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Abstract

The aim of classical automated planning is to find a sequence
of actions, a plan, that changes the state of the world from a
given initial state to a state that satisfies the goal condition.
Most research in the field focuses on heuristic search, which
attempts to find a plan on a fully grounded model of the plan-
ning task. However, obtaining the full grounding is often in-
feasible as its size can be exponentially larger than the origi-
nal input. We follow up on previous work that introduced par-
tial grounding for planning using a relevance prediction esti-
mate obtained from classical machine learning models. These
models are trained offline, on a per-domain basis, to estimate
how likely it is for a plan to include a given action.
In this article we leverage recent advances in the field of lan-
guage models in natural language processing (NLP) to im-
prove these estimates. We use small language models to cre-
ate word embeddings for actions and facts directly from their
textual representation. These models provide fixed-length
representations for actions and facts reached along a delete-
relaxed solution of a planning task, which can be obtained
efficiently. We show that these feature vectors can be used to
train predictors of action relevance, that consistently identify
relevant actions on an established set of hard-to-ground plan-
ning benchmarks.

1 Introduction
In classical (satisficing) planning, given a model of the en-
vironment, usually represented as a set of possible actions
schemas and an initial state (described as a set of facts), we
aim to find a finite sequence of operators — which are suit-
able instantiations of the action schemas — that can trans-
form the initial state into a state satisfying the required goal.

Planning models are usually described in the Planning
Domain Definition Language (PDDL) (McDermott et al.
1998) in terms of predicates and action schemas with ar-
guments that can be instantiated with a set of objects. Most
planners, however, work on a grounded representation with-
out free variables, like STRIPS (Fikes and Nilsson 1971) or
FDR (Bäckström and Nebel 1995).

In recent years, much of the research has focused on
the search aspect of the problem described above and as-
sumes that all relevant instantiations of the action schemas
are available. Grounding is the process of translating a task
in the lifted PDDL representation to an instantiated repre-
sentation. It requires computing all relevant instantiations

that assign objects to the arguments of predicates and ac-
tion schema parameters, even though only a small fraction of
these instantiations might be necessary to solve the task. For
many planning domains, the assumption of a fully grounded
model cannot be maintained, as the set of all operators might
be too large to represent (it often scales exponentially with
the size of the lifted representation). Hence, working with
a partially grounded model can be necessary. Furthermore,
search complexity hinges on the number of operators, so that
reducing this number (while ensuring plan existence) can di-
rectly impact search complexity and improve performance.

The success of planners like FF (Hoffmann and Nebel
2001) or LAMA (Richter, Westphal, and Helmert 2011) in
finding plans for many planning tasks is undeniable. How-
ever, since most planners use full grounding, they might fail
even before search starts whenever a full instantiation is not
possible, which makes grounding a crucial limiting factor
in the success of satisficing planners. Recently, an alterna-
tive approach to solving planning tasks has become more
popular, working directly on the lifted PDDL representation
(Ridder and Fox 2014; Corrêa et al. 2020; Lauer et al. 2021).
Most lifted planners are still based on heuristic search, but
struggle to keep up with their grounded counterparts when
the search problem is challenging. That is because successor
generation is less efficient and availability of strong heuris-
tics for lifted planning is still limited (Corrêa et al. 2021;
Wichlacz, Höller, and Hoffmann 2022; Corrêa et al. 2022;
Corrêa and Seipp 2022). Besides this, pruning methods that
work on PDDL level have been proposed (Sievers et al.
2019; Fišer 2020), but all of these methods preserve com-
pleteness, so they are not comparable to our approach.

In this article, we follow up on previous work that intro-
duced partial grounding for planning based on relevance
prediction using classical machine learning models (Gnad
et al. 2019). These models are trained offline on a per-
domain basis (using solely the information in the initial and
goal description) to estimate how likely it is for a plan to in-
clude a given operator. We extend this approach by showing
that information present in the set of relaxed facts, i.e. the
facts achieved along a delete-relaxed solution of the plan-
ning task (Hoffmann and Nebel 2001) is also useful to infer
operator relevance. Crucially, these facts can be computed
very efficiently. In this way, the standard grounding mecha-
nism (that progressively grounds all reachable operators en-



abled from the initial state of the problem) can be adapted
to generate operators in the order induced by the predicted
relevance score obtained from our machine learning models.
More precisely, we leverage recent advances in the field of
natural language processing (NLP) to synthesize the infor-
mation provided by the textual representation of operators
and facts into fixed-length feature vectors using word em-
beddings. We then use these models to encode facts reached
along a delete-relaxed solution of a planning task to train a
predictor of operator relevance.

We evaluate our approach on several relevant planning do-
mains to empirically demonstrate the potential performance
gains, while releasing the set of instances used for training
and the obtained relevance prediction models to foster repro-
ducibility and encourage further research on machine learn-
ing applications within planning.

We now provide a brief outline of our contributions in this
article:

• We show that information obtained from the set of re-
laxed facts of a planning task can be used to predict op-
erator relevance during grounding.

