaining why a planning prob-
lem is unsolvable, the intuition behind repairs is that such
sets tell us which facts need to be removed from the set of
facts in order to obtain a (maximal) solvable abstraction. In
that sense the notion of a repair seems to be justifiable.

If no confusion is likely to arise, we also just refer to a
complement abstraction Π|V \P without saying that it is the
complement abstraction of Π w.r.t. P .

Example 3. Consider again the planning problem Π1 from
Example 1, which overall has 32 abstractions for all com-
binations of propositions in V (including V and ∅). Table 1
shows Π1 and its abstractions that are minimal unsolvable or
maximal solvable including Π2 = Π1|{b,c,g,g′} = Π1|V \{a}
in row (2), which is a maximal solvable abstraction. That
is, {a} is a minimal repair for Π1. Since also Π1|V \{c,g} in
row (4) and Π1|V \{g,g′} in row (5) are maximal solvable ab-
stractions, we have that also {c, g} and {g, g′} are minimal
repairs for Π1.

Since the repair {g, g′} drops all goals, it is unlikely a
desired repair. The repair {c, g} still drops one goal, but it
might be taken to indicate some problems with the effects of
a11. The repair {a}, however, makes it clear that a is causing

3 of 8



V A I G solvability

(1) Π1|{a,b,c,g,g′} =Π1|V \∅ =⟨{a, b, c, g, g′},{⟨{a, b}, ∅, {c, g}⟩, ⟨{c}, {g}, {g′}⟩},{b},{g, g′}⟩ unsolvable

(2) Π1|{b,c,g,g′} =Π1|V \{a} =⟨{b, c, g, g′}, {⟨{b}, ∅, {c, g}⟩, ⟨{c}, {g}, {g′}⟩}, {b},{g, g′}⟩ max. solvable

(3) Π1|{a,c,g′} =Π1|V \{b,g} =⟨{a, c, g′}, {⟨{a}, ∅, {c}⟩, ⟨{c}, ∅, {g′}⟩}, ∅, {g′} ⟩ min. unsolvable

(4) Π1|{a,b,g′} =Π1|V \{c,g} =⟨{a, b, g′}, {⟨{a, b}, ∅, ∅⟩, ⟨∅, ∅, {g′}⟩}, {b},{g′} ⟩ max. solvable

(5) Π1|{a,b,c} =Π1|V \{g,g′} =⟨{a, b, c}, {⟨{a, b}, ∅, {c}⟩, ⟨{c}, ∅, ∅⟩}, {b},∅ ⟩ (trivially) max. solvable

(6) Π1|{a,g} =Π1|V \{b,c,g′} =⟨{a, g}, {⟨{a}, ∅, {g}⟩, ⟨∅, {g}, ∅⟩}, ∅, {g} ⟩ min. unsolvable

Table 1: Planning problem Π1 from Example 1 with its minimal unsolvable and maximal solvable abstractions

a problem. Either a is used as an over-restrictive precon-
dition for a11 or is missing in the initial state. Which fix is
the preferred one (add a to the initial state or remove a as
precondition) is to be decided by the knowledge engineer
according to the domain requirements.

While the repairs point to the source of the problem, a
knowledge engineer can further look at the minimal unsolv-
able abstractions as they highlight the core parts that are
responsible for the unsolvability. For example, by looking
at Π|{a, g} in row (6), one can clearly see that the plan-
ning problem for just a and the single goal g is unsolvable.
Assuming that one wants to stick to the goal g, this addi-
tionally indicates the problematic use of the proposition a.
This is further substantiated by looking at the other minimal
unsolvable abstraction Π|{a, c, g′} in row (3), which shows
that also the goal g′ cannot be reached in the presence of a
and c.

The core idea of our approach hinges on the monotonic-
ity w.r.t. solvability under the removal of propositions, i.e.
by abstracting propositions away from a solvable planning
problem, we always again get a solvable planning problem:

Lemma 1. Let Π = ⟨V,A, I,G⟩ be a planning problem
such that P ′ ⊆ P ⊆ V . If Π|P is solvable, then Π|P ′ is
solvable.

