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Abstract

The shortest path problem in graphs is a cornerstone of AI
theory and applications. Existing algorithms generally ignore
edge weight computation time. In this paper we present a
generalized framework for weighted directed graphs, where
edge weight can be computed (estimated) multiple times, at
increasing accuracy and run-time expense. This raises a gen-
eralized shortest path problem that optimize different aspects
of path cost and its uncertainty. We present a complete any-
time solution algorithm for the generalized problem, and em-
pirically demonstrate its efficacy.

1 Introduction
The canonical problem of finding the shortest path in a di-
rected, weighted graph is fundamental to artificial intelli-
gence and its applications. The cost of a path in a weighted
graph, is the sum of the weights of its edges. Informed and
uninformed search algorithms for finding shortest (minimal-
cost) paths are heavily used in planning, scheduling, ma-
chine learning, constraint satisfaction and optimization, and
more.

A common assumption made by existing search algo-
rithms is that the edge weights are determined in negligible
time. However, recent advances challenge this assumption.
This occurs when weights are determined by queries to re-
mote sources, or when the graph is massive, and is stored
in external memory (e.g., disk). In such cases, additional
data-structures and algorithmic modifications are needed to
optimize the order in which edges are visited, i.e., the ac-
cess patterns (Vitter 2001; Hutchinson, Maheshwari, and
Zeh 2003; Jabbar 2008; Korf 2008a,b, 2016; Sturtevant and
Chen 2016). Similarly, when edge weights are computed dy-
namically using learned models, or external procedures, it is
beneficial to delay weight evaluation until necessary (Dellin
and Srinivasa 2016; Narayanan and Likhachev 2017; Man-
dalika, Salzman, and Srinivasa 2018; Mandalika et al. 2019).

For example, consider searching for the fastest route be-
tween two cities, where edges represent roads, and edge
weights represent current travel times, which are queried
from an online source (e.g., google maps). Even taking a few
milliseconds for each query makes the weight evaluation a
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significant component in the search run-time. The estimated
travel times can be more accurately computed with more in-
formation: current weather conditions, road curvature and
elevation, etc., but the use of these further increases the edge
weight computation time.

The example provided above is representative of the cur-
rent trend of using data-driven models in planning, which in-
troduces various forms of uncertainty to action models, and
alternate modeling options—that may in particular provide
different estimates for action costs. Reliably quantifying the
uncertainty of obtained plans in a scalable manner is thus a
matter of high importance, which motivates our work.

We present a novel approach to handling expensive
weight computation by allowing the search algorithms to
incrementally use multiple weight estimators, that compute
the edge weight with increasing accuracy, but also at increas-
ing computation time. Specifically, we replace edge weights
with an ordered set of estimators, each providing a lower
and upper bound on the true weight. A search algorithm may
quickly compute loose bounds on the edge weight, and in-
vest more computation on a tighter estimator later in the pro-
cess. In the example above, a local database can be queried
quickly to get rough bounds on the travel times (based on
distance and speed limits). Incrementally, online queries and
computations can be used as needed to get more accurate
edge weight estimations, at increasing computational ex-
pense.

Having multiple weight estimators for edges is a proper
generalization of standard edge weights, and raises several
shortest-path problem variants. The classic singular edge
weight is a special case, of an estimator whose lower- and
upper- bounds are equal. However, since the true weight may
not be known (even applying the most expensive estima-
tor), search algorithms should address finding paths whose
bounds on the shortest-path cost are optimal in some aspect.

In particular, we wish to determine whether the cost of a
given path between two vertices is optimal, or within some
suboptimality bound. We show this requires solving the
shortest path tightest lower-bound (SLB) problem, which
involves finding a path with the tightest lower bound on the
optimal cost. We present BEAUTY, an uninformed search
algorithm based on uniform-cost search (UCS, a variant of
Dijksra’s algorithm). We then use it to construct an iterative
complete anytime algorithm (A-BEAUTY) which is guaran-



teed to solve SLB problems. The algorithms and theoretical
guarantees are discussed in detail. Experiments demonstrate
the dramatic computational savings they offer with respect
to the baseline which computes the true weight in all cases.

2 Background and Related Work
Weighted graphs are used in numerous computational prob-
lems. Over the years, the definition of weights have been
extended in multiple ways. For example, scalar weights can
be random, drawn from a distribution associated with each
edge (Frank 1969). Fuzzy weights (Okada and Gen 1994)
allow quantification of uncertainty by grouping approxi-
mate weight ranges to several representative sets. Multi-
dimensional weights (Loui 1983) allow each edge to be as-
sociated with a vector of different weights, facilitating op-
timization of multiple objectives. All of these ignore the
weight computation time, in contrast to our work.

Inspired by (Mandalika et al. 2019), we consider the ab-
stract components of the run-time T , of search algorithms:

T = τw × n+ τs ×m, (1)

where n,m are the number of edge weight computations
conducted and number of vertices encountered during the
search, resp., and τw, τs are the average edge weight compu-
tation time and average vertex search operations time (i.e.,
operations that take place for every vertex considered, such
as expansion and priority queue operations).

We can look at different algorithmic approaches in terms
of their efforts to reduce n or m, often trading an increase in
one parameter to reduce another. Standard search algorithms
assume τw is negligible (or a small constant) and so their ef-
fort is only on reducing m. In contrast, algorithms for find-
ing shortest paths in robot configuration spaces must con-
sider settings where τw is high, since in these applications,
edge existence and cost are determined by calling time-
consuming processes, validating geometric and kinematic
constraints. Thus these algorithms reduce n (by explicitly
delaying weight computations), even at the cost of increas-
ing m (Dellin and Srinivasa 2016; Narayanan and Likhachev
2017; Mandalika, Salzman, and Srinivasa 2018; Mandalika
et al. 2019). Related challenges arise in planning, where
action costs can be computed by external (lengthy) proce-
dures (Dornhege et al. 2009; Gregory et al. 2012; Francès
et al. 2017), or when multiple heuristics have different run-
times (Karpas et al. 2018).