• We provide a general framework for the evaluation of
grounding techniques.

• We release a data set of solved planning tasks for differ-
ent planning domains, together with all the information
required to develop our models.

2 Background
In what follows we will mostly assume, for simplicity, that
tasks are specified in the STRIPS subset of PDDL (Fikes
and Nilsson 1971), but our algorithms and implementation
are directly applicable to a larger subset of PDDL containing
ADL expressions (Pednault 1989).1

A (lifted) PDDL task ΠPDDL is a tuple
(P,A,ΣC ,ΣO, I, G) where P is a set of predicates,
A is a set of action schemas, Σ := ΣC ∪ΣO is a non-empty
set of objects (with constants ΣC , and non-constant objects
ΣO), I is the initial state, and G is the goal We denote
individual parameters of action schemas and predicates with
x, y, z and sequences of parameters with X,Y, Z. An action
schema a[X] is a triple (pre(a), add(a), del(a)), consisting
of preconditions, an add list, and a delete list, all of which
are subsets of P , possibly pre-instantiated with objects
from ΣC , such that X (the interface of a[X]) is the set of
variables that appear in pre(a) ∪ add(a) ∪ del(a). I and G
are subsets of P , instantiated with objects from Σ.

A PDDL task ΠPDDL can be divided into two parts: the
domain specification (P,A,ΣC) which is common to all in-
stances of the domain, and the task specification (ΣO, I, G)
which is different for each instance of a domain.

A (grounded) STRIPS task Π is a tuple (F,O, I,G),
where F is a set of grounded predicates, called facts, and
O is a set of grounded action schemas, called operators. A
state s ⊆ F is a set of facts, I ⊆ F is the initial state
and G ⊆ F is the goal. An operator o is applicable in

1The only limitation is an efficient implementation of the com-
putation of relaxed facts, see below.

a state s if pre(o) ⊆ s. In that case, the outcome state is
s′ = (s\del(o))∪ add(o), and we write s o−→ s′ for the tran-
sition from s to s′ via o. For a sequence of operators o, we
write s o−→ t if the operators in o can be iteratively applied to
s, resulting in t. A sequence o, with I

o−→ sG, is a plan for Π
if G ⊆ sG. A task Π is solvable if a plan exists.

We define the delete-relaxation of a task Π as the task Π+

obtained by setting del(o) = ∅, for all o ∈ O (Hoffmann
and Nebel 2001). We say that Π is delete-relaxed solvable if
Π+ is solvable. A relaxed plan for Π is a plan solving Π+.
The relaxed facts for Π are a set of instantiated predicates
obtained by applying a relaxed plan π+ to the initial state,
formally

⋃
o∈π+ add(o). Notice that predicates in a set of

relaxed facts can naturally be ordered by the first operator
in the relaxed plan that included them. We will assume that
a set of relaxed facts is represented as a list l that linearize
this order. Relaxed plans and their associated lists of ordered
relaxed facts can be computed efficiently on the lifted model
by using tools like PowerLifted (Corrêa et al. 2020).

Given a PDDL task ΠPDDL, we can compute the cor-
responding STRIPS task Π by instantiating the predicates
and action schema with the objects in Σ. Then, F contains
a fact for each possible assignment of objects in Σ to the
arguments of each predicate P [X] ∈ P , and O contains
an operator for each possible assignment of objects in Σ to
each action schema a[X] ∈ A. In practice, we do not enu-
merate all possible assignments of objects in Σ to the argu-
ments in facts and action schema. Instead, only those facts
and operators are instantiated that are delete-relaxed reach-
able from the initial state (Helmert 2009). But even doing so,
the grounded task can be significantly larger than the origi-
nal lifted representation, since it grows exponentially in the
number of free variables in predicates and action schemas.

We will now briefly summarize the framework for par-
tial grounding we introduced in Gnad et al. (2019), which
are based on the grounding algorithm of Fast Down-
ward (Helmert 2006). To ground a planning task, this al-
gorithm performs a fix-point computation, where a queue is
initialized with the facts in the initial state and in each it-
eration one element of the queue is popped and processed.
If it is a fact, then operators with preconditions already pro-
cessed are added to the queue. If it is an operator, all its
add effects are added. The algorithm terminates when the
queue is empty. We describe the algorithm for STRIPS tasks,
but it can be adapted to support other PDDL features (see,
e.g., Helmert (2009)).

Algorithm 1 shows our approach. The main difference
with respect to the standard algorithm described above is
that it can stop before the queue is empty, and operators
are instantiated in a particular order. Full grounding ter-
minates only when the queue is empty, ensuring that all
delete-relaxed reachable facts and operators are grounded
(as delete-relaxation is an over-approximation, this pre-
serves completeness and optimality). Instead, Algorithm 1
can be stopped also by the Stop condition. More impor-
tantly, full grounding algorithms extract elements from the
queue in an arbitrary order, since order is irrelevant if all op-
erators are grounded. Conversely, Algorithm 1 grounds all



Algorithm 1: Partial Grounding.