Proof. Since Π|P is solvable, there is a solution
⟨a1, . . . , an⟩ such that the sequence I ∩ P = s0

a1−→
s1, . . . , sn−1

an−−→ sn ∈ T and sn is a goal state, i.e.
sn ∈ SG∩P . We consider two cases: (i) ΠP ′ is not goal
respecting and (ii) ΠP ′ is goal respecting.

For case (i), we have G ∩ P ′ = ∅ and, hence, ΠP ′ is
trivially solvable.

For case (ii), we have G ∩ P ′ ̸= ∅. We construct
⟨a′1, . . . , a′n⟩ by setting, for 1 ≤ i ≤ n, a′i = ⟨pre(ai) ∩
P ′, del(ai) ∩ P ′, add(ai) ∩ P ′⟩ and show that ⟨a′1, . . . , a′n⟩
is a solution for Π|P ′ , i.e. there is a transition I ∩ P ′ =

s′0
a′
1−→ s′1, . . . , s

′
n−1

a′
n−−→ s′n and s′n ∈ SG∩P ′ . First, we

have s′0 = s0 ∩ P ′ since P ′ ⊆ P and, hence, s0 ∩ P ′ =
I ∩ P ∩ P ′ = I ∩ P ′. We have that applicability is pre-
served for states under set intersection, i.e. we have that
pre(ai) ⊆ si implies pre(ai) ∩ P ′ ⊆ si ∩ P ′. In partic-
ular, a′1 is applicable to the initial state s′0 = s0 ∩ P ′ of
Π|P ′ . We next show that s′i = si ∩ P ′ also for 1 ≤ i ≤ n:

Since si = (si−1 \ del(ai)) ∪ add(ai), we have si ∩ P ′ =
((si−1\del(ai))∪add(ai))∩P ′ = ((si−1\del(ai))∩P ′)∪
(add(ai)∩P ′) = ((si−1∩P ′)\(del(ai)∩P ′))∪add(a′i) =
(s′i−1 \ del(a′i)) ∪ add(a′i) = s′i. Hence, s′n = sn ∩ P ′ and,
since G∩P ′ ̸= ∅ and G∩sn ̸= ∅, we have s′n ∈ SG∩P ′ .

Sets inducing minimal unsolvable abstractions and repairs
can better support the knowledge engineer if the two sets are
somehow connected such that comparing the minimal un-
solvable abstractions and the repairs (or the induced maxi-
mal solvable complement abstractions) can give insights into
where exactly the problem is. The following theorem shows
that this is indeed the case:
Theorem 1. Let Π = ⟨V,A, I,G⟩ be an unsolvable plan-
ning problem. For each Pu, Ps ⊆ V such that Π|Pu is a min-
imal unsolvable abstraction of Π and Π|V \Ps

is a maximal
solvable complement abstraction of Π, we have Pu∩Ps ̸= ∅.

Proof. To the contrary of what is to be shown, assume that
Pu, Ps exist such that Pu ∩ Ps = ∅. This implies Pu ⊆
V \ Ps. Given that Π|V \Ps

is solvable by assumption and
since Pu ⊆ V \Ps, Lemma 1 gives us that Π|Pu

is solvable,
which gives us the desired contradiction to our assumption
that Π|Pu

is unsolvable.

Based on Theorem 1, we next show that sets inducing
minimal unsolvable abstractions and repairs are even further
related, which allows us to come up with an incremental al-
gorithm for computing these sets based on Reiter’s minimal
hitting set algorithm (Reiter 1987). For this, we show that
every repair is a minimal hitting set for the set that contains
all sets that induce minimal unsolvable abstractions, where
a hitting set is defined as follows:
Definition 6. Let P be a set of sets of some elements. A set
H is a hitting set for P if H ∩ P ̸= ∅ for each P ∈ P .
A hitting set H for P is minimal if every H ′ ⊊ H is not a
hitting set for P .
Lemma 2. Let Π = ⟨V,A, I,G⟩ be an unsolvable plan-
ning problem, U the set of projections that induce minimal
unsolvable abstractions, and S the set of projections that in-
duce maximal solvable complement abstractions of Π. Then
each Ps ∈ S is a minimal hitting set for U .