There are also approaches that seek to change τw (rather
than to reduce n), though not explicitly as we do in this pa-
per. τw can be high when the graph is too large to fit in
random-access memory, and is stored in external memory
(i.e., disk). External-memory graph search algorithms opti-
mize the memory access patterns for edges (and vertices),
so as to make better use of faster memory (caching) (Vit-
ter 2001; Hutchinson, Maheshwari, and Zeh 2003; Jabbar
2008; Korf 2008a,b, 2016; Sturtevant and Chen 2016). This
reduces τw by amortizing the computation costs, but still as-
sumes a single weight per edge.

The approach we take in this paper is complementary to
those above, and it follows the recent works in dynamic
estimation during planning (Weiss and Kaminka 2023b;

Weiss 2022; Weiss and Kaminka 2022). We consider the
case where the weight of each edge can be estimated mul-
tiple times, successively more accurately (and at greater
expense). The component τw × n is then replaced with
(τw1

×n1 + τw2
×n2 . . . τwk

×nk), with τw1
< . . . < τwk

.
Search algorithms—such as those presented in this paper—
can make use of this to balance search effort and edge eval-
uation in a novel, more refined manner, and thus to reduce
the overall run-time.

3 Shortest Path with Estimated Weights
A standard weighted digraph is a tuple (V,E, c), where V is
a set of vertices, E is a set of edges, s.t. e = (vi, vj) ∈ E
iff there exists an edge from vi to vj , and c : E → R+

is a cost (weight) function mapping each edge to a non-
negative number. Let vi and vj be two vertices in V . A path
p = ⟨e1, . . . , en⟩ from vi to vj is a sequence of edges ek =
(vqk , vqk+1

) s.t. k ∈ [1, n], vi = vq1 , and vj = vqn+1
. The

cost of a path p is then defined to be c(p) :=
∑n

k=1 c(ek).
The Goal-Directed Single-Source Shortest Path (GDS3P )
problem is the problem of finding a path π from a start ver-
tex to a goal vertex, with minimal c(π).

We now replace the cost function c by an estimator-
generating function Θ, which for every edge e yields a se-
quence of estimation procedures, each providing a lower and
upper bound on the weight of the edge (Def. 1). The proce-
dures are ordered by increasing running times, which we
expect, w.l.o.g, to yield increasingly tightening bounds.
Definition 1. A cost estimators function for a set of edges
E, denoted as Θ, maps every edge e ∈ E to a finite and
non-empty sequence of weight estimation procedures,

Θ(e) := (θ1e , . . . , θ
k(e)
e ), k(e) ∈ N, (2)

where estimator θie, if applied, returns lower- and upper-
bounds (lie, u

i
e) on c(e), such that 0 ≤ lie ≤ c(e) ≤ ui

e <
∞). Θ(e) is ordered by the increasing running time of θie.
This allows us to define estimated weighted digraphs:
Definition 2. An estimated weighted digraph is a tuple
G = (V,E,Θ), where V,E are a set of vertices and edges,
resp., and Θ is a cost estimators function for E.

A path p = ⟨e1, ..., en⟩ can now be characterized by the
accumulated lower- or upper- bounds on the edges, resulting
from the application of some weight estimators (Def. 3):
Definition 3. Let Φ(e) be a non-empty subset of estimators
from the sequence Θ(e), for an edge e. We denote the tightest
bounds on c(e), over all estimators in Φ(e), as lΦ(e) (maxi-
mum lower bound) and uΦ(e) (minimum upper bound):

lΦ(e) := max{lie|θie = (lie, u
i
e) ∈ Φ(e)}

uΦ(e) := min{uj
e|θje = (lje, u

j
e) ∈ Φ(e)}

(3)

For a path p, let Φ(p) :=
⋃

e∈p Φ(e). The path lower
bound and path upper bound of p w.r.t. Φ(p) follow, respec-
tively, from the tightest edge bounds defined above.

lΦ(p) :=

n∑
i=1

lΦ(ei), uΦ(p) :=

n∑
i=1

uΦ(ei) (4)



We denote by Φ∗(p) the maximal Φ(p), which includes all
estimators for edges in p.

Estimated weighted digraphs and their path bounds general-
ize the familiar weighted digraphs, which are a special case
where for every edge e, there is a single estimation proce-
dure θe = (c(e), c(e)) with lower and upper bounds equal to
the weight c(e). The tightest bounds for the cost of a path π
then converge to the standard path cost c(π). In this special
case, we may then state that π is a B-admissible shortest
path if c(π) is bounded by a suboptimality factor B, i.e.,

c(π) ≤ c∗ × B (5)

where c∗ is the cost of the shortest path, a solution to a
GDS3P problem. If B = 1, then π is a shortest path.

However, in the general case, the cost c(π) of a path π
may not be known precisely, and thus Inequality 5 cannot
be shown directly. Instead, as c(π) ≤ uΦ∗(π), we may prove
that π is B-admissible by showing that uΦ∗(π) ≤ c∗ × B.
Still, the optimal cost c∗ is also unknown, so we instead
compare to l∗, the tightest lower bound on the cost of the
shortest path (see below). Necessarily, l∗ ≤ c∗, thus show-
ing

uΦ∗(π) ≤ l∗ × B (6)

is sufficient to prove that π is B-admissible.
In other words, the key step in identifying B-admissible

paths with estimated costs (which, for B = 1 are short-
est paths) is finding the tightest lower bound on the cost
of the shortest path, l∗. To do this, we re-define the famil-
iar GDS3P problem, so that we search for the shortest-path
tightest lower bound.