Input: A PDDL task Π = (P,A,ΣC ,ΣO, I, G)
Output: A STRIPS task Π′ = (F,O, I,G)

1 q ← I ; F ← ∅ ; O ← ∅ ;
2 while ¬q.empty() ∧ ¬Stop do
3 if q.containsFact() then
4 f ← q.popFact() ; F ← F ∪ {f} ;
5 for o ̸∈ O ∧ pre(o) ⊆ F do
6 q.insert(o) ;
7 else
8 o← q.popBestOp() ; O ← O ∪ {o} ;
9 for f ̸∈ F ∧ f ∈ add(o) do

10 q.insert(f ) ;
11 return (F,O, I,G)

facts that have been added to the queue with preference over
operators to ensure that effects of grounded operators are
part of the grounded task. The popBestOp() function uses a
heuristic criterion to determine the order of said operators.

It is important to note that defining the Stop condition is
non-trivial. Clearly we should require at least that the goal
is included in the set of relaxed facts (i.e., G ⊆ F ), but
this does not ensure plan existence. On the other hand, if the
heuristic used by popBestOp() is good (i.e., if relevant op-
erators are consistently chosen) then we know that we can
stop “soon” after G ⊆ F holds, since most planning tasks
have plans with relatively few operators when compared to
the fully grounded set. In this article, we will take a prag-
matic approach and define arbitrarily that Stop will hold af-
ter G ⊆ F when a predefined number N of operators has
been grounded. If search for a plan fails for such N , it will
be iteratively incremented. In the next section we describe
in detail the heuristic used by the popBestOp() function.

3 Relaxed Information and Language
Models for Grounding

In Gnad et al. (2019) we show two machine learning meth-
ods (one based on inductive relational trees and another
using classification/regression with relational features) that
can be used to define a priority function f : O → [0, 1]
that estimates whether operators are relevant or not for a
given planning task. These models are trained on small, op-
timally solved planning tasks of a given domain, a set of in-
stances that share the same action schemas, predicates, and
constants. Intuitively, they use features from the initial state
and goal to predict which action schema instantiations are
most relevant. It is important to notice that planning tasks
available at training usually have different objects than those
encountered during evaluation so that the chosen features
cannot refer to specific objects in ΣO, and learning has to
abstract from specific instance characteristics.

While the approach was successful for many planning do-
mains, the initial state and goal information is limited, since
we cannot expect to properly predict the correct instantiation
of schemas that act on state features that are not contained in
any of these states. To address this shortcoming, we propose

to use the list of relaxed facts that describes relevant objects
along a complete relaxed plan. In the rest of this section, we
will explain how we harvest this information.

Defining machine learning models in terms of lists of re-
laxed facts presents a number of challenges. Once more, we
have the problem of abstracting from the set ΣO of objects
that explicitly appear in the list. Moreover, lists will have
different sizes, and most machine learning models require a
fixed number of features. We propose to address both issues
using natural language models.

A language model is a probability distribution over se-
quences of words of a given language like Spanish or En-
glish. Given any finite sequence of words w, a language
model assigns a probability P (w) to it, in terms of the words
that appear in w. Language models learn these probabili-
ties by training on relevant text corpora. However, since lan-
guages can be used to express an infinite variety of gram-
matical sentences, language modeling faces the problem
of assigning non-zero probabilities to linguistically valid
sequences that may never be encountered during training,
and several modeling approaches have been designed to ad-
dress this issue (applying the Markov assumption, using
recurrent neural networks or transformers, etc). Language
models are helpful for a variety of problems in computa-
tional linguistics, from initial applications in speech recog-
nition (Kuhn and De Mori 1990) to ensure that nonsensi-
cal (i.e., low-probability) word sequences are not predicted
to wider use in machine translation (Andreas, Vlachos, and
Clark 2013) (e.g., scoring candidate translations), informa-
tion retrieval (Ponte and Bruce 1998), among others.

We will use natural language tools to define word embed-
dings for relaxed facts and operators. Typically, the repre-
sentation is a real-valued vector that encodes the meaning
of the word so that words close to each other in the vec-
tor space are expected to be similar in meaning (Jurafsky
and Martin 2000). Methods to generate this mapping include
neural networks (Mikolov et al. 2013), dimensionality re-
duction on the word co-occurrence matrix (Levy and Gold-
berg 2014b), probabilistic models (Globerson et al. 2007),
explainable knowledge base methods (Qureshi and Greene
2019), and explicit representation in terms of the context in
which words appear (Levy and Goldberg 2014a). Word and
phrase embeddings, when used as the underlying input rep-
resentation, have been shown to boost the performance in
NLP tasks such as syntactic parsing (Socher et al. 2013a)
and sentiment analysis (Socher et al. 2013b).