Proof. The desired hitting set property follows directly from
Theorem 1. To show that elements of S are indeed minimal
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hitting sets for U , let Ps ∈ S. Furthermore, let P ′
s ⊊ Ps be a

proper subset of Ps. It necessarily follows that Π|V \P ′
s

is un-
solvable, since Π|V \Ps

is already maximal solvable. Hence,
a set Pu ⊆ V \P ′

s exists, such that Pu ∈ U . It is now easy to
see, that Pu ∩ P ′

s = ∅ must hold, which violates the hitting
set property for P ′

s, and therefore Ps is indeed a minimal
hitting set for the set U .

The next lemma shows that the hitting set property is in
fact diametrical, such that every set inducing a minimal un-
solvable abstraction is also a minimal hitting set for the set
that contains all repairs.

Lemma 3. Let Π = ⟨V,A, I,G⟩ be an unsolvable plan-
ning problem, U the set of projections that induce minimal
unsolvable abstractions, and S the set of projections that in-
duce maximal solvable complement abstractions of Π. Then
each Pu ∈ U is a minimal hitting set for S.

The proof of Lemma 3 is analogous to that of Lemma 2.

Computing Minimal Solvable and Maximal
Unsolvable Abstractions via Hitting Set Trees

With Algorithm 1, we introduce a first and naive way of
calculating a single projection that induces a minimal un-
solvable abstraction of an unsolvable planning problem Π =
⟨V,A, I,G⟩. The procedure starts by initializing the set Pu

with V . It is then checked, for each proposition v ∈ V ,
whether Π|Pu\{v} is still unsolvable. If that is the case, v is
removed from Pu as Pu\v gives us a smaller and, eventually,
a minimal projection that induces an unsolvable abstraction.

Lemma 4. Let Π = ⟨V,A, I,G⟩ be an unsolvable planning
problem. Given Π as input, the output Pu of Algorithm 1 is
such that Π|Pu is a minimal unsolvable abstraction.

Proof Sketch 1. Since Π is unsolvable by assumption, Pu

is initialized such that Π|Pu
is unsolvable. Since we only

remove a proposition v from Pu, if the unsolvability of
Π|Pu\{v} is still given in Line 4, the unsolvability of the
abstraction is preserved. We can further show, that Pu is in-
deed minimal, since every proposition, that is unnecessary
for Π|Pu

and its induced abstraction to remain unsolvable,
is removed consecutively until each further removal would
turn the abstraction Π|Pu into a solvable abstraction, where
the required monotonicity follows from the contra-positive
form of Lemma 1.

Algorithm 1 returns only a single projection that induces
a minimal unsolvable abstraction. The resulting set depends
on the sequence of propositions in the initial Pu, i.e. on the
sequence of the input V . However, the algorithm can implic-
itly be used to calculate all desired projections that induce a
minimal unsolvable abstraction by permutating the input V
exhaustively:

Lemma 5. For each set Pu that induces a minimal un-
solvable abstraction of an unsolvable planning problem
Π = ⟨V,A, I,G⟩, there exists some order of propositions
in V such that Algorithm 1 returns Pu for the input Π =
⟨V,A, I,G⟩.

Algorithm 1: Finding a single minimal unsolvable abstrac-
tion
MinUnsolvAbstr compute a single Pu s.t. Π|Pu

is a mini-
mal unsolvable abstraction of Π
Input: Π = ⟨V,A, I,G⟩: an unsolvable planning problem
Output: Pu: a projection s.t. Π|Pu is a minimal unsolvable
abstraction of Π

1: Pu ← V ;
2: for v ← V do
3: if Π|Pu\{v} is unsolvable then
4: Pu ← Pu \ {v};
5: end if
6: end for
7: return Pu;

Proof Sketch 2. Assume, to the contrary of what is to be
shown, that a set Pu inducing a minimal unsolvable abstrac-
tion Π|Pu of Π = ⟨V,A, I,G⟩, is not returned by Algo-
rithm 1. We can show that by processing first propositions
in V \ Pu and then propositions from Pu leads to a contra-
diction as desired.