Problem 1 (SLB, finding l∗). Let P = (G, vs, Vg), where G
is an estimated weighted digraph with cost estimators func-
tions Θ, vs ∈ V is the start (source) vertex and Vg ⊂ V
is a set of goal vertices. The Shortest-path tightest Lower
Bound problem (SLB) is to find a path π from vs to any
goal vertex v ∈ Vg , such that π has the lowest tightest lower
bound of any path from vs to v ∈ Vg , w.r.t. Θ, i.e., l(π) = l∗

with

l∗ := min
π′
{lΦ∗(π′) | π′ is a path from vs to v ∈ Vg}. (7)

The use of the min operator may seem counter-intuitive,
as typically the tightest lower bound would be the maximal
of all lower bounds. Indeed, ideally, we should use lΦ∗(π∗),
the tightest (maximal) lower bound of the shortest path π∗.
However, π∗ is unknown. Thus, instead we have to use l∗,
the minimal tightest lowest bound of any path that leads from
vs to a goal vertex. Necessarily, the use of l∗ bounds lΦ∗(π∗)

from below, so it is valid for testing B-admissibility, and on
the other hand it is the best (maximal) lower bound we may
use, when the true edge costs are unknown.

Example 1. Consider an estimated weighted digraph G =
(V,E,Θ), with V = {v0, v1, v2, v3, v4}, and E =
{e01, e02, e14, e21, e23, e24} (see Fig. 1). Here, Θ is defined
by the following estimators: For edge e01: θ1e01 = (4, 4).
For edge e02, θ1e02 = (2, 6), and θ2e02 = (3, 5). For edge e14,
θ1e14 = (1, 10), θ2e14 = (4, 6). For edge e21, θ1e21 = (2, 3),

θ2e21 = (3, 3). For edge e23, θ1e23 = (5, 9), θ2e23 = (7, 8). Fi-
nally, for edge e24, θ1e24 = (4, 6). Additionally, the true edge
costs have the following values: c01 = 4, c02 = 4, c14 =
5, c21 = 3, c23 = 7 and c24 = 6.

Figure 1: The digraph of Example 1.

Given the graph above, we may define the SLB problem
P = (G, vs, Vg) with vs = v0 and Vg = {v3, v4}, i.e.,
searching for paths from v0 to either v3, or v4. Then, the
unknown optimal cost is c∗ = c(π∗) = c01 + c14 = 9 with
π∗ = ⟨e01, e14⟩; the tightest lower bound attainable for c∗ is
l∗ = lΦ∗(π) = l202+ l124 = 7 with π = ⟨e02, e24⟩; the tightest
upper bound for the cost of π∗ is uΦ∗(π∗) = u1

01+u2
14 = 10

and thus the best attainable suboptimality factor B for the
path π∗ is B = uΦ∗(π∗)/l

∗ = 10/7.

The SLB problem (Problem 1) is a generalization of the
standard shortest-path problem GDS3P (Thm. 1), and thus
its complexity is at least that of GDS3P .
Theorem 1 (Generality). Problem 1 generalizes the
GDS3P problem.

Proof. We show that any standard GDS3P problem can be
formulated as a special case of SLB. In this special case,
each edge has one estimator (namely, k(e) = 1 for every e),
that returns the exact cost (i.e., l1e = c(e) = u1

e), as this im-
plies l∗ = c∗. Solutions corresponding to them achieve the
minimum l∗ will therefore have cost c∗, hence by definition
are shortest paths.

Given a solution to an SLB problem, and a target B ad-
missibility factor, we can identify B-admissible solutions,
including for the case B = 1, the shortest path. The next
section discusses algorithms for solving the SLB problem.

4 Algorithms for Shortest Path Lower Bound
We present two algorithms for solving SLB problems, while
reducing the number of estimators used, compared to a stan-
dard uniform-cost search algorithm (UCS), which ignores
the run-time of estimators. The first algorithm, BEAUTY
(Branch&bound Estimation Applied in UCS To Yield bot-
tom, Alg. 1), extends UCS to dynamically apply cost esti-
mators during a best-first search w.r.t. lower bounds of edge
costs. The second algorithm, A-BEAUTY (Anytime Beauty,
Alg. 3) uses BEAUTY in iterations, such that bounds es-
tablished in one iteration are used to focus the search in
the next, monotonically improving the solution. Both algo-
rithms are proved correct and complete.



Algorithm 1: BEAUTY
Input: Problem P = (G,Θ, vs, Vg)
Parameter: Procedure Get-θ, thresholds lest, lprune
Output: Path π, Opt, bounds l∗, l̄∗

1: gl(s0)← 0; OPEN← ∅; CLOSED← ∅
2: Insert s0 into OPEN with gl(s0)
3: while OPEN ̸= ∅ do
4: n← Remove top node from OPEN
5: if Goal(n) then
6: l(π)← gl(n)
7: Opt, l∗, l̄∗ ← BEAUTY-PS
8: return trace(n), Opt, l∗, l̄∗

9: Insert n into CLOSED
10: for each successor s of n do
11: if s not in OPEN ∪ CLOSED then
12: gl(s)←∞
13: g̃l ← gl(n)
14: θ ← Get-θ (e = (n, s))
15: while g̃l < gl(s) and θ ̸= ∅ do
16: l← Apply(θ)
17: Cache l for e
18: g̃l ← gl(n) + l
19: if g̃l > lest then
20: Break
21: θ ← Get-θ (e)
22: if g̃l < gl(s) and g̃l ≤ lprune then
23: gl(s)← g̃l
24: if s in OPEN then
25: Remove s from OPEN
26: Insert s into OPEN with gl(s)
27: return ∅, false,∞,∞

Algorithm 1. BEAUTY receives an SLB problem, a pro-
cedure Get-θ that maps an edge e to an unused estimator
from Θ(e), and the hyper-parameters lest, lprune. It works
in two stages: First, it utilizes as many estimators as needed
whenever it encounters a new edge, in order to determine a
best path up to value lest. Then, it continues the search with
minimal estimations until a solution is found, pruning any
path with accumulated lower bound cost greater than lprune.