We will use fastText, a library developed by Grave
et al. (2017) for a wide variety of text classification tasks, to
create our word embeddings for both operators and facts. We
will now provide a brief outline of the main characteristics of
this model. The only requirement to train a fastText model
is a corpus of the desired language, namely, a set of plain
text sequences. This architecture also has three key hyper-
parameters: the desired dimension of the embeddings (dim)
and the maximum (nmax) and minimum (nmin) of the win-
dows to consider (that will be used both at the character and
word level). The input text is processed sequentially, vary-
ing the fixed window sizes between nmin and nmax, and
a training corpus is created with the characters/words and



their context. Given this training material, a neural network
is trained to obtain the probability of co-occurrence between
a given character/word, and every other character/word in
the vocabulary. The network has a binary input that identifies
each of the possible characters/words of the training mate-
rial through one-hot-encoding, and an output layer with the
same dimensionality for the co-ocurrence probabilities, with
a hidden layer of size dim connecting both. The word em-
bedding can be obtained from the trained network by simply
removing the output layer, as the weights of the hidden layer
define the embedding.

Some of fastText’s characteristics are particularly useful
in our setup. Firstly, when a word is unknown, the character-
level model can be used to return a non-null vector, which
can help us deal with unknown objects in a planning task
that did not appear in our training material. Secondly, the
fixed dimensionality of the word embedding will let us de-
fine simple machine learning models for classification, inde-
pendently of the varying length of the list of relaxed facts.
Finally, the model is designed for fast querying, which is
not usually relevant in many NLP tasks, but is crucial in our
setup where the model may be queried millions of times.

4 Our Approach
In this section we describe all details needed to create
and evaluate the models used to define the behavior of
popBestOp() in Algorithm 1. Once a domain D is fixed, the
following inputs are required:

Training Set TrD: A set of “easy” planning tasks used for
training.

Tuning Set TuD: A set of “medium” planning tasks for
parameter tuning.

Evaluation Set EvD: A set of “hard” planning tasks for
evaluation. Tasks in EvD are reserved, and they are never
available to any of the machine learning steps.

Let TD = TrD ∪ TuD ∪ EvD. For each planning task
t in TD we compute a satisficing plan and a list of relaxed
facts. We define the set of good operators GOD as the set of
operators that appears in any plan for a task in TrD ∪ TuD.
We also compute a subset AOD of the set of all operators by
uniformly sampling a predefined number of operators in D,
where we ensure that GOD and AOD are disjoint.

Language models: We create two corpora to train lan-
guage models using fastText. They will not be domain de-
pendent, i.e., we use the same language models for all the
domains included in our experiments. One of the corpus col-
lects all plans in

⋃
D TrD∪TuD, which will be used to auto-

matically define features for operators. The second one col-
lects all lists of relaxed facts in

⋃
D TrD ∪ TuD, which will

be used to automatically define features for relaxed facts. In
all cases, words are defined as strings separated by one or
more whitespaces or tabs. Sentences are separated by new-
lines. Each plan and each list of relaxed facts is considered
a sentence, listed in a single line. In all cases, the order of
operators and facts is preserved within each line.

To enlarge the size of corpora and ensure sufficient vari-
ability of objects, we performed corpora augmentation by

adding copies of each sentence where objects are renamed
increasing the index in the name of objects2. fastText was
then run with the following parameters, which are standard:

Learning rate: 0.05

Model type: Cont. Bag of Words Model (CBOW)

Epochs: 100

Word Ngrams: 4

Context windows size: 4

Dimensionality: 30

The result of this computation is two language models,
one that can be used to build representations for facts (MF ),
and one for operators (MO). We can also compute repre-
sentations for lists of arbitrary size of facts and operators by
calculating the average vector with an l2 normalization, to
make embeddings for sequences comparable to embeddings
of single words.

Regression models: In principle, it is possible to train a
regression model directly using the language models ob-
tained in the previous step. Given each task t in the train-
ing set TrD, each line in the training matrix is defined by the
representation obtained fromMF ran over the list of relaxed
facts associated with t together which the representation ob-
tained from MO for an operator o from GOD ∪ AOD, la-
beling the instance as 1 if o ∈ GOD (the operator occurs in
a plan), and 0 if o ∈ AOD (not in a plan).

The main problem with the approach described above,
which leads to poor performance of the obtained regression
model, is that the average size of the lists of relaxed facts for
tasks in TrD is orders of magnitude smaller than the corre-
sponding average for lists in EvD. Even though their repre-
sentation will have the same size, the averaging algorithm
implemented by fastText will produce embeddings that are
too far apart, preventing proper generalization.

By design, plans (and their corresponding relaxed fact
lists) for tasks in TrD are usually much shorter than plans
and lists of relaxed facts for tasks in EvD. Moreover, in
many cases, they contain “sub-plans” that solve partial
goals, and these sub-plans are often interleaved in the so-
lution. A typical example is the Satellite domain where the
solution to the easiest task in TrSatellite has 5 actions and 5
relaxed facts, while the easiest plan in EvSatellite has 541 op-
erators and the corresponding list of relaxed facts has size
509. As a result, the distribution of facts is significantly dif-
ferent between training and evaluation.