Instead of exhaustively trying each possible permutation
of input facts, it is possible to exploit that after finding a
projection P1 inducing a minimal unsolvable abstraction, it
is known that the next projection P2 inducing a minimal
unsolvable abstraction (assuming its existence) differs in at
least one element from P1. Otherwise P2 would be equal
to P1 (or smaller than P1, which contradicts the assump-
tion that P1 is minimal). This observation facilitates the use
of Algorithm 1 in a more goal-directed way to produce an-
other solution based on an already known solution P1, by
selecting an arbitrary fact v ∈ P1 and alter the input for the
subsequent run of Algorithm 1 to Π|V \{v}. This idea can be
continued inductively yielding a tree data structure.
Example 4. Consider again the planning problem Π1 from
Example 1. If we assume a lexicographic ordering of the
propositions, the initial run of Algorithm 1 results in the
projection {a, c, g′}, inducing a minimal unsolvable abstrac-
tion. We can take this set to form the root node n0 of a tree
structure as depicted in Figure 2. For each proposition of this
set, a branch is created. Note that the node n1 (Π1|V \{a})
equals the problem Π2 from Example 1, which is known to
be solvable. Thus, as it cannot be rendered unsolvable by
minimization (Lemma 1), the node is marked with the la-
bel ⊥, without the need for running Algorithm 1, rendering
n1 as a leaf-node of the tree. The labels for the subsequent
nodes, n2 and n3, are calculated by running Algorithm 1
with Π1|V \{c} and Π1|V \{g′}, respectively, as input. Both
are still unsolvable sub-problems and yield the labels for
their following sub-nodes. The procedure is then repeated
for each child node of n2 and n3. In the case of node n2,
branches are then created for a and g, where the branch for a
leads to the sub-problem Π1|V \{c,a}. By looking at the path
back to the root, each branch corresponds to one proposition
that is taken out of the initial set of facts V of the original
problem Π1. It happens that this sub-problem is also already
solvable, preventing the run of Algorithm 1 for the node,
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n0 : {a, c, g′}

n1 : ⊥

a

n2 : {a, g}

n4 : ⊥

a

n5 : ⊥

g

c

n3 : {a, g}

n6 : ⊥

a

n7 : ⊥

g

g′

Figure 2: Hitting set tree from Example 4

and which is again represented by marking the node n4 with
⊥. The same holds for the sibling node n5 which is also
marked with ⊥. The rest of the tree is expanded and eval-
uated in the same way, but no further minimal unsolvable
abstractions can be found. Therefore, the nodes n6 and n7

are also marked with ⊥, and, no further calls to Algorithm 1
are required. By comparing the labels of the non-leaf nodes
to rows (3) and (6) of Table 1, we can see that this procedure
finds every set that induces a minimal unsolvable abstrac-
tion, although the set {a, g} is found twice. By joining into
a set the edge labels of the paths from each leaf node to the
root, we obtain valid repairs for Π1 (i.e. {a}, {a, c}, {g, c},
{a, g′}, and {g, g′}).

In fact, every path from a leaf node to the root node in
Figure 2 denotes a valid repair, although not necessarily
minimal. If calculated exhaustively, the tree will contain all
minimal repairs of the problem (Lemma 7), which, by our
Lemma 2, are minimal hitting-sets for the set of all sets in-
ducing a minimal solvable abstraction. Hence, the tree data
structure, created in Example 4 and depicted in Figure 2, is
also denoted as a hitting set tree: all sets along each path
from an arbitrary leaf node to the root represent hitting sets
for the set of non-leaf node labels. We now provide a formal
definition for this data structure:

Definition 7. Let Π = ⟨V,A, I,G⟩ be a planning problem.
A hitting set tree for minimal unsolvable abstractions for Π
is a labeled tree T = ⟨N,E,L, E⟩, with N ̸= ∅ denoting
a set of nodes, E referring to a set of edges ⟨n,m⟩ with
n,m ∈ N and L : N → 2V ∪ {⊥} assigns to each node
n ∈ N a sub-set of facts from V or the special symbol ⊥,
and E : N × N → V assigns to each edge e ∈ E a fact
v ∈ V , such that:

1. each non-leaf node n ∈ N is labeled with a set L(n) ⊆
V , such that Π|L(n) is a minimal unsolvable abstraction
and, for each v ∈ L(n), n has an outgoing edge ⟨n,m⟩ ∈
E with E(n,m) = v.

2. each leaf node n ∈ N is labeled by L(n) = ⊥.

For each n ∈ N , let H(n) be the set of labels appearing on
the path from n to the root node of T . Then the following
properties should additionally hold:

3. for each non-leaf node n ∈ N , we have L(n) ∩H(n) =
∅, and

4. for each leaf node ℓ ∈ N , we have that H(ℓ) denotes a
valid repair for Π.

We are showing, that such a data structure indeed will
contain all sets inducing minimal unsolvable abstractions in
the nodes, and all minimal repairs by joining the paths from
the leaf nodes to the roots:
Lemma 6. Let T = ⟨N,E,L, E⟩ be a hitting set tree
for minimal unsolvable abstractions for a planning problem
Π = ⟨V,A, I,G⟩. Then, for each projection Pu that induces
a minimal unsolvable abstraction Π|Pu

, there exists a node
n ∈ N such that L(n) = Pu.

Proof. Let n ∈ N be a node with a maximal (w.r.t. set inclu-
sion) set H(n) (cf. Definition 7) such that H(n) ∩ Pu = ∅,
i.e. for every other node m ∈ N either H(m) ⊆ H(n) or
H(m) ∩ Pu ̸= ∅. We prove that L(n) = Pu.

Since H(n) ∩ Pu = ∅ and Pu ⊆ V , we have Pu ⊆
V \ H(n). Since Π|Pu is unsolvable, we obtain, by contra-
positive form of Lemma 1, Π|V \H(n) is unsolvable. There-
fore, by Condition 4 of Definition 7, n cannot be a leaf
node. Hence, L(n) = Pu

′ for some set Pu
′ inducing a min-

imal unsolvable abstraction Π|Pu
′ . If Pu = Pu

′ we have
proved what is required. Otherwise, since Pu is already sub-
set minimal w.r.t. inducing a minimal unsolvable abstrac-
tion and Pu

′ also induces an unsolvable abstraction, we have
Pu

′ ̸⊆ Pu. Hence, there exists some v ∈ Pu
′ \ Pu. By

Condition 1 of Definition 7, there exists ⟨n,m⟩ ∈ E with
E(n,m) = v. Furthermore, by Condition 3 of Definition 7,
Pu

′ ∩H(n) = ∅. Hence, v ̸∈ H(n) since v ∈ Pu
′. Hence,

H(m) = H(n) ∩ {v} ̸⊆ H(n) and, since v ̸∈ Pu and
H(n) ∩ Pu = ∅, we have H(m) ∩ Pu = ∅. This contra-
dicts our assumption that H(n) is a maximal set such that
H(n) ∩ Pu = ∅. This contradiction proves that L(n) = Pu

is the only possible case.

Lemma 7. Let T = ⟨N,E,L, E⟩ be a hitting set tree for
minimal unsolvable abstractions for an unsolvable planning
problem Π = ⟨V,A, I,G⟩. Then, for each set Ps that in-
duces a maximal solvable complement abstraction Π|V \Ps

,
there exists a leaf node ℓ ∈ N such that H(ℓ) = Ps.
Proof Sketch 3. We can demonstrate with Theorem 1 and
Definition 7 that, for a leaf node ℓ ∈ N , it holds that, if
H(ℓ) is maximal (w.r.t. set inclusion) and H(ℓ) ⊆ Ps then
it follows that H(ℓ) = Ps.

