
Policy-Specific Abstraction Predicate Selection in Neural Policy Safety Verification

Marcel Vinzent1, Min Wu2, Haoze Wu2, Jörg Hoffmann1,3

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 Department of Computer Science, Stanford University, Stanford, United States

3 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
{vinzent, hoffmann}@cs.uni-saarland.de, {minwu, haozewu}@cs.stanford.edu

Abstract

Neural networks (NN) are an increasingly important repre-
sentation of action policies π. Recent work has introduced
policy predicate abstraction (PPA) to prove safety of such
π, through over-approximating the state space subgraph in-
duced by π. Counterexample-guided abstraction refinement
(CEGAR) drives the verification process, iteratively build-
ing the PPA for the current set of predicates, finding an ab-
stract unsafe path σP , and selecting new predicates based on
sources of spuriousness in σP . Compared to standard predi-
cate abstraction, this involves a new source of spuriousness,
where the necessary concrete transition exists but the neural
network π selects a different action. Prior work tackles this
source of spuriousness naı̈vely, based on the concrete states
involved. Here we introduce a method that instead selects
new abstraction predicates specific to policy behavior, trying
to characterize π’s decision boundary. Inspired by ideas from
formal explainable AI (XAI) in computer vision, we use SMT
reasoning to identify a state variable set Vrel relevant to π, in
the sense that π’s decision is invariant against perturbation of
the irrelevant variables V \ Vrel . We then add new predicates
based on v ∈ Vrel . We introduce and empirically evaluate
a number of variants of this approach. The results show that
the approach can sometimes improve CEGAR performance,
though there is no clear winning configuration.

1 Introduction
Neural networks (NN) are an increasingly important repre-
sentation of action policies in many contexts, including AI
planning (Issakkimuthu, Fern, and Tadepalli 2018; Groshev
et al. 2018; Garg, Bajpai, and Mausam 2019; Toyer et al.
2020; Stahlberg, Bonet, and Geffner 2022). But how to ver-
ify that such a policy is safe? Given a policy π, a start
condition ϕ0, and an unsafety condition ϕu, how to verify
whether a state su |= ϕu is reachable from a state s0 |= ϕ0

under π? Such verification is potentially very hard as it com-
pounds the state space explosion with the difficulty of ana-
lyzing even single NN decision episodes.

Research has recently begun to address this question. A
prominent line of works addresses neural controllers of dy-
namical systems, where the NN outputs a vector u of re-
als forming input to a continuous state-evolution function
f (Sun, Khedr, and Shoukry 2019; Tran et al. 2019; Huang
et al. 2019; Dutta, Chen, and Sankaranarayanan 2019). Re-
cent work extends this thread to hybrid systems, address-

ing smooth (tanh/sigmoid) activation functions by compila-
tion into such systems (Ivanov et al. 2021). Another thread
explores bounded-length verification of neural controllers
(Akintunde et al. 2018, 2019; Amir, Schapira, and Katz
2021).

Here we follow up on the work by Vinzent et al. (2022;
2023) (henceforth: Vea), which tackles NN policies π with
ReLU activation functions taking discrete action choices in
non-deterministic state spaces over bounded-integer state
variables V . The approach extends predicate abstraction
(PA) (Graf and Saı̈di 1997; Ball et al. 2001; Henzinger
et al. 2004) to what Vea baptize policy predicate abstrac-
tion (PPA). Like PA, PPA builds an over-approximating ab-
straction defined through a set P of predicates, where each
p ∈ P is a linear constraint over the state variables (e.g.
x = 7 or x ≤ y). Unlike PA however, PPA abstracts not the
full state space Θ, but the policy-restricted state space Θπ ,
i.e., the state-space subgraph containing only the transitions
taken by π. Vea’s method builds the fragment of Θπ

P – the
predicate abstraction of Θπ – reachable from ϕ0, and checks
whether ϕu is reached. If this is not the case, then π is safe.

To find a suitable predicate set P automatically, Vea
employ counterexample-guided abstraction refinement (CE-
GAR) (Clarke et al. 2003), iteratively building the PPA for
the current set of predicates, finding an abstract unsafe path
σP , and selecting new predicates based on sources of spu-
riousness in σP (if no σP exists then π is proved safe, if
σP is not spurious then π is proved unsafe). Vea show, on
a collection of benchmarks adapted from AI planning, that
this approach tends to outperform encodings into the state-
of-the-art verification tool NUXMV (Cavada et al. 2014), in
particular being the only approach that succeeds in proving
policies safe.

In the present paper, we hone in on the sources of spu-
riousness in the abstract unsafe path σP , and the adequate
selection of new predicates to address these sources. This
is an important and subtle problem because, whereas in
standard PA spurious behavior is always due to the over-
approximation in abstract state transitions, in PPA the reason
may instead be a decision of the neural network π. To see
this, consider a concrete state s in an abstract state sP , and
say that the abstract path next proceeds to s′P via label l. In
PA, this is possible iff there is a concrete transition (s, l, s′)
s.t. s′ ∈ s′P . In PPA, we additionally need that π(s) = l.

If this is not the case, then the needed transition behavior is
there, but the needed NN decision is not.

This source of spuriousness calls for new predicates spe-
cific to policy behavior, distinguishing states within sP
where π selects vs. does not select l, and therewith charac-
terizing the relevant decision boundary of the neural network
π. Vea did not tackle this challenge. Instead, they opted for a
naı̈ve method, based on a witness state sw ∈ sP (found by
PPA) for the abstract transition (sP , l, s

′
P). They introduce

new predicates allowing to distinguish s from sw. This disre-
gards the question which aspects of sw are actually relevant
to π’s decision.