When a solution π is found by the goal-checking Goal
function (line 5), with the path lower bound l(π), BEAUTY
calls BEAUTY-PS (post-search procedure, Proc. 2 below)
to iterate over the edges of π and tighten the estimations
whenever possible, to produce the tightest lower bound l̄∗

for π.
If l̄∗ = l∗, namely the path bounds were already tight

before BEAUTY-PS, then it determines that π is optimal
and sets Opt ← true. BEAUTY-PS returns Opt, l∗ = l(π)
and l̄∗, which are then returned by BEAUTY together with
π (generated by a path-reconstruction function trace).

Except for the usage of lest, lprune and BEAUTY-PS,
BEAUTY is structurally similar to UCS. The data structures
OPEN and CLOSED are priority queues, and gl is a map-
ping analogous to g in UCS. The primary modification is the
addition of an estimation loop that takes place in lines 11–21
(including initialization).

Procedure 2: BEAUTY-PS
Input: BEAUTY’s inputs and variables
Parameter: Procedure Get-θ
Output: Opt, bounds l∗, l̄∗

1: Opt← true; l∗ ← l(π)
2: for each edge e in π do
3: θ ← Get-θ (e)
4: while θ ̸= ∅ do
5: l← Apply(θ)
6: Update l(π) using l, e and cache
7: Cache l for e
8: θ ← Get-θ (e)
9: if l(π) > l∗ then

10: Opt← false
11: l̄∗ ← l(π)
12: return Opt, l∗, l̄∗

Depending on the hyper-parameters lprune, lest,
BEAUTY is complete (Lemma 1), sound (Lemma 2),
and optimal (Lemma 3).

Lemma 1 (Conditional Completeness Prob. 1). BEAUTY,
provided with lprune ≥ l∗, is complete.

Proof. BEAUTY inspects nodes that are removed from
OPEN by best-first order w.r.t. accumulated lower bound for
path cost. When lprune =∞ is satisfied, no node is pruned,
so that every node encountered during the search is inserted
into OPEN. The condition g̃l < gl(s) simply verifies that
each node in OPEN points back to the best found path lead-
ing to it, but it does not prevent nodes from being inserted.
In this case completeness is assured, as the search is system-
atic.

Suppose that a best-first algorithm utilizes all possible es-
timators per edge it encounters. Then, if a solution exists,
a shortest path lower bound π∗ will necessarily be returned
with l∗. Since applying more estimators can only increase
(tighten) the lower bound for an edge, it follows that when
not all possible estimators per edge are utilized, and a sys-
tematic best-first search takes place, then a solution π for
P ending in a node n will be found, where the key of n
in OPEN (the accumulated obtained lower bound), immedi-
ately before it was removed, must be lower than, or equal
to, l∗. This holds regardless of the value of lest, that only
affects which (and how many) estimators will be applied.
Namely, the specific value of lest may affect which solution
π is found, but not the fact that such a solution will be found.
Hence, when lprune ≥ l∗ is satisfied, a solution π is guaran-
teed to be found.

Lemma 2 (Bounds for l∗). BEAUTY, provided with
lprune ≥ l∗, returns 0 ≤ l∗ ≤ l∗ ≤ l̄∗, if a solution exists
for P . Furthermore, if lest < l∗ also holds, then l∗ > lest.

Proof. The proof of Lemma 1 established that when
BEAUTY is called with lprune ≥ l∗, a solution π will be
found (when a solution exists), ending in a node n, where
the key of n in OPEN gl(n) (the accumulated obtained
lower bound), immediately before it was removed, satisfies



gl(n) ≤ l∗. Additionally, gl(n) ≥ 0 trivially holds, as each
edge lower bound is by definition non-negative. In line 6 of
BEAUTY l(π) ← gl(n) is set, then BEAUTY-PS is called,
which sets l∗ ← l(π) in line 1, and then l∗ is not changed
until it is returned. BEAUTY-PS utilizes all unused estima-
tors in the solution π, by systematically improving estima-
tions for each edge e belonging to π using all estimators
in Θ(e). Thus the tightest possible lower bound for π is ob-
tained and returned as l̄∗. From the optimality of l∗ it follows
that l̄∗ ≥ l∗. To sum up, l∗, l̄∗, that satisfy 0 ≤ l∗ ≤ l∗ ≤ l̄∗,
are returned.

Let us now consider the case that lest < l∗ holds in ad-
dition to lprune ≥ l∗. Seeking a contradiction, assume that
l∗ ≥ lest + ϵ is not necessarily satisfied. This means that
for some solution π, it holds that l∗ ≤ lest. Recall that
l∗ = gl(n) for the node n, which is the last node in the
path implied by the solution π. Since lest < l∗ holds, it
must be that each edge in π has been estimated using all
possible estimators before n is established as a goal node,
as for each node n′ satisfying the condition gl(n

′) ≤ lest,
edges included in the path leading to n′ are only denied
tight estimation in cases where a better alternative path lead-
ing to n′ was already found. Therefore, the lower bound
of π cannot be tightened, so l∗ = l̄∗ is satisfied, implying
that π is optimal with lower bound l∗. But this means that
l∗ = l∗ ≤ lest < l∗. A contradiction. Hence, l∗ > lest.