As already demonstrated in Example 4, some node labels
may occur more than once in a hitting set tree. The follow-
ing lemma addresses the question of the maximal number of
nodes that can occur in a hitting set tree w.r.t. to the size of
the initial planning problem:
Lemma 8. Every hitting set tree for minimal unsolvable
abstractions for an unsolvable planning problem Π =
⟨V,A, I,G⟩ has at most

∑
0≤k≤n n

k nodes, where n is the
number of facts in V .
Proof Sketch 4. By analyzing Conditions 1 and 3 of Def-
inition 7, we can show that both the depth and the branch-
ing factor of T is bounded by |V |, which gives the desired
bound.

After introducing the idea of hitting set trees for our prob-
lem at hand, we can now provide an appropriate algorithm
that constructs such a data structure.
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Algorithm 2: Finding all minimal unsolvable abstractions
MinUnsolvAbstrHST compute U s.t. Π|Pu

is a minimal un-
solvable abstraction of Π
Input: Π = ⟨V,A, I,G⟩: a planning problem (solvable or
unsolvable)
Output: U : for each Pu ∈ U , Π|Pu

is a minimal unsolvable
abstraction of Π and U is maximal

1: U ← ∅;
2: Q← {∅};
3: while Q ̸= ∅ do
4: H ← choose H ∈ Q;
5: Q← Q \ {H};
6: if Π|V \H is unsolvable then
7: Pu ←MinUnsolvAbstr(Π|V \H );
8: U ← U ∪ {Pu};
9: for v ∈ Pu do

10: Q← Q ∪ {H ∪ {v}};
11: end for
12: end if
13: end while
14: return U ;

Algorithm 2 starts by initializing an empty result set U
that will hold all sets inducing a minimal unsolvable ab-
straction for the input Π = ⟨V,A, I,G⟩ eventually (pro-
vided such abstractions exist, i.e. the input planning prob-
lem is unsolvable). Additionally, a queue Q, that holds the
unprocessed sub-paths of the tree, is initialized with a single
element – the empty set.

The algorithm then starts by taking out elements of the
queue as long as Q is not empty. The first element in Q,
assigned to H in the subsequent lines, is now the empty set.
In Line 6, it is tested if the reduced set of facts induces an
unsolvable planning problem. For H = ∅, this denotes our
input problem Π. If Π is solvable, the algorithm terminates
and returns the empty set. If Π is unsolvable, this calculates
the root node of the hitting set tree by calling Algorithm 1.
Additionally, the result is added to the overall result set U in
Line 8.

The algorithm then proceeds to put a new unprocessed
path into the queue Q for each fact v of the last set Pu known
to induce a minimal unsolvable abstraction for Π. The newly
added path is calculated by adding v to the currently pro-
cessed path H , yielding a new path deeper down the tree.
The tree is traversed in a breadth-first manner if Q is pro-
cessed based on first-in-first-out principle. Processing Q in
a last-in-first-out principle, on the other hand, would result
in a depth-first traversal of the tree.

Continuing the while-loop, the next unprocessed path is
taken out from Q, which is the first fact v from the last Pu,
such that the next to be tested sub-problem would be the
abstraction induced by V \ {v}. This addition corresponds
to the intuition as provided prior to Example 4, that the next
result set has to differ in at least one proposition from the
previously calculated set.

As new paths are added only if the sub-problem Π|V \H
is still unsolvable, the algorithm terminates eventually, since

Algorithm 3: Finding a single repair
MaxSolvAbstr compute a single Ps s.t. Π|V \Ps

is a maxi-
mal solvable complement abstraction of Π
Input: Π = ⟨V,A, I,G⟩: a solvable planning problem
Output: Ps: a projection s.t. Π|V \Ps

is a maximal solvable
complement abstraction of Π

1: Ps ← V ;
2: for v ← V do
3: if Π|V \(Ps\{v}) is solvable then
4: Ps ← Ps \ {v};
5: end if
6: end for
7: return Ps;

it will trivially stop in worst case when H equals V in each
path of the tree, such that V \H becomes empty. This yields
a trivially solvable planning problem, and, thus, stops the
algorithm from putting further sup-paths into Q.