Here we tackle this question in detail. Inspired by ideas
from formal explainable AI (XAI) in computer vision (Wu,
Wu, and Barrett 2022), we say that a set of state variables
Virr ⊆ V is ϵ-irrelevant if the decision of π in sw is invari-
ant against perturbation of Virr by at most ϵ while keep-
ing all other variables fixed. If Virr is maximal, we say
Vrel = V \ Virr is ϵ-relevant. We use SMT reasoning spe-
cialized to NN (Katz et al. 2017, 2019) to compute an ϵ-
relevant set Vrel in a loop over v ∈ V . We get rid of the
algorithm parameter ϵ through an outer loop using binary
search to identify a minimal ϵ such that an ϵ-relevant Vrel ex-
ists. The incurred SMT overhead is negligible compared to
the SMT effort required in PPA anyhow, so that this method-
ology is feasible.

We also experiment with the form of new predicates intro-
duced, in particular relying on ϵ to identify a value between
sw and s – intuitively, estimating the location of π’s decision
boundary – to be used in the new abstraction predicate.

We evaluate our techniques on Vea’s benchmarks, com-
paring a broad range of algorithm configurations. The re-
sults show that the approach can sometimes improve CE-
GAR performance, though there is no clear winning config-
uration.

2 Preliminaries
We consider the policy verification setting as introduced by
Vea. A state space is a tuple ⟨V,L,O⟩ of state variables V ,
action labels L, and operators O. For each variable v ∈
V the domain Dv ̸= ∅ is a bounded integer interval. We
denote by Exp the set of linear integer expressions over V ,
of the form d1 · v1 + · · · + dr · vr + c with d1, . . . , dr, c ∈
Z. C denotes the set of linear integer constraints over V ,
i.e., constraints of the form e1 ▷◁ e2 with ▷◁ ∈ {≤,=,≥}
and e1, e2 ∈ Exp, and Boolean combinations thereof. An
operator o ∈ O is a tuple (g, l, u) with label l ∈ L, guard
g ∈ C , and (partial) update u : V → Exp.

A (partial) variable assignment s over V is a function
with domain dom(s) ⊆ V and s(v) ∈ Dv for v ∈ dom(s).
Given s1, s2, we denote by s1[s2] the update of s1 by s2, i.e.,
dom(s1[s2]) = dom(s1)∪dom(s2) with s1[s2](v) = s2(v)
if v ∈ dom(s2), else s1[s2](v) = s1(v). By e(s) we denote
the evaluation of e ∈ Exp over s, and by ϕ(s) the evaluation
of ϕ ∈ C . If ϕ(s) evaluates to true, we write s |= ϕ.

The state space of ⟨V,L,O⟩ is a labeled transition sys-
tem (LTS) Θ = ⟨S,L, T ⟩. The set of states S is the (finite)
set of all complete variable assignments over V . The set of

transitions T ⊆ S ×L×S contains (s, l, s′) iff there exists
an operator o = (g, l, u) such that s |= g and s′ = s[u(s)],
where u(s) = {v 7→ u(v)(s) | v ∈ dom(u)}. We also write
s |= o for s |= g, and abbreviate sJoK for s[u(s)].

Observe that the separation between action labels and op-
erators allows both, state-dependent effects (different opera-
tors with the same label l applicable in different states) and
action outcome non-determinism (different operators with
the same label l applicable in the same state).

A policy π is a function S → L. We consider π repre-
sented by a neural network (NN). While Vea’s approach
applies, in principle, to arbitrary NN, its current implemen-
tation is restricted to feed-forward NN with rectified linear
unit (ReLU) activation functions ReLU (x) = max(x, 0).
These NN consist of an input layer, arbitrarily many hidden
layers, and an output layer with one neuron per label l; π is
obtained by applying argmax to the output layer.

We next introduce basic safety notations pertaining to Θ
as a whole; we will later modify these to consider policy
safety instead. A safety property is a pair ρ = (ϕ0, ϕu)
where ϕ0, ϕu ∈ C . Here, ϕu identifies the set of unsafe
states that should be unreachable from the set of possible
start states represented by ϕ0. Θ is unsafe with respect to ρ
iff there exists a path ⟨s0, l0, . . . , sn−1, ln−1, sn⟩ in Θ such
that s0 |= ϕ0 and sin |= ϕu. Otherwise Θ is safe.

Predicate abstraction (Graf and Saı̈di 1997) is a well-
established technique to prove safety. Assume a set of pred-
icates P ⊆ C . An abstract state sP is a (complete) truth
value assignment over P . The abstraction of a (concrete)
state s ∈ S is the abstract state s|P with s|P(p) = p(s) for
each p ∈ P . Conversely, [sP] = {s′ ∈ S | s′|P = sP}
denotes the set of all concrete states represented by sP .
The predicate abstraction of Θ over P is then the LTS
ΘP = ⟨SP ,L, TP⟩, where SP is the set of all abstract
states over P , and TP = {(s|P , l, s′|P) | (s, l, s′) ∈ T }.
To compute ΘP , one must solve what we call the abstract
transition problem for every possible abstract transition:
(sP , l, s

′
P) ∈ TP iff there exists an l-labeled operator o ∈ O

and a concrete state sw ∈ [sP], a transition witness, such
that sw |= o and swJoK ∈ [s′P]. Such abstract transition
problems are routinely encoded into satisfiability modulo
theories (SMT) (Barrett and Tinelli 2018), using off-the-
shelf solvers like Z3 (de Moura and Bjørner 2008).

Analogously to safety in Θ, the abstract state space ΘP
is said to be unsafe with respect to a safety property ρ =
(ϕ0, ϕu) iff there exists a path σP = ⟨s0P , l0, . . . , ln−1, snP⟩
in ΘP such that s0P |= ϕ0 and snP |= ϕu, where sP |= ϕ iff
there exists s ∈ [sP] such that s |= ϕ. Otherwise ΘP is safe,
in which case Θ is safe as well.