Lemma 3 (Conditional Optimality Prob. 1). BEAUTY, pro-
vided with lprune ≥ l∗ and lest ≥ l∗, returns a shortest path
lower bound π and l̄∗ = l∗, if a solution exists for P .

Proof. Continuing the argument made in the proof of
Lemma 2, if lprune ≥ l∗ and lest ≥ l∗ hold, then the
best paths, based on tightest possible estimates, with cumu-
lative lower bounds of up to lest are found, and their terminal
nodes are inserted to OPEN. In particular, the best paths up
to l∗ (including this value) are found. From the definition of
l∗ it follows that there exists a solution π with a tight lower
bound equal to l∗. Hence, π, or possibly another solution
with the same tight lower bound, is guaranteed to be found
when its corresponding goal node is removed from OPEN.
Then, l̄∗ = l∗ = l∗ together with π are returned.

The implication of Lemmas 1–3 is that SLB problems can
be solved optimally using BEAUTY by setting lprune and
lest to be greater than, or equal to, l∗, which can always be
achieved by setting them to ∞. However, a lower value of
lest enables to avoid redundant estimations, where the po-
tential savings grow as lest approaches l∗ from above. This
motivates the use of BEAUTY in an iterative framework that
gradually increases lest until the optimal solution is found.
Example 2. Consider calling BEAUTY with lest =
lprune = ∞ on P from Example 1. Tracing its run, at the
first iteration of the while loop it invokes θ1e01 , θ

1
e02 and θ2e02

and inserts v1, v2 to OPEN with keys 4, 3. At the second it-
eration v2 is removed from OPEN, θ1e21 , θ

1
e23 , θ

2
e23 , θ

1
e24 are

invoked, and v3, v4 are inserted to OPEN with keys 10, 7. At
the third iteration v1 is removed from OPEN, θ1e14 and θ2e14
are invoked. At the forth iteration v4 is removed from OPEN
and BEAUTY returns ⟨e02, e24⟩, true, 7, 7.

Algorithm 3: A-BEAUTY
Input: Problem P = (G,Θ, vs, Vg)
Parameter: Procedure Get-θ
Output: Path π, bound l∗

1: l∗ ← 0; l̄∗ ←∞; Opt← false
2: while not Opt do
3: π,Opt, l∗, l̄← BEAUTY (P , Get-θ, l∗, l̄∗)
4: if π = ∅ then
5: return ∅,∞
6: if l̄ < l̄∗ then
7: l̄∗ ← l̄
8: Print π, l∗, l̄∗
9: return π, l̄∗

Algorithm 3. A-BEAUTY (Anytime BEAUTY) itera-
tively calls BEAUTY with increasingly tightened lest and
lprune around l∗, until the optimal solution is found. It starts
with lest = 0 and lprune = ∞, and each time BEAUTY
terminates it returns l∗ > lest (due to Lemma 2), which is
used as lest in the next call. Similarly, the returned l̄∗ is a
finite value (when a solution exists) that always is greater
than, or equal to, l∗ (again, due to Lemma 2), so that by us-
ing the lowest value of l̄∗ obtained, lprune is monotonically
non-increasing.

The process converges in a finite number of iterations
(shown below) and thus assures optimality, while gradually
utilizing more estimations, that in turn support better ap-
proximations for l∗ (which are saved every time an improve-
ment is achieved). Tightened lprune values decrease the size
of OPEN, thus reducing memory consumption and run-time
(due to less insert operations, and cheaper insert/delete oper-
ations). As another optimization, estimations are cached, so
that it is not necessary to re-apply estimators. Technically,
this is obtained by defining Get-θ to first look for cached val-
ues and only then turn to unused estimators. Overall, caching
moderates the increase in run-time consumption (due to uti-
lizing more estimations) between subsequent iterations.

Theorem 2 (Completeness, Soundness and Optimality
Prob. 1). A-BEAUTY is complete. If a solution exists for
P , then a shortest path lower bound π and l∗ are returned.

Proof. A-BEAUTY initializes l∗ ← 0 and l̄∗ ← ∞, and
then enters a loop that terminates when no solution is found
or when the optimal solution is found. At each iteration of
the loop, it calls BEAUTY with lest = l∗ and lprune = l̄∗.
Due to the initialization, the conditions of Lemmas 1 and 2
are fulfilled in the first iteration, so that if a solution exists,
a solution would be returned by BEAUTY, with tightened
bounds, i.e., l∗ > 0 and l∗ ≤ l̄∗ < ∞. In the second it-
eration (if the optimal solution has yet to be found) the l∗

and l̄∗ found in the first iteration are used again as lest = l∗

and lprune = l̄∗ in the call for BEAUTY, where again the
conditions for both lemmas hold. Thus l∗ is guaranteed to
monotonically increase with each iteration, and l̄∗ can either
decrease (but remain at least l∗) or stay the same. Hence,
the conditions for both lemmas are satisfied for every it-
eration until termination, i.e., we have established that the



conditional completeness of BEAUTY implies regular com-
pleteness for A-BEAUTY, and that l̄∗ monotonically non-
increases.

To show optimality, we next analyze the increase in l∗ be-
tween subsequent iterations. Denote δi := l∗i − l∗i−1, where
l∗i is the value obtained after call i to BEAUTY. Note that δi
cannot be arbitrarily small values, as they exactly represent
the differences between cumulative lower bounds of solu-
tions obtained in subsequent iterations, which are limited to
a finite set of values (induced by Θ). Thus, there exists a con-
stant δmin > 0 such ∀i, δi ≥ δmin is satisfied. Hence, either
the optimal solution is found before l∗ reaches l∗, or it is
found right after it reaches it (Lemma 3), which necessarily
occurs after a finite number of iterations.