In light of this fundamental limitation, it is clear that a
more complex method to build suitable representations for
lists of relaxed facts is required. Imitating the approach used
by fastText, we will define running windows over a given
list of relaxed facts and useMF to build representations for
each window. While windows solve the size difference prob-

2All domains in our tests are “artificial” and instances are ob-
tained using generators. This ensures that objects are uniformly
represented. For example all objects representing stars in Satellite
are represented by the word Star followed by a natural number n.
These naming conventions simplify the task of fastText, and do-
mains without this property should be pre-processed accordingly.



lem, it does not solve the distribution problem. To address
this issue we introduce the notion of buckets.

Consider a list of relaxed fact [f1, . . . , fn]. First, we di-
vide it into buckets, defined as a set of contiguous facts
that use the same predicate, to obtain a list of buckets
[{f1, . . . , fi}, . . . , {fj . . . fn}]. The sampling of windows
from these buckets will now be defined by a number of
samples (#SAMP), a fixed window size (WSIZE), and step
(STEP). We construct a window by randomly picking a fact
from WSIZE sequential buckets #SAMP times. The window
is then advanced by STEP buckets. We repeat this process
for every action in GOD ∪ AOD and combine the rep-
resentations obtained by applying MF to these windows
and the operator embeddings produced by MO to define
|GOD| × #SAMP, |AOD| × #SAMP positive and negative
training examples, respectively.

We now seek to train a simple logistic regression model
to infer the relevance of an operator with respect to a given
window. However, since our training material now contains
at least |TrD| × |GOD ∪ AOD| × #SAMP samples, it is
often infeasible to train the logistic regression model using
standard convex solvers, as all data does not fit in memory
simultaneously. In order to address this issue we resort to
incremental learning using the implementation of stochas-
tic gradient descent (SGD) provided by scikitLearn
(sklearn.linear model.SGDClassifier) (Pedregosa
et al. 2011). This estimator implements regularized linear
models trained with stochastic gradient descent. The model
is updated via the partial fit method based on a learning
rate parameter, which allows for mini-batch learning. For
our experiments, the option ‘log loss’ as the loss function
of SGD simply indicates that we train a logistic regression
model.

Overall, we use the following standard parameters:

wsize: [3,4,5]

step: [3,4,5]

numsamples: 25

loss: "log_loss"

penalty: ["l1", "l2"]

alpha: [0.01, 0.001, 0.0001, 0.00001]

l1_ratio: 0

tol: [0.001, 0.0001]

eta0: 0.0

power_t: 0.5

class_weight: "balanced"

TuD is used as evaluation set to perform a grid search
over these parameters. Once the best set of parameters is
found, the final model is obtained by using TrD ∪ TuD as
training material. The result of this computation is a logistic
regression modelMa for each action schema a in a domain.
The function popBestOp() will then use a priority queue
that stores each inserted operator o corresponding to action
schema a and assigns its priority by sampling windows from
the corresponding set of relaxed facts, constructing the con-
catenated word embeddings as during training, using Ma

to obtain a relevance score for each (window,operator) pair,
and computing the maximum over all windows. We will re-
fer to the full model, including maximization, asMmax

a .

5 Datasets
We have generated full datasets for the following planning
domains: Agricola, Blocksworld, Depots, Hiking, Satellite,
TPP, and Zenotravel. Our choice of domain was somewhat
limited by our need of a problem generator with sufficient
flexibility to obtain varied problem sets TrD, TuD, and EvD.
We selected domains with a relatively small number of ac-
tion schemas to minimize the number of required models
(Agricola being an exception with 22 schemas), and with
action schemas with relatively large interfaces for which
grounding can be problematic (Blocksworld being now the
exception with only up to 3 parameters). In particular, Agri-
cola was chosen as an example of a very demanding and
complex domain, while Blocksworld was included as a sim-
ple model where full grounding should mostly be feasible.

In our setup, for each domain D we provided at least 150
tasks in TrD which could be solved using Fast Downward
(FD) in less than 10 minutes. TuD has at least 50 tasks that
required between 10 and 20 minutes of computation to ob-
tain a plan. Finally, we included at least 50 instances in EvD

which usually required more than 30 minutes to solve. These
numbers are relative, as they are largely hardware depen-
dent, and memory was a stronger constraint than time for
some domains.

Size TrD Size TuD Size EvD

Agricola 192 50 108
Blocksworld 160 50 63
Depots 288 64 64
Hiking 246 130 129
Satellite 243 50 50
TPP 220 60 60
Zenotravel 294 110 71

AOD was defined as a set of n = 50000 operators from
the set of all operators in D. To generate this sample we aim
to make the distribution as uniform as possible over action
schema (we do not seek to mimic the true distribution of the
full set of all operators). In the simplest case, if a domain has
k action schema with more than n/k operators in the full set
of possible operators, then the sampled subset will contain a
random sample of size n/k for each action schema.

The following parameters of the different planning do-
mains we investigated are relevant to estimate the size of
the fully grounded set of instantiated actions: total number
of action schema (# of A), total number of predicates (# of
P), average size of the interface of action schema (Avg. I),
and maximal size of the interface of action schema (Max. I).