A concrete path ⟨s0, l0, . . . , ln−1, sn⟩ such that s0 |= ϕ0,
si ∈ [siP] for i ∈ {0, . . . , n} and sn |= ϕu is a concretiza-
tion of σP . If there does not exist a concretization for σP ,
then σP is spurious. Counterexample-guided abstraction re-
finement (CEGAR) (e.g. (Clarke et al. 2003; Henzinger
et al. 2004; Gupta and Strichman 2005; Podelski and Ry-
balchenko 2007)) iteratively removes such spurious abstract
paths by refining P , until either the abstraction is proven safe
or a non-spurious abstract path is found.

3 PPA & CEGAR (Vea)
We next briefly revisit Vea as the direct background for our
work.

Policy Predicate Abstraction
Safety of a given policy π is proved via safety of the policy-
restricted state space Θπ , the subgraph ⟨S,L, T π⟩ of Θ
with T π = {(s, l, s′) ∈ T | π(s) = l}. In turn, safety of
Θπ is proved via safety of the policy predicate abstraction
of Θπ , Θπ

P = ⟨SP ,L, T π
P ⟩ where T π

P = {(s|P , l, s′|P) |
(s, l, s′) ∈ T , π(s) = l}.

Vea (2022) introduce an algorithm to compute the frag-
ment of Θπ

P reachable from the start condition ϕ0. The ab-
stract transition problems in this computation involve check-
ing whether π selects the correct label: (sP , l, s′P) ∈ TP
iff there exists an l-labeled operator o ∈ O and transition
witness sw ∈ [sP], such that sw |= o, swJoK ∈ [s′P] and
π(sw) = l. This is a key new source of complexity as the
SMT sub-formula representing the neural network π con-
tains one disjunction for every neuron. Vea show how this
can be dealt with through approximate SMT checks. In par-
ticular, this pertains to continuous relaxations of the integer
state variables, solved with Marabou (Katz et al. 2019), an
SMT solver tailored to NN analysis.

CEGAR
To find a suitable predicate set P automatically, Vea (2023)
employ counterexample-guided abstraction refinement (CE-
GAR) (Clarke et al. 2003). Starting from an initially coarse
predicate set P = ∅, they iteratively search for an abstract
unsafe path σP in Θπ

P . If σP is spurious, i.e., without con-
cretization in Θπ , they refine P by adding predicates based
on the source of spuriousness in σP , and iterate. If σP is not
spurious then π is proved unsafe. Conversely, if no σP exists
then π is proved safe.

For refinement, Vea distinguish two sources of spu-
riousness, over-approximation of the transition behavior
and spuriousness induced by the policy, Figure 1 shows
an illustration. Consider a non-spurious prefix σi

P =
⟨s0P , l0, . . . , li−1, siP⟩ of σP , i.e., there exists a prefix con-
cretization ⟨s0, l0, . . . , li−1, si⟩ in Θπ . Moreover, say σP
next proceeds to si+1

P via label li. This is possible due
to some transition witness siw ∈ [siP] with outgoing tran-
sition (siw, l

i, si+1) such that si+1 ∈ [si+1
P]. Spurious-

ness due to over-approximation of the transition behav-
ior occurs, if no such witness is reachable under con-
cretizations of σi

P , i.e., there does not exist a concrete
path ⟨s0, l0, . . . , li−1, siw⟩. This source of spuriousness also
occurs in standard PA. Here, Vea refine based on weak-
est precondition computation over ⟨s0P , l0, . . . , li−1, siP⟩
(cf. (Podelski and Rybalchenko 2007)).

In PPA, we additionally need that π(siw) = li, i.e., π se-
lects the respective action label in the witness state. If there
exists a state si ∈ [siP] with (si, li, si+1) (i.e., a witness in
standard PA) reachable via concretizations, but π(si) ̸= li

for any such si, then the spuriousness is induced by the
policy. For refinement of policy-induced spuriousness, Vea

(STD)

s

sw

s′

sP s′P

ϕ0

(POL)

(WS)

s

sw

s′

l′ π

l

l
π

sP s′P

ϕ0

Figure 1: Illustrations (adapted from Vea (2023)) for
standard spuriousness (STD), policy-induced spuriousness
(POL) and refinement based on witness splitting (WS). s ∈
[sP] is a concrete state reachable from ϕ0 under (prefix) con-
cretizations of a given abstract path σP . sw ∈ [sP] \ {s} is a
witness of the next abstract transition (sP , l, s

′
P) of σP . The

dashed line indicates the split between s and sw obtained by
adding new predicates.

apply a technique they baptize witness splitting. They con-
sider an individual concretization ⟨s0, l0, . . . , li−1, si⟩ of σi

P
for which action label selection deviates, π(si) ̸= li, and in-
troduce predicates that enable to distinguish si and siw (the
witness state found by PPA). Intuitively, these predicates ap-
proximate the decision boundary of π within siP by the dif-
ference between siw and si, spitting siP in the refined ab-
straction. Vea show that, while a spurious counterexample
may persist after a single refinement step based on this ap-
proximation, it is guaranteed to be removed within finitely
many refinement steps, and hence the approach is complete.

Open Questions
Vea demonstrate, on a collection of benchmarks adapted
from AI planning, that this approach tends to outperform
encodings into the state-of-the-art non-NN-tailored verifi-
cation tool NUXMV (Cavada et al. 2014), in particular be-
ing the only approach that succeeds in proving policies safe.
These results are encouraging. However, in their policy re-
finement, they disregard the question of which aspects (i.e.,
state variables) are actually relevant to π’s decision in siw.
Instead, they introduce one box constraint for each variable
v ∈ V: v ≤ siw(v) if siw(v) < si(v) and v ≥ siw(v) if
siw(v) > si(v).