The proof of Thm. 2 shows the number of iterations until
convergence is unknown a-priori. Nevertheless, we can set a
simple threshold either on the number of iterations or on the
convergence implied by l̄∗/l∗. Once the threshold is crossed,
setting both lest and lprune to l̄∗ ensures the last iteration.

Example 3. Consider again the SLB problem P from Exam-
ple 1. When calling A-BEAUTY on P , at the first iteration
the utilized estimators are θ1e01 , θ

1
e02 , θ

1
e14 , θ

2
e14 , θ

1
e21 , θ

1
e23

and θ1e24 , where θ2e14 is invoked by BEAUTY-PS. The
algorithm prints ⟨e01, e14⟩, 5, 8. At the second iteration
the estimator θ2e02 is also utilized. The algorithm prints
⟨e02, e24⟩, 7, 7 and returns ⟨e02, e24⟩, 7.

5 Empirical Evaluation
The theoretical guarantees of BEAUTY and A-BEAUTY
touch on their optimality and completeness, but do not pro-
vide information as to the run-time savings they offer. We
therefore empirically evaluate the algorithms in diverse set-
tings, based on AI planning benchmark problems that were
modified to have multiple action-cost estimators, so that
these induce SLB problems.

The set of problems was taken from a familiar benchmark
set1, a collection of IPC (International Planning Competi-
tion) benchmark instances. Starting from the full collection,
we first filtered out every domain that didn’t offer support for
action costs. Then, for some of the domains we created ad-
ditional problems by using different configurations of costs.
For all problems and domains, we synthesized three estima-
tors. Each edge e with cost cold(e) was mapped to a new
cost cnew(e) that satisfies cnew(e) ≥ cold(e) × f3, with
f3 > f2 > f1 ≥ 1, so that l1e := cold × f1, l

2
e := cold ×

f2, l
3
e := cold × f3 served as its first, second and third lower

bound estimates. To diversify the estimator sets for differ-
ent edges, the parameters f1, f2, f3 were taken from the sets
f1 ∈ {1, 2, 3}, f2 ∈ {f1+1, f1+2, f1+3}, f3 ∈ {f2+1},
which resulted in nine different configurations. The specific
choice of configuration was taken according to the result of
a simple hash function, that depends on cold(e) and a user-
input seed, described as follows:

Hash = (cold(e) + seed) mod 9. (8)

1See https://github.com/aibasel/downward-benchmarks.

Hash 1 2 3 4 5 6 7 8 9
f1 1 2 3 1 2 3 1 2 3
f2 2 3 4 3 4 5 4 5 6
f3 3 4 5 4 5 6 5 6 7

Table 1: The configuration of f1, f2, f3 in rows 2–4 accord-
ing to the hash values displayed in row 1.

Then, the configuration was set according to Table 1. Each
problem was run once per seed, where the seeds where taken
from the set [0, 8], which resulted in 9 instances per prob-
lem. Overall, this resulted in a cumulative set of 914 prob-
lem instances, spanning 12 unique domains. The full list of
the domains and problems that were used in the experiments
is detailed in (Weiss and Kaminka 2023a).

BEAUTY and A-BEAUTY were implemented as search
algorithms in PlanDEM (Planning with Dynamically Esti-
mated Action Models (Weiss and Kaminka 2023a), a C++
planner that extends Fast Downward (FD) (Helmert 2006)
(v20.06). All experiments were run on an Intel i7-1165G7
CPU (2.8GHz), with 32GB of RAM, in Linux. We also
implemented Estimation-time Indifferent UCS (EI-UCS), a
UCS algorithm that ignores estimator run-time and seeks
to maximize weight accuracy, to serve as a baseline. For
every problem instance we ran EI-UCS, BEAUTY with
lest = lprune = ∞, and two versions of A-BEAUTY—
A-BEAUTY-2 and A-BEAUTY-10—with maximal number
of 2 and 10 iterations, resp. We report the results from prob-
lem instances which all algorithms solved successfully, i.e.,
found optimal solutions, within 5 minutes.

5.1 BEAUTY vs. EI-UCS
We begin by contrasting BEAUTY and EI-UCS, to exam-
ine the effectiveness of BEAUTY in avoiding unnecessary
expensive estimations. BEAUTY is only guaranteed optimal
if its two hyper-parameters, lest, lprune, are greater than l∗,
which is unknown a-priori. Thus, to ensure a fair compari-
son, we set lest = lprune = ∞ for all the runs of BEAUTY
(that are not part of the anytime framework). Using these
settings, the only difference between BEAUTY and EI-UCS
is the condition g̃l < gl(s) in the estimation loop (line 15
in Alg. 1) that prevents applying further estimators when an
alternative path with lower g-value is already known. In con-
trast, EI-UCS ignores estimator time, always computing the
tightest lower bound possible for every edge. Hence, the two
algorithms follow the exact same search mechanism (i.e.,
identical node expansion order), and may only differ in the
number of expensive estimators applied, which are the sec-
ond and third estimators in our experiments (for an edge e
these are θ2e and θ3e). Note that under this setting BEAUTY-
PS has nothing to improve, as the solution path is already
fully estimated.

We denote by L2 and L3 the numbers of second- and
third-layer estimators applied during the search. The results
are summarized below:
• The ratio rL2

:= L2(BEAUTY)/L2(EI-UCS) had av-
erage of 61.9% (stddev 10.53%), median 61.08%, with
overall range spanning 34.75% to 90.65%.