Our approach is able to calculate minimal unsolvable ab-
stractions and valid repairs at once. By examining both si-
multaneously, the knowledge engineer can better understand
the potential shortcomings of the unsolvable model. Fur-
thermore, the iterative procedure of Algorithm 2 enables
an interactive debugging scenario. That is, the algorithm
could continuously provide minimal unsolvable abstractions
of the planning problem to the knowledge engineer, who
then might be able to identify ill-defined parts of the plan-
ning problem. This strategy has the potential to reduce the
need for exhaustively calculating the whole tree structure.

As already pointed out, the repairs denoted by the leaf
nodes in our approach are not necessarily minimal, albeit all
minimal repairs will be contained in some path of the tree
eventually, as stated by Lemma 7. However, minimal repairs
can be more intuitive in describing potentially problematic
parts of the planning problem to the knowledge engineer.
Thus, being able to calculate them without exhaustively cal-
culating the whole tree is necessary. Algorithm 3, which rep-
resents a modified version of Algorithm 1, provides a way to
obtain a single minimal repair. The procedure minimizes a
set Ps, which is initialized with the facts V . The testing con-
dition of Algorithm 3 is inverted, in comparison to Algo-
rithm 1, to test for solvability of an induced complement ab-
straction instead. To minimize a repair Ps indicated by some
currently processed leaf node, the abstraction Π|Ps

could be
inserted in Algorithm 3 to obtain the minimal repair.

Inverting Hitting Set Trees
The presented Algorithms 1 and 2 use a planning system on
several occasions as a black-box for unsolvability testing.
However, the planning community has shown more interest
in optimizing automated planning systems towards finding
plans, i.e. showing solvability, rather than showing unsolv-
ability.1 Hence, it could be beneficial to take advantage of
the shown hitting set duality and invert the hitting set tree

1As of now, only the 2016 International Planning Competition
was concerned with showing unsolvability.

7 of 8



n0 : {a}

n1 : {c, g}

n2 : {g, g′}

n4 : ⊥
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g

a

Figure 3: Inverted hitting set tree from Example 4

and the respective minimization in order to directly search
for minimal repairs instead. The inverted tree, as depicted in
Figure 3, contains the minimal repairs of Example 4 as node
labels, whereas the paths from the leaf nodes to the root now
denote sets inducing unsolvable abstractions. As already in-
dicated, Algorithm 3 is able to calculate minimal repairs for
the node labels. This procedure can then be used in con-
junction with Algorithm 2 to calculate the inverted tree, by
changing the sub-problem creation and testing condition in
Line 6 of Algorithm 2 accordingly. Our theoretical results
would then assure that such an inverted hitting set tree would
provide sets inducing minimal repairs in the nodes and sets
inducing solvable abstractions in the conjunction of the path
labels from leaf nodes to the root. In the example depicted in
Figure 3, all paths do contain minimal sets inducing unsolv-
able abstractions, this is, however, not necessarily the case.
Further minimization of the sets indicated by the leaf nodes
can be achieved with Algorithm 2.

Discussion
Besides presenting minimal reductions of the planning prob-
lem at hand, our approach also provides potential repairs.
These repairs are only meant to guide the knowledge engi-
neer in locating the source of the problem. In that sense, the
presented methods are not suited for automatic repair be-
cause the intention of the knowledge engineer is unknown.

Modeling a planning problem is an incremental process
(cf. Sreedharan et al. (2020)), during which the model may
be rendered unsolvable after a certain change. In that sense,
restricting the debugging process to the latest changes would
certainly speed up the whole process. One way to account
for that, would be to extend the presented approach to re-
spect a certain signature of facts that are included in the
search process. Alternatively, the knowledge engineer can
additionally guide the already goal-oriented algorithm by
pointing out more or less interesting propositions to cover
next. If, for example, the knowledge engineer is certain
about how a given action should be defined, some propo-
sitions can be ruled out in advance to the next step of the
algorithm and, thus, guide the algorithm for what subsets of
facts to cover next.