This leaves us with the question whether performance can
be improved via a more targeted selection of (i) the variables
and (ii) the split predicate v ≤ c. For (i), Vea’s approach
is complete as long as at least one variable is selected. For
(ii), they split right at the witness siw(v), but, in principle,
any split point c between siw(v) and si(v) can be chosen.
In our work, we investigate these questions. Specifically, we
(i) provide a variable selection technique inspired by ideas
from formal XAI (Sec. 4) and (ii) experiment with different
heuristics for selecting the split point (Sec. 5)).

For the remainder of this paper, we consider an abstract
path prefix ⟨s0P , l0, . . . , li−1, siP⟩ with policy-induced spu-
riousness in siP , prefix concretization ⟨s0, l0, . . . , li−1, si⟩,
and witness siw ∈ [siP]. For readability, we drop the index i
and abbreviate π(siw) by lw.

4 Variable Selection for Policy Refinement
In this section, we provide a variable selection technique,
that partitions the state variables V into a set of relevant
variables Vrel and irrelevant variables Virr for π in sw.
The motivation is to perform witness splitting using the rel-
evant subset Vrel only.

The technique is inspired by ideas from formal explain-
able AI, specifically VERIX (VERIfied eXplainability) (Wu,
Wu, and Barrett 2022). VERIX computes a minimal subset
of input features that explains the behavior of a neural net-
work for a given input, such as an image in computer vision
or a text in natural language processing. In essence, VERIX
finds explanations by identifying sets of irrelevant features.
Given a perturbation bound ϵ, a set of features is irrelevant,
if the neural model behavior is invariant against arbitrary ϵ-
bounded perturbations of all irrelevant features while fixing
the other features, i.e., the explanation. If the set of irrele-
vant features is maximal, i.e., no feature can be added, the
explanation is optimal. In other words, the features in the
explanation are relevant.

In the following, we first spell out an adaption of VERIX
to our witness splitting setting. Subsequently, we contribute
a binary search framework BSEARCH, to get rid of the ϵ pa-
rameter. Their combination constitutes our variable selection
technique.

ϵ-Relevant Variables
The notion of relevant and irrelevant features translates to
state variables in an intuitive manner. In the witness split-
ting context, we are interested in perturbations “from” the
witness sw “towards” the concretization state s only. We
maintain a relative perturbation bound ϵ ∈ [0, 1] and nor-
malize the absolute perturbation bound for each variable to
the interval between sw and s. That is, the value for variable
v in the perturbed state ŝ is bounded by |ŝ(v)− sw(v))| ≤
ϵ · |s(v)− sw(v)| and sw(v) ≤ ŝ(v) if sw(v) ≤ s(v) re-
spectively sw(v) ≥ ŝ(v) if sw(v) ≥ s(v); abbreviated
ŝ(v) ∈ Dϵ

v(sw, s).
Definition 1 (ϵ-Relevant Variables). Given states sw, s ∈ S
with π(sw) = lw ̸= π(s) and a perturbation bound ϵ ∈
[0, 1]. Virr ⊆ V is ϵ-irrelevant for π in sw if for any state
ŝ ∈ S such that ŝ(v) ∈ Dϵ

v(sw, s) for each v ∈ Virr and
ŝ(v) = sw(v) for each v ∈ V \ Virr , it holds π(ŝ) = lw.
Virr is maximal if no superset of Virr is irrelevant. If Virr

is maximal, its complement Vrel = V \ Virr is ϵ-relevant.
We provide a graphical illustration in Figure 2. Intuitively,

a set of state variables Virr is ϵ-irrelevant if we can perturb
Virr in sw up to bound ϵ (while fixing V \ Virr) with the
policy still selecting lw in the perturbed state ŝ. If Virr is
maximal, i.e., no variable can be added, then its complement
Vrel = V \ Virr is ϵ-relevant. We remark that Definition 1 is
local in that for a given bound ϵ there may exist more than
one ϵ-relevant set Vrel . An interesting problem would be to
find Vrel with minimum size, which is, however, computa-
tionally extremely expensive. Following Wu et al. (2022),
we instead settle for the computationally cheaper option of
computing Vrel greedily given a fixed traversal order of the
variables.

Figure 2: Graphical illustration of VERIX deployed in pol-
icy predicate abstraction, adapted from (Wu, Wu, and Bar-
rett 2022). The big blue “+” denotes the witness state sw,
and the small “+”s are its variants with ϵ-perturbations on
state variables. Perturbing the irrelevant variables (blue “+”)
will definitely not change the action label, whereas perturb-
ing both (orange “+”) may lead to a label change. Particu-
larly, when the irrelevant variable set Virr is maximal (i.e.,
its complement Vrel is ϵ-relevant) perturbing Virr plus any
single variable in Vrel can breach the decision boundary of
the policy π, as shown by the variants connected by dotted
lines.

Algorithm 1: VERIX (Wu, Wu, and Barrett 2022)
(adapted to WS setting).

Input: States sw, s ∈ S such that π(sw) = lw ̸= π(s).
Parameter: perturbation-bound ϵ ∈ [0, 1].
Output: ϵ-relevant Vrel ⊆ V .

1 (Vrel ,Virr)← (∅, ∅)
2 for v′ ∈ TRAVERSALORDER(sw) do
3 V ′

irr ← Virr ∪ {v′}
4 ϕ←

∧
v∈V′

irr

ŝ(v) ∈ Dϵ
v(sw, s)

5 ϕ← ϕ
∧

v∈V\V′
irr

ŝ(v) = sw(v)