Domain nins rL3
(Beauty) rexp(Beauty) rL3

(Any-2) rexp(Any-2) rL3
(Any-10) rexp(Any-10)

Barman 495 58.23±4.52 100±0 49.27±13.29 189.1±20.13 48.91±13.39 837.32±136.03
Caldera 72 83.25±3.01 100±0 58.48±8.08 176.42±9.72 57.88±8.42 905.15±90.99

Cavediving 54 70.77±0.78 100±0 59.26±3.33 200±0 59.26±3.33 981.48±47.88
Elevators 27 28.81±3.23 100±0 10.13±6.9 145.45±27.48 6.4±5.18 724.26±210.48
Floortile 36 54.83±0.76 100±0 45.13±7.51 183.53±13.31 44.6±7.68 890.43±100.06

Parcprinter 36 83.12±2.62 100±0 25.02±11.24 136.34±15.58 22.38±9.93 810.26±98.03
Scanalyzer 18 48.18±1.65 100±0 48.16±1.66 200±0 48.16±1.66 994.44±23.57

Settlers 36 71.87±2.22 100±0 40.88±13.61 177.87±20.82 35.34±15.16 692.36±142.32
Sokoban 36 52.24±0.9 100±0 49.2±2.44 196.34±4.2 48.89±2.68 934.51±94.83

Tetris 45 63.3±4.74 100±0 41.91±7.27 180.3±10.41 41.09±8.37 907.11±126.24
Transport 41 47.25±4.09 100±0 17.53±8.76 144.92±20.83 16.01±8.73 760.46±132.08

Woodworking 18 61.39±1.54 100±0 44.35±6.09 185.21±8.7 37.95±6.33 816±183.54
All domains 914 60.82±11.57 100±0 46.03±15.75 182.67±23.66 45.13±16.37 849.65±142.31

Table 2: Summarized performance data of BEAUTY (∞,∞), A-BEAUTY-2 and A-BEAUTY-10 relative to EI-UCS, with
breakdown by unique domains, and where nins denotes the number of instances per domain. For each algorithm and every
domain two entries in the table are presented in the form of average ± standard deviation in percentage: the ratio of third-layer
estimator usage rL3 and the ratio of expanded nodes rexp.

Iteration i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
Final i (%) 0 0 0 0.33 1.09 2.52 10.5 15.65 19.91 50

µ(l∗i /l
∗) (%) 40.01 62.87 76.39 84.8 90.16 93.54 95.41 96.62 97.06 100

σ(l∗i /l
∗) (%) 7.43 8.78 8.68 7.98 6.8 5.73 4.88 4.07 3.95 0

Table 3: Convergence analysis of A-BEAUTY-10, at iteration number i. Row 2 indicates the number of times convergence
occurred in iteration i, rows 3 and 4 indicate the mean µ and standard deviation σ, respectively, for the ratio of the lower bound
obtained after iteration i to l∗, where the values in rows 2–4 are in percentages.

• The ratio rL3
:= L3(BEAUTY)/L3(EI-UCS) had aver-

age of 60.82% (stddev 11.57%), median 60.88%, with
overall range spanning 24.4% to 88.48%.

Table 2 reports the results for all algorithms, compared to EI-
UCS. The results are grouped by domain (domains listed by
row—see caption for column explanation). The table shows
(third column, total for all domains in the last row) that
roughly 40% (100-60.82) of the expensive estimations are
avoided, on average, with slightly increased savings for the
more expensive third-layer estimators. There is high vari-
ance, whose causes remain unknown for now.

5.2 A-BEAUTY vs others.
We now turn to discuss A-BEAUTY-2 and A-BEAUTY-10.
The relevant experiment results are summarized in columns
5, 6 (A-BEAUTY-2) and 7, 8 (A-BEAUTY-10) of Table 2.

First and foremost, the results reveal that A-BEAUTY-2
and A-BEAUTY-10 save roughly 54% (100-46) and 55%
(100-45) of the most expensive estimations, compared to EI-
UCS (the data for rL2

is similar). This represents an addi-
tional 15% savings on top of BEAUTY.

Second, although both have relatively high standard devi-
ations (about 16%), they perform similarly in most domains
(see below for the exception). This can be attributed to the
(typically) very informed upper bound l̄∗ that is achieved af-
ter the first iteration, so there is little room for improvement.
Indeed, the lower bound l∗ typically comes very close to l∗

when A-BEAUTY-10 converges, so when lest is set to l̄∗ af-
ter the first iteration of A-BEAUTY-2, it achieves an almost

identical behavior as in the last iteration of A-BEAUTY-10.
We examined more closely the domains where the sav-

ings of A-BEAUTY-2 and A-BEAUTY-10 vary noticeably
(e.g., in the Elevators domain). We observed that in many
of these problems, the range of values for cold, and thus
also the range of values for the lower bound estimates (in-
duced by cold), is relatively high compared to other domains,
i.e., the interval [A,B] ⊂ [0,∞) from which the values are
taken is relatively large. This implies a less smooth distri-
bution of costs (and estimates) over the graph edges, where
it is common to have significant jumps in g-values between
two subsequent nodes on a path. The implication of such
jumps is that it becomes easier to avoid estimation of non-
relevant paths (with gl > lest). In the same cases of larger
ranges of values, A-BEAUTY-10 more frequently achieves
improved estimation savings compared to A-BEAUTY-2.
We believe this may be due to the distribution of costs be-
ing less smooth, decreasing the likelihood that l̄∗ ends up
close to l∗ after the first iteration, and allowing more room
for improvement in additional iterations.