Exploring more properties of sets inducing minimal un-

solvable abstractions and maximal solvable complement ab-
stractions, w.r.t. their explainability potential, would cer-
tainly be beneficial. It could be interesting, for example, to
rank propositions by their occurrence in those sets, or in the
respective non-empty intersections.

After discussing possible extensions of the explanatory
potential of our approach, we discus some technical opti-
mizations: Lemma 8 demonstrates that the number of nodes
of a hitting set tree can be quite high in general. Hence, op-
timizations for calculating hitting set trees more effectively
have been described in the literature, such as pruning meth-
ods or reducing memory consumption of the procedure by
only keeping one branch in memory at a time. Additionally,
establishing some kind of memoization technique to enable
the reuse of results produced by already processed input sets
H is an alternative to reduce the number of expensive plan-
ner calls. Calling Algorithm 1 after a positive condition test-
ing in Line 6 of Algorithm 2 leads, for example, in all cases
to a second call of the planner with an already established
result.

Another possible extension to directly reduce the costs of
the necessary planner calls could include calculating the cost
of the respective delete relaxed sub-problem first. This way,
testing the unrelaxed sub-problem for unsolvability would
only be necessary if the relaxed problem proves to be solv-
able.

Conclusion
In this paper, we showed how minimal unsolvable and max-
imal solvable abstractions can aid the debugging of an un-
solvable planning problem. The projections that induce such
(complement) abstractions can be used, for example, to de-
tect ill-defined effects or over-restricted preconditions of ac-
tions or errors in the initial or goal state that potentially cause
the unsolvability of a planning problem at hand. We demon-
strated the diametrical nature of the hitting set properties be-
tween projections inducing minimal unsolvable abstractions
and projections inducing maximal solvable complement ab-
stractions. Subsequently, we introduced algorithms, based
on hitting set trees, that utilize the demonstrated theoretical
properties to enumerate projections inducing minimal un-
solvable abstractions. The dual nature of our approach en-
ables the calculation of the maximal solvable complement
abstractions “en passant” as a by-product of the former enu-
meration. We closed by sketching how these algorithms can
be used in an interactive debugging scenario, where a system
can present minimal unsolvable abstractions and suggested
repairs to knowledge engineers confronted with an unsolv-
able planning task. Finally, we discussed possible optimiza-
tions to our algorithms as well as further research to be con-
ducted in order to explore the full potential for explainability
of minimal unsolvable and maximal solvable abstractions,
respectively.
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Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast De-
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and Röger, G. 2022. Machetli: Simplifying Input Files for
Debugging. ICAPS 2022 System Demonstrations.
Koehler, J. 1999. RIFO within IPP. Technical report, Tech.
rep. 126, University of Freiburg.

Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y.
1997. Extending Planning Graphs to an ADL Subset.
In Steel, S.; and Alami, R., eds., Recent Advances in AI
Planning, 4th European Conference on Planning, ECP’97,
Toulouse, France, September 24-26, 1997, Proceedings, vol-
ume 1348 of Lecture Notes in Computer Science, 273–285.
Springer.
Long, D.; Kautz, H. A.; Selman, B.; Bonet, B.; Geffner, H.;
Koehler, J.; Brenner, M.; Hoffmann, J.; Rittinger, F.; Ander-
son, C. R.; Weld, D. S.; Smith, D. E.; and Fox, M. 2000. The
AIPS-98 Planning Competition. AI Mag., 21(2): 13–33.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1): 57–95.
Sreedharan, S.; Chakraborti, T.; Muise, C.; Khazaeni, Y.;
and Kambhampati, S. 2020. –d3wa+–a case study of XAIP
in a model acquisition task for dialogue planning. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 30, 488–497.
Yang, Q. 1992. A theory of conflict resolution in planning.
Artificial Intelligence, 58(1-3): 361–392.

9 of 8