6 HOLD ← CHECK(ϕ⇒ π(ŝ) = lw)
7 if HOLD then
8 Virr ← Virr ∪ {v′}
9 else

10 Vrel ← Vrel ∪ {v′}

VERIX Algorithm. Algorithm 1 shows the adaption of
the VERIX algorithm to our setting. We are given a witness
sw and a concretization state s with π(sw) = lw ̸= π(s)
as well as a perturbation bound ϵ. VERIX maintains two
sets Virr and Vrel , initialized to ∅ (line 1). It then iterates
each state variable v′ according to a traversal order (see be-
low) fixed for sw (line 2), and checks whether v′ can be
added to Virr . For this purpose, it constructs a formula ϕ
over the perturbation state ŝ where each v ∈ Virr as well
as v′ is ϵ-bounded (line 4) and all remaining variables are
fixed (line 5). It then checks via a call to a sub-procedure
CHECK whether ϕ implies π(ŝ) = lw (line 6), i.e., whether
π selecting lw is invariant to perturbation to Virr ∪ {v′}.
In practice, CHECK can be instantiated with an off-the-shelf

SMT solver (e.g., Marabou (Katz et al. 2019)).1 If CHECK
holds, Virr ∪{v′} is indeed irrelevant and v′ can be added to
Virr (line 8). If not, Vrel is added to Vrel (line 10). After all
variables are traversed, each v ∈ V is placed in either of the
two sets Virr or Vrel ; Virr is a maximal ϵ-irrelevant set and
Vrel is ϵ-relevant.
Theorem 2 (Correctness). Algorithm 1 computes a ϵ-
relevant variable set Vrel ⊆ V .

Theorem 2 follows analogously to explanation optimality
for original VERIX (Wu, Wu, and Barrett 2022). We pro-
vide a formal proof in an online technical report (TR).2

Traversal Order. The traversal order can significantly af-
fect the size and shape of Virr respectively Vrel . Following
Wu et al. (2022), we use a sw-dependent heuristic that aims
to produce small Vrel based on variable sensitivity.
Definition 3 (Variable Sensitivity). The variable sensitivity
for v ∈ V in sw ∈ S is

sens(v) =
∑
l∈L

∣∣πl(sw[v 7→ upv])− πl(sw[v 7→ lov])
∣∣ ,

where lov and upv are the lower and upper bound of v,
sw[v 7→ c] is the update of sw by v 7→ c, and πl(s) is the
value of the output layer neuron l in the neural network π
given input s.

Variable sensitivity is inspired by feature-level sensitiv-
ity (Wu, Wu, and Barrett 2022). Intuitively, we measure how
sensitive the policy π is to perturbations of v in sw, com-
paring the output layer difference for maximal and minimal
perturbation (upv and lov).

Given sens , TRAVERSALORDER(sw) iterates each state
variable v from least to most sensitive. This is expected to
lead to larger Virr and smaller Vrel .

We remark that sens in isolation can already be used to
select a subset of heuristically-relevant variables for witness
splitting (e.g., the most sensitive variable only). We investi-
gate this option as a baseline in our experiments.

ϵ-Minimal Relevant Variable Set
VERIX leaves the perturbation bound ϵ as a user-parameter
to customize. In our case, however, we do not consider a spe-
cific variable selection problem (sw, s) in isolation. Instead,
we want to repeatedly select a subset of relevant variables
for changing pairs of sw and s each time we refine policy-
induced spuriousness throughout an invocation of CEGAR.
Ultimately, we want ϵ to automatically adapt to the variable
selection problem at hand.

We achieve this via a binary search around VERIX to find
a minimal perturbation bound ϵ such that a non-empty ϵ-
relevant Vrel exists. Intuitively, this enables to select the sub-
set of variables that is relevant to π’s decision near sw.3

1It is also possible to first run an adversarial attack algorithm to
try to quickly falsify ϕ ⇒ π(ŝ) = lw before deploying the SMT
solver, but on the benchmarks that we study those SMT calls do not
incur a large overhead.

2https://fai.cs.uni-saarland.de/vinzent/papers/rddps23.pdf
3We remark that this optimization criteria is not equivalent to

finding ϵ with non-empty Vrel that is minimal in size.

Algorithm 2: BSEARCH

Input: States sw, s ∈ S such that π(sw) = lw ̸= π(s).
Parameter: ϵ-precision τ ∈ (0, 1)
Output: ϵ-minimal relevant Vrel ⊆ V .

1 (Vrel , ϵlo , ϵ, ϵup)← (∅, 0, 0.5, 1)
2 while ϵup − ϵlo > τ do
3 V ′

rel ← VERIX(sw, s, ϵ)
4 if V ′

rel = ∅ then
5 (ϵlo , ϵ, ϵup)← (ϵ, ϵ+ (ϵup − ϵ)/2, ϵup)

6 else
7 (Vrel , ϵlo , ϵ, ϵup)← (V ′

rel , ϵlo , ϵlo + (ϵ− ϵlo)/2, ϵ)

8 if Vrel = ∅ then Vrel ← VERIX(sw, s, 1)

Algorithm 2 shows the pseudocode for the binary search
BSEARCH. Like VERIX it is given a witness sw and a con-
cretization state s with π(sw) = lw ̸= π(s). However, un-
like VERIX it is not given a specific perturbation ϵ but only a
ϵ-precision τ ∈ (0, 1) up to which a minimal ϵ is computed.
The latter is required to guaranteed termination.

BSEARCH maintains a set Vrel , a perturbation bound ϵ,
a lower bound ϵlo on ϵ and an upper bound ϵup on ϵ. Vrel

is initialized to ∅, ϵlo to the perturbation minimum 0, ϵup
to the maximum 1, and ϵ to the middle point 0.5 (line 1).
BSEARCH then iterates until the search interval (ϵlo , ϵup)
becomes smaller than τ (line 2). In each iteration VERIX is
called with the current perturbation bound ϵ (line 3).

If the ϵ-relevant variable set V ′
rel found by VERIX is

empty, the search interval is updated to its upper half
(ϵ, ϵup) and ϵ is increased to the new middle point accord-
ingly (line 5). Intuitively, π’s decision is invariant under ϵ-
bounded perturbation to all variables. Hence, all variables
are irrelevant and ϵ must be increased to find a non-empty
relevant set.