Finally, Table 2 shows that the two algorithms consume
on average roughly 1.8 and 8.5 times the search effort of
EI-UCS (measured by expanded nodes), which is due to
the search restart at every iteration. In domains where the
estimation savings are similar, it appears that 2 iterations
may be sufficient, and will be much more efficient. How-
ever, more generally—and recalling the abstracted run-time
from earlier—this is a good example of how algorithms may
increase the search operations, to save on weight computa-



Iteration i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
µ(pruned/evaluated) (%) 0 0.77 1.8 3.53 10.05 10.71 12.46 14.86 16.68 25.98
σ(pruned/evaluated) (%) 0 4.65 7.31 10.49 15.56 16.17 17.3 18.23 18.77 22.17

Table 4: Pruning analysis of A-BEAUTY-10, at iteration number i. Rows 2 and 3 indicate the mean µ and standard deviation σ,
respectively, for the ratio of pruned nodes out of evaluated nodes, in percentages.

tions.
Table 3 provides additional information that sheds light on

the development of search and estimation metrics through-
out the iterations. The table follows the iterations of A-
BEAUTY-10. Row 2 indicates the number of times conver-
gence occurred in iteration i, allowing us to examine how
many iterations were needed to solve the problems, on aver-
age. As can be seen, 50% of the problems take less than 10
iterations, with rapid decrease from i = 9 down to i = 4,
while the other 50% terminate at i = 10 or more (the max-
imum number of iterations in these experiments was 10).
Row 3 reveals the convergence of the lower bound obtained
to the terminal value l∗. We can see that the rate of con-
vergence is decaying. Row 4 further strengthens this ob-
servation, as the standard deviations are relatively low and
also decaying. This motivates using a maximum threshold
to avoid a very long convergence process, which could incur
significant search effort overhead.

Lastly, Table 4 shows the average and standard deviation
(rows 2 and 3, respectively) of pruned nodes out of evalu-
ated nodes, for each iteration of A-BEAUTY-10, in percent-
age. It can be seen that the average percentage of pruned
nodes is monotonically non-decreasing with the iterations,
from roughly 0.8% at the second iteration to 26% at the tenth
iteration, which is due to the monotonically non-decreasing
upper bound lprune, that serves for pruning. Namely, as the
upper bound gets tighter, pruning becomes more effective.

5.3 BEAUTY-PS.
Given that often, 2 iterations of A-BEAUTY offered the
same savings as 10 iterations, yet significantly more than
a single iteration, it is interesting to examine the role of
BEAUTY-PS in improving the results from the first itera-
tion of A-BEAUTY. Recall that Proc. 2 obtains the tightest
possible lower bound l̄∗ for c(π), which can then either be
interpreted as l∗ if opt = true is returned, or as an upper
bound for l∗ otherwise. When BEAUTY is called with its
hyper-parameters set to ∞, it is optimal; BEAUTY-PS has
nothing to improve. However, when it is called as part of A-
BEAUTY, the hyper-parameters are different, which gives
BEAUTY-PS the potential to improve the results before the
next iteration.

The results provide insight as to the effectiveness of this
procedure. When calling BEAUTY-PS after BEAUTY is
run with lest = 0 and lprune = ∞ (the least informative
hyper-parameters), BEAUTY-PS returns on average l̄∗ =
1.0082 × l∗, i.e., only 0.82% higher than l∗, with stan-
dard deviation of 3.31%, where in the worst case l̄∗ was
33.33% higher than l∗. This means that just one iteration
of BEAUTY that uses the cheapest lower bounds during the
search, followed by BEAUTY-PS, typically returns a very

good approximation of l∗ in the form of a very informed up-
per bound for it. Furthermore, BEAUTY-PS utilizes only a
tiny fraction of the expensive estimators, as it only estimates
edges on the solution path. Thus, on average, BEAUTY with
lest = 0, lprune = ∞ was able to generate a very accu-
rate approximation of the optimal solution, though at the
loss of guaranteed optimality, at minimal estimation effort
overhead.

6 Discussion
The mathematical framework presented in this paper is quite
flexible. Recall that Def. 1 defined a sequence of gradually
more accurate and time-consuming estimators. In this pa-
per we utilized the assumption that they must be called in
order, but this assumption can easily be lifted, so that e.g.,
the most accurate and expensive estimator can be invoked
first. Generally speaking, this setup makes sense only when
there is sufficient information about the running times and
expected quality of the estimators, so that more informed
choices could be taken. Since this paper introduced a novel
framework, we preferred to start with the simpler setting,
where the more complex setting is left for future work.

Additional flexibility can be manifested in: estimation
times that are fully known, partially known or completely
unknown; similarly for expected bounds; and edge costs that
can be unknown deterministic constants, or stochastic vari-
ables, so long as they are bounded.

7 Conclusions
This paper presents a generalized framework for estimated
weighted directed graphs, where the cost of each edge can
be estimated by multiple estimators, where every estimator
has its own run-time and returns lower and upper bounds
on the edge weight. We show that in these settings, decid-
ing whether the cost of a given path is optimal (or within
some suboptimality bound) requires solving the shortest
path tightest lower-bound (SLB) problem, which we define.
SLB problems involve finding a path with the tightest lower
bound on the optimal cost. We present two algorithms for
solving SLB problems in a guaranteed manner. Experiments
reveal the dramatic computational savings they offer.

The novel framework offers numerous directions for fu-
ture research. Certainly, the algorithms presented are first
steps, and their performance can probably be improved (e.g.,
by utilizing knowledge of τw to interleave the order of es-
timator applications across edges). Other algorithmic ap-
proaches can be tested as well. Extensions for undirected
graphs and for informed search are also of significant inter-
est, as are novel graph search problems that are based on
estimated, rather than exact, costs.
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