# of A # of P Avg. I Max. I
Agricola 22 33 4.8 8
Blocksworld 3 3 2.3 3
Depots 5 6 3.8 4
Hiking 7 9 4.6 6
Satellite 5 13 2.8 4
TPP 4 8 6.0 7
Zenotravel 5 5 4.2 6

All domains and accompanying data, as well as the mod-
els uses in our experiments, are available online.3

3https://gitlab.com/BenjaminOc/grounding using small
language models



6 Experimental Results
For the evaluation of our partial grounding approach, we
adapted the implementation of the “translator” component of
the Fast Downward planning system (FD) (Helmert 2006).
The translator parses the given PDDL files and outputs a
fully grounded task in finite-domain representation (FDR)
(Bäckström and Nebel 1995; Helmert 2009) that corre-
sponds to the PDDL input. Our modifications are minimally
invasive, only changing the ordering in which operators are
handled and the termination condition, as indicated in Algo-
rithm 1. Therefore, none of the changes affect the correct-
ness of the translator, i. e., the generated grounded planning
task will always be a proper FDR task. The changes do not
affect the performance too much either, except when using a
computationally expensive priority estimation function.

We start by comparing the performance of our models,
with respect to a baseline model (B) defined as follows. B
uniformly and randomly assigns a number in the interval
[0, 1] to any instantiated operator scheme. Equivalently, B
uniformly samples operators from the full set of available
operators without replacement until all the good operators
are drawn.

Figure 1: Operator separation comparison in TPP

Figure 1 shows the outcome of the priority function
learned by the regression model on TPP, aggregated over
all action schemas. The bars indicate the proportion of op-
erators across all tasks in the evaluation set EvTPP whose
priority falls into a given interval. The class labels 1 and 0
correspond to good (GOD) and bad operators (AOD), re-
spectively. The plots nicely illustrate that the priority func-
tion seems to work very well in this domain, as the classes
are almost perfectly separated. By contrast, and as expected,
B cannot properly separate the classes.

For an in-depth comparison we proceed as follows: for
each task t in EvD we consider the set T defined as the union
of AOD and the operators in the plan p of t. We rank all el-
ements in T using first the maximization modelsMmax

a for
D, and then using B. For each of these rankings, we count
the number of operators that appear after the last operator
of p. This is the number of operators that the algorithm can
avoid grounding using this ranking. We take the average of
this number over all tasks in t, and represent it as a percent-
age w.r.t. the size of AOD. We call this measure the average
Proportion of Ungrounded Operators (PUO).

With the aim of investigating how much training data was
needed to obtain peek performance for the logistic regres-
sion model we train models incrementally over the full set

% Agricola Blocks Depots Hiking Satellite TPP Zenotr
0.1 0.9536 0.0261 0.0965 0.8897 0.1282 0.7871 0.4759
0.5 0.9575 0.0242 0.0957 0.8944 0.1502 0.7836 0.4770
1.0 0.9634 0.0229 0.0965 0.8956 0.1582 0.7878 0.4739

Baseline 0.0070 0.0103 0.0130 0.0130 0.0030 0.0020 0.0020
p-value 8.34E-127 1.24E-04 6.70E-17 8.34E-127 1.05E-21 1.64E-87 5.39E-95

Figure 2: Average Percentage of Ungrounded Operators

of training instances, in 10% steps, obtaining anMmax
a for

each percentage, and we calculate PUO values for each of
these models. Results are shown in Figure 2. To compute
the reported p-values we define Xp, Yp as the PUOs obtained
by our model and the baseline model, respectively, for prob-
lem p, and perform a one-sided paired t-test to determine
whether the generating distribution of Xp has a larger mean
than that of Yp, where we must use a paired test since each
tuple (Xp, Yp) corresponds to the same problem.

Single Shot
novelty fastText+SGD

Domain full FIFO SQ RR SQ RR %
agricola-large 25 0 0 0 0 0 0 0
agricola-eval 25 5 0 0 0 0 0 0
blocks-large 25 0 0 25 14 0 21 15
blocks-eval 25 22 18 24 25 16 25 23
depots-large 25 1 0 0 0 0 0 1
depots-eval 25 25 8 2 7 0 11 12
hiking-large 25 0 0 0 0 7 4 0
hiking-eval 25 4 4 4 0 18 13 0
satellite-large 25 0 0 1 0 0 0 0
satellite-eval 25 19 21 10 0 21 13 13
tpp-large 25 9 10 11 5 9 9 9
tpp-eval 25 23 22 24 19 11 22 21
zenotravel-large 25 4 25 25 11 4 5 6
zenotravel-eval 25 22 25 25 17 12 17 16∑

350 134 133 151 98 98 140 116

Figure 3: Number of instances solved, comparing full
grounding, a simple FIFO ordering that stops when the goal
is relaxed reachable, an SQ and RR queue with novelty-
based action ordering, and our approaches based on fast-
Text+SDG (SQ: single-queue, RR: round-robin, one queue
per schema; %: action-plan proportions). All methods do
single-shot grounding, runtime limit is 30min.