If V ′
rel is non-empty, it is assigned to Vrel as the new can-

didate of being a non-empty ϵ-relevant set with minimal ϵ
(line 7). The search interval is now updated to its lower half
(ϵlo , ϵ) and ϵ is decreased to the new middle point. That is,
in the next iterations, BSEARCH continues to search for a
smaller ϵ such that a non-empty ϵ-relevant variable set exists.
We remark that also after finding a candidate set Vrel , the
if-branch (V ′

rel = ∅) may be visited. Intuitively, BSEARCH
approaches the smallest candidate bound found so far (i.e.,
ϵup) from below.

Without ϵ-precision τ > 0 the loop in Algorithm 2 will
never terminate. In either branch of the if-else-condition,
there always exists a non-empty search interval ((ϵ, ϵup) or
(ϵlo , ϵ)) to be explored. Hence, τ > 0 is indeed required to
guarantee termination. However, in practice, for reasonably
small τ , we expect the computed ϵ to be usually minimal
without restriction.

Due to τ -precision, the loop in Algorithm 2 may ter-
minate, i.e., (ϵlo , ϵup) becomes smaller than τ , while still
Vrel = ∅. This corner case is caught by computing the vari-
able set that is relevant for ϵ = 1 (line 8). Note that since
π(sw) ̸= π(s), the 1-relevant variable set is guaranteed to

be non-empty. We remark that in our empirical study, this
corner case never occurred.

Theorem 4 (Correctness). Algorithm 2 computes a non-
empty ϵ-relevant variable set Vrel ⊆ V such that ϵ is minimal
up to τ .

Due to space constraints, we move the formal proof to the
online TR.

Proof sketch.. Let Vrel be the variable set computed by Al-
gorithm 2. Case distinction.

• Vrel is set (non-empty) in the loop (line 7): Whenever
Vrel is updated, ϵup is set to current ϵ. Hence, Vrel is ϵup-
relevant at loop termination. ϵlo is 0 (∅ is 0-relevant) or
updated for V ′

rel = ∅ (line 5). Hence, there does not exist
ϵ′ ≤ ϵlo with a non-empty ϵ′-relevant variable set. Since
additionally ϵup − ϵlo < τ , ϵup is minimal up to τ .

• Vrel is set after loop termination (line 8): Since Vrel =
∅ at loop termination,, we have ϵup = 1. Analogously,
to the first case, we have that there does not exist ϵ′ ≤
ϵlo with a non-empty ϵ′-relevant variable set. Since also
ϵup − ϵlo < τ , 1 is minimal up to τ .

5 Split Predicate Selection
In the previous section, we have provided a technique to se-
lect a subset of relevant state variables Vrel for witness split-
ting. In this section, we propose different heuristics for se-
lecting the split predicate v ≷ c for each v ∈ Vrel . In princi-
ple, witness splitting can be applied using any split predicate
v ≤ c with sw(v) ≤ c < s(v) if sw(v) < s(v), and v ≥ c
with sw(v) ≥ c > s(v) if sw(v) > s(v), respectively.

• (AT-WITNESS) In their original approach, Vea split right
at the witness sw(v) for each state variable v. That is,
split predicate v ≤ sw(v) if sw(v) < s(v) and v ≥ sw(v)
if sw(v) > s(v). Intuitively, this choice is motivated in
that sw(v) is known to “lie” within the decision boundary
of π selecting the desired action label, namely π(sw).
In contrast, due to the complex structure of NN, no ad-
hoc predication on π’s behavior for split points c beyond
sw(v) can be made.

• (MID-SPLIT) A disadvantage of AT-WITNESS is that it
may heavily underestimate the distance to the decision
boundary from sw towards s. This may result in unnec-
essarily many iterations of π-induced refinement; step-
wise approximating the decision boundary. To mitigate
such behavior, we experiment with a heuristic that splits
in the middle between sw and s. That is, v ≤ sw(v)+

1
2 ·

(s(v) − sw(v)) for sw(v) < s(v) (and analogously for
sw(v) > s(v)). While there is no guarantee in terms of
c’s relation to π’s decision boundary, middle-point based
approximations can be observed to perform well in vari-
ous contexts.

• (ϵ-SPLIT) Our variable selection technique computes, in
addition to the relevant variable subset Vrel , also a corre-
sponding perturbation bound ϵ. Broadly speaking, ϵ can
be considered as an estimate of the decision boundary of

π: ϵ-bounded perturbation to any v ∈ Vrel (plus Virr)
allows for perturbed states ŝ such that π(ŝ) ̸= π(sw);
crossing the decision boundary. We, hence, experiment
with a heuristic that uses a split point relative to ϵ. That
is, v ≤ sw(v)+ ϵ · (s(v)− sw(v)) for sw(v) < s(v) (and
analogously for sw(v) > s(v)).

6 Experiments
We implemented our approach on top of Vea’s C++ code
base, which uses Z3 (de Moura and Bjørner 2008) and
Marabou (Katz et al. 2019) to solve the various SMT queries
during PPA computation and refinement. For CHECK (Algo-
rithm 1, line 6) we query Marabou.4 All experiments were
run on machines with Intel Xenon E5- 2650 processors at
2.2 GHz, with time and memory limits of 12 h and 4 GB.
We next describe the experiments setup, then summarize our
results.

Experimental Setup
Configurations. We compare a broad range of algorith-
mic configurations for refinement of policy-induced spuri-
ousness during CEGAR combining different variable selec-
tion techniques and split point heuristics.

• Veaw is the default configuration used by Vea, i.e., select-
ing all state variables5 and using AT-WITNESS for split-
ting.

• Veamid still selects all variables but uses MID-SPLIT for
splitting.

• BsVerixw applies the variable selection technique intro-
duced in Section 4, i.e., BSEARCH around VERIX. For
splitting it uses Vea’s default AT-WITNESS. For BsVerixw,
and all following configurations using BSEARCH, we set
ϵ-precision τ = 0.05.

• BsVerixmid also applies variable selection, though, using
MID-SPLIT for splitting.

• BsVerixϵ applies variable selection and uses ϵ-SPLIT for
splitting.

• sensmid uses sens (cf., Definition 3) to select the most-
sensitive variable only, splitting based on MID-SPLIT. It
serves as a simple baseline to the more advanced variable
selection based on VERIX.

• As the ultimate baseline, Rand selects a random number
of variables and a random split point between sw(v) and
s(v) for each selected v.

Randomization. The underlying CEGAR refinement ap-
proach involves two sources of non-determinism.

• Each refinement step is dependent on the detected spu-
rious counterexample. Depending on the order in which
the abstract state space is explored, different counterex-
amples, i.e., abstract unsafe paths, may be found. Vea
provide a simple hamming distance heuristic, greedily

4Our tool (and all experiments) are available at request.
5State variables v ∈ V such that sw(v) = s(v) are always

ignored, since no split point is possible.

Benchmark NN Safe Time (Veaw, BsVerixw)
Veaw Veamid BsVerixw BsVerixmid BsVerixϵ sensmid Rand #It π-It |P| π-|P|

16 ✓ 5.1 · 0±-1 4.1 · 0±-1 6.6 · 0±-1 8.3 · 0±0 6.8 · 0±0 8.6 · 0±0 6.0 · 0±0 (11, 14) (3, 4) (21, 20) (10, 5)
4 Blocks 32 ✓ 1.9 · 1±0 2.5 · 1±0 3.0 · 1±1 3.5 · 1±1 3.4 · 1±1 3.6 · 1±1 3.3 · 1±0 (11, 16) (3, 4) (21, 21) (10, 4)
(cost-ign) 64 ✓ 1.6 · 2±1 1.6 · 2±1 2.8 · 2±2 2.6 · 2±1 2.8 · 2±1 2.6 · 2±1 1.8 · 2±1 (11, 14) (2, 3) (20, 19) (6, 3)

16 ✓ 9.2 · 1±1 2.8 · 3±3 7.5 · 1±1 9.8 · 1±1 9.2 · 1±1 2.4 · 2±2 1.8 · 2±2 (21, 30) (4, 8) (38, 38) (18, 10)
6 Blocks 32 ✓ 1.5 · 2±1 1.5 · 2±1 1.5 · 2±1 1.5 · 2±1 1.5 · 2±1 1.4 · 2±1 1.6 · 2±1 (20, 32) (6, 11) (38, 39) (20, 11)
(cost-ign) 64 ✓ 1.3 · 4±3 1.7 · 4±3 1.8 · 4±3 1.9 · 4±4 2.1 · 4±3 3.2 · 4±4 1.7 · 4±3 (21, 31) (4, 8) (35, 38) (12, 8)

16 ✓ 1.3 · 4±4 1.4 · 4±4 4.2 · 3±3 2.3 · 4±4 1.3 · 4±4 1.3 · 4±4 4.0 · 4±4 (36, 52) (6, 10) (62, 62) (27, 11)
8 Blocks 32 ✓ 8.0 · 4±4 - 8.0 · 4±4 - 7.9 · 4±4 8.0 · 4±4 - (37, 52) (6, 10) (63, 65) (23, 13)
(cost-ign) 64 ? - - - - - - - - - - -

16 × 4.2 · 1±1 3.9 · 1±1 9.0 · 1±1 3.8 · 1±1 3.9 · 1±1 5.5 · 1±1 4.4 · 1±1 (24, 40) (13, 28) (48, 48) (34, 31)
8-puzzle 32 ✓ 3.2 · 4±4 3.3 · 4±4 1.9 · 4±4 3.3 · 4±4 4.3 · 4±4 4.2 · 4±4 1.7 · 4±4 (72, 88) (7, 20) (126, 128) (29, 28)
(cost-ign) 64 ✓ 6.5 · 4±4 4.9 · 4±4 6.5 · 4±4 7.9 · 4±4 6.1 · 4±4 5.0 · 4±4 6.3 · 4±4 (58, 83) (10, 31) (116, 114) (38, 35)

16 ✓ 1.5 · 1±1 2.0 · 1±0 1.7 · 1±0 2.2 · 1±1 1.5 · 1±0 1.2 · 1±0 3.8 · 1±1 (12, 18) (5, 7) (25, 24) (14, 8)
4 Blocks 32 ✓ 1.4 · 3±2 2.0 · 3±3 1.0 · 4±4 6.3 · 2±2 8.9 · 2±2 8.1 · 2±3 3.7 · 3±3 (13, 19) (4, 10) (27, 26) (14, 11)
(cost-awa) 64 ✓ 6.9 · 4±4 7.6 · 4±4 6.5 · 4±4 8.2 · 4±4 8.2 · 4±4 8.2 · 4±4 - (9, 16) (3, 8) (24, 21) (15, 8)

16 ✓ 9.5 · 2±3 1.7 · 3±3 1.7 · 3±3 2.3 · 3±3 1.9 · 3±3 7.1 · 2±3 3.7 · 3±3 (20, 31) (6, 10) (48, 45) (30, 17)
6 Blocks 32 ✓ 3.2 · 4±4 2.3 · 4±4 8.2 · 3±3 6.3 · 3±3 4.1 · 3±3 6.0 · 3±3 1.6 · 4±4 (21, 31) (6, 7) (46, 41) (26, 10)
(cost-awa) 64 ? - - - - - - - - - - -

Table 1: Runtime results in seconds for the evaluated CEGAR configurations (Veaw, Veamid, BsVerixw, BsVerixmid, BsVerixϵ,
sensmid, Rand) for different benchmarks and NN policies averaged over 10 randomized invocations, where each result t ·i+j
specifies the mean t · 10i and the magnitude of the observed standard deviation 10j . Timeouts (exceeding the time limit of 12
h) are weighted as 24h. - indicates timeouts for all invocations. For Veaw and BsVerixw we additionally compare the number
of CEGAR iterations (#It), the number of policy-induced refinement steps (π-It), the size of the final predicate set (|P|), the
number of predicates added during policy-induced refinement (π-|P|) – averaged over 10 randomized invocations.

exploring abstract states for which the distance to an un-
safe state is estimated to be small, to speed up the de-
tection of unsafe paths. However, distinct abstract states
may obtain the same heuristic estimate. In this case,
Vea break ties non-deterministically. To account for this
source of non-determinism and to investigate the impact
of different spurious counterexamples, we invoke each of
the configurations above with multiple seeds.

• For policy-induced spuriousness in particular, each re-
finement step is also influenced by the deployed wit-
ness sw – an abstract transition may have multiple wit-
nesses – as well as its counterpart s in the deployed pre-
fix concretization – there may be multiple prefix con-
cretizations. Both of these states are extracted from the
underlying SMT solvers (Marabou and Z3) as solutions
found for the problem at hand (PPA transition problem
and prefix concretization). To account for this additional
source of non-determinism – the SMT solver is essen-
tially a black-box – we also invoke each configuration
with different seeds for Z3 and Marabou.

In total, we invoke each configuration with 10 different
seeds.

Benchmarks. Due to the large configuration space (vari-
able & split point selection compounded with randomiza-
tion), we focus on a subset of Vea’s benchmarks. To give
a brief overview, the benchmarks are variants of the plan-
ning domains Blocksworld and SlidingTiles. Actions mov-
ing a block/tile x may probabilistically fail, in which case
the cost of moving x (represented by a state variable) is in-
cremented. These probabilistic transitions (over which the

policy is learned) are abstracted into non-deterministic ones
for the purpose of verification, amounting to a worst-case
analysis. In both domains, the start conditions impose a par-
tial order on the block/tile positions. In Blocksworld, a state
is unsafe if the number of blocks on the table exceeds a fixed
limit. In SlidingTiles, unsafe states are specified in terms of
a set of unsafe tile positions.

For each domain instance, there are three NN policies
trained by Vea using Q-learning (Mnih et al. 2015), each
with two hidden layers of size 16, 32, respectively 64. There
are policies that do, and ones that do not, take move costs
into account.

Experimental Results
Table 1 shows our results. On 16 out of the 18 problem in-
stances at least one configuration wins. The conclusion are:

Variable Selection. Policy-specific variable selection
(BsVerix, sensmid) can improve performance over the de-
fault applied by Vea. However, there is no clear winning
configuration. The BsVerix-based configurations (BsVerixw,
BsVerixmid, BsVerixϵ) have at least one best performing con-
figuration (smallest mean) on 7 problem instances, while the
configurations selecting all variables (Veaw, Veamid) win on
5 instances. On 3 instances, the baseline based on variable
sensitivity (sensmid) performs best. The baseline based on
random selection (Rand) still achieves best performance on
one instance. On 9 instances, all configurations – including
Rand – achieve performance in the same magnitude as the
best performing configuration. Moreover, for each configu-
ration we observe a standard deviation in the same order of

magnitude as the average runtime on at least 8 out of the 16
problem instances.

In summary, these results are highly inconclusive. While
the high standard deviation hints at a certain instability of
the approach – presumably due to the policy-induced re-
finement using witness states extracted from the underly-
ing SMT solvers – the performance of Rand may, at least
to some degree, indicate that the current benchmark basis
does not address the problem at sufficient scale.

Split Predicate Selection. Focusing on split predicate se-
lection, the picture becomes less opaque. AT-WITNESS is the
overall better performing heuristic (compared to MID-SPLIT
and ϵ-SPLIT). Veaw outperforms Veamid on 11 problem in-
stances – covering one instance on which Veamid does not
terminate. BsVerixw outperforms BsVerixmid and BsVerixϵ on
8 instances – BsVerixmid and BsVerixϵ only dominating on 4
respectively 3 instances. These results indicate that overall
the more conservative split point estimate of AT-WITNESS
turns out to be more stable. That said, there still is no clear
winner. Vea configurations and BsVerix configuration both
perform in the same order of magnitude on more than 10
instances.

Vea vs. BsVerix While there is no clear picture runtime-
wise, the impact of policy-specific variable selection can
be clearly measured in terms of policy-induced refinement
steps and the number of predicates added during these steps.
Table 1 illustrates this by comparing Veaw and BsVerixw. As
intended, for BsVerixw the predicate selection becomes more
cautious – fewer predicates π-|P| are added during policy-
induced refinement steps while the number of refinement
steps π-It grows. The latter also results in an increase of the
total number of CEGAR iterations (#It). Interestingly, the to-
tal number of predicates |P| is usually similar in size. That
is, the decrease in the number of predicates added during
π-refinement π-|P| results in an increase of the number of
predicates added for refinement of standard spuriousness. In
accordance with this intuition, the increase in #It tends to be
larger than the increase in π-It. For other Vea-BsVerix-pairs
similar observations can be made.

7 Conclusion
Neural policy verification via policy predicate abstraction
involves intricate problems in the choice of abstraction pred-
icates, which naturally, for spuriousness caused by policy
decisions, should target the neural decision boundary. We
have introduced and evaluated a range of methods opera-
tionalizing this intuition. For the time being, while improve-
ments over the previous simpler predicate selection method
can be obtained, the results are largely inconclusive in that
there is no winning configuration. To a degree at least, this
is probably due to the current benchmark basis, which does
not seem to exhibit the problem addressed at sufficient scale
– a strong indication being that, in more than half of the
benchmark instances, a random strategy achieves average
performance in the same order of magnitude as the respec-
tive winning configuration. Future work will have to ex-
pand the benchmark basis, and reveal whether there ex-

ist more consistently well-performing configurations (poten-