As it can be seen in Figure 2 results are excellent for all
domains, with extremely good p-values in all cases (even for
Blocksworld, for which we did not expect large improve-
ments). A more surprising conclusion is that the results can
be obtained even with little data. This is very encouraging,
as it could indicate that our approach can be used in domains
where generating training material is difficult.

We also report preliminary testing on using our trained
fastText models as “off-the-shelf” language models4. We
proceeded as follows. Taking TPP as our test case, we
trained word embedding models MF and MO using cor-
pora defined by the training material from all other domains,

4As we mentioned in Section 4, the language models we trained
were defined using all available training data.



Incremental
novelty fastText+SGD

Domain full FIFO SQ RR SQ RR %
agricola-large 25 0 0 0 0 25 2 3
agricola-eval 25 5 0 0 0 25 1 6
blocks-large 25 0 0 25 20 0 23 20
blocks-eval 25 24 24 25 25 22 25 25
depots-large 25 1 1 0 0 3 1 1
depots-eval 25 25 25 25 25 25 25 25
hiking-large 25 0 0 0 14 7 4 0
hiking-eval 25 4 5 4 20 20 16 11
satellite-large 25 0 0 5 0 0 2 3
satellite-eval 25 19 23 23 11 25 21 22
tpp-large 25 11 10 11 9 17 14 14
tpp-eval 25 23 23 25 23 25 25 25
zenotravel-large 25 24 25 25 14 12 11 10
zenotravel-eval 25 25 25 25 20 25 24 24∑

350 161 161 193 181 231 194 189

Figure 4: Same setting as in Figure 3, but with incremental
grounding and 90 min runtime limit.

without including a single instance from TPP. We then de-
fined the corresponding Mmax

TPP model, using these word
embeddings, and only 10% from the available training data
from TPP. The obtained PUO value of 0.7805 (with a p-
value of 5.6658e-96 w.r.t. the baseline) shows a very small
degradation when compared with the corresponding values
shown in Figure 2.

PUO values provide a way to evaluate the behavior of the
obtained models statistically, while disregarding the possi-
ble effects of particular heuristic functions during search and
the order in which operators are generated during grounding.
But, of course, these factors critically affect which task can
or cannot be solved. It is thus important to evaluate how in-
corporating our models into the grounding process impacts
the solver’s capabilities to handle large problem instances.

We next take a closer look at the integration of our mod-
els into the grounding process of FD, i.e. into its transla-
tor component. We extend our previous implementation by
replacing the operator priority queue of the grounding step
with our trained relevance prediction models. We experi-
ment with three different queue architectures, a single-queue
approach (SQ) that keeps operators of all schema in a single
sorted queue, a round-robin approach (RR) that has a sepa-
rate sorted queue for every scheme and alternates between
queues, and a proportion-based queue (%). The latter is sim-
ilar to RR, but weights every scheme queue by the propor-
tion that operators from that scheme appear in the plans in
the training set. We use the PowerLifted tool to generate
the relaxed facts reached from the initial state (Corrêa et al.
2020). This takes negligible runtime, with a maximum of
1.6s on our benchmark set.

Since our models often lead to a too aggressively pruned
partial model that does not include a solution, we adopt
the incremental-grounding paradigm from our previous
work (Gnad et al. 2019). If the search fails to find a solution
on the partially grounded model, we go back to grounding
and increase its size by instantiating 10.000 additional op-

erators. We iterate this process until a solution is found or
we run out of time. We allow for a total time of 90 minutes
and limit each search iteration to 30 minutes. For compari-
son, we also run single-shot grounding with a total runtime
limit of 30 minutes. This variant, like the first iteration of
incremental grounding, stops the grounding once the goal
becomes relaxed reachable. For all grounding variants, we
run the LAMA-first search configuration. We use the large
benchmarks from (Gnad et al. 2019) as well as the instances
from the evaluation sets EvD.5 For all runs we enforce a
memory limit of 4GiB.

Single Shot – Minimal Model
novelty fastText+SDG

Domain full FIFO SQ RR SQ RR %
agricola-large 25 0 0 0 0 0 0 0
agricola-eval 25 5 0 0 0 0 0 0
blocks-large 25 0 0 25 14 0 24 22
blocks-eval 25 22 18 24 25 3 25 22
depots-large 25 1 0 0 0 0 0 0
depots-eval 25 25 8 2 7 6 17 16
hiking-large 25 0 0 0 0 7 2 0
hiking-eval 25 4 4 4 0 19 11 0
satellite-large 25 0 0 1 0 0 3 2
satellite-eval 25 19 21 10 0 16 17 15
tpp-large 25 9 10 11 5 0 9 6
tpp-eval 25 23 22 24 19 0 21 19
zenotravel-large 25 4 25 25 11 9 1 2
zenotravel-eval 25 22 25 25 17 18 18 18∑

350 134 133 151 98 78 148 122

Figure 5: Same setting as in Figure 3, but restricting the
training data to 10%.

Incremental – Minimal Model
novelty fastText+SDG

Domain full FIFO SQ RR SQ RR %
agricola-large 25 0 0 0 0 25 2 4
agricola-eval 25 5 0 0 0 25 1 8
blocks-large 25 0 0 25 20 0 25 24
blocks-eval 25 24 24 25 25 20 25 25
depots-large 25 1 1 0 0 1 1 1
depots-eval 25 25 25 25 25 25 25 25
hiking-large 25 0 0 0 14 7 4 4
hiking-eval 25 4 5 4 20 20 16 18
satellite-large 25 0 0 5 0 1 3 3
satellite-eval 25 19 23 23 11 22 23 22
tpp-large 25 11 10 11 9 15 17 17
tpp-eval 25 23 23 25 23 24 25 25
zenotravel-large 25 24 25 25 14 15 6 8
zenotravel-eval 25 25 25 25 20 24 23 21∑

350 161 161 193 181 224 196 205

Figure 6: Same setting as in Figure 4, but restricting the
training data to 10%.

In Figures 3 and 4 we show the number of solved in-
stances (coverage) on our fastText + SGD models using

5As PowerLifted does not currently support conditional effects,
we could not evaluate our approach on the Caldera domain.
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Figure 7: Per-instance plots comparing the number of grounded operators of our fastText + SDG approach to the fully grounded
model. Only instances solved by at least one approach are shown. All methods get a runtime limit of 90 minutes, our approaches
run incremental grounding.

all training data. Figure 3 shows the single-shot grounding,
comparing our approach to the full grounding (full) and a
simple FIFO queue that stops once the goal is relaxed reach-
able; both do not use any operator relevance analysis. We
also include two configurations using a novelty-based prior-
ity function from our prior work, with a SQ and RR queue.
As already mentioned, it looks like our models prune the
tasks too aggressively, so quite often no solution can be
found on the partially grounded model in the single-shot set-
ting. However, moving to the incremental grounding setup
clearly changes those results, since in this setting the models
learned based on fastText representations significantly out-
perform the baseline algorithms. This is particularly clear
for the SQ queue, which has especially good performance
in Agricola and TPP. It also seems like there is a substantial
overhead when using fastText compared to, for example, the
simple novelty metric. Our language-model based configu-
rations benefit significantly from the higher overall runtime
in the incremental setting (90 vs. 30 minutes), while this ad-
vantage is less pronounced for the other approaches. Hence,
for domains where grounding is a bottleneck, allowing for
some more time to evaluate our models does pay off and
allows to solve challenging instances.

In Figures 5 and 6 we show a similar evaluation, but with
the fastText + SGD models trained on only 10% of the data.
Quite surprisingly, the effect of reducing the amount of train-
ing data is not negative overall. While the SQ queue seems
to suffer most, with exceptions in the evaluation instances
of Depots and Zenotravel, the other queues actually have a
higher total coverage with these models. This is great news,
as it indicates that for certain domains and algorithm con-
figurations, only little training data is required to train high-
quality models.

Finally, we investigate the size of the partially grounded
models, comparing it to the full grounding when using the
entire training set. Scatter plots that compare the number of
ground operators per instance are shown in Figure 7. For ev-
ery instance in our benchmark set, we show the size of the
fully grounded model in the x-axis, and the one obtained us-
ing our models with the three different queues on the y-axis.

Hence, the farther points are below the diagonal, the smaller
the partially grounded model is compared to the full ground-
ing. In every plot, we only include instances that were solved
by at least one of the two methods. An immediate observa-
tion is that all our models achieve a great reduction in the
size of the grounding. The specific reduction factors vary
across domains, but the behavior is very consistent across
queue types. With up to more than two orders of magni-
tude, we achieve the highest reduction in Agricola, Hiking,
and TPP, agreeing with our statistical tests in Figure 2. Ex-
cept for the SQ queue, we also get a significant reduction in
Blocksworld and a good reduction in Satellite. The reduc-
tion is only minor in Zenotravel and Depots, which explains
relatively weak coverage performance of our approaches in
these domains compared to the baselines. We also evaluated
our models obtained from only 10% of training data (not
shown due to space restrictions), which remarkably show
only very minor differences in comparison to the full mod-
els.

Overall, our evaluation shows that small-language models
based on fastText are indeed capable of learning good pri-
ority functions to estimate the relevance of instantiated op-
erators during grounding. The models generalize well to in-
stances of significantly larger size, even if limiting the train-
ing data to only 10%.

7 Conclusion

In this paper we build on previous work that introduced par-
tial grounding for automated planning (Gnad et al. 2019)
based on relevance prediction using classical machine learn-
ing models. The main limitation of these models was their
reliance on solely the initial and goal states to assess oper-
ator relevance. We propose the use language models (word
embeddings) to leverage the intermediate information avail-
able in the list of relaxed facts that can be efficiently com-
puted from the initial state of a planning problem.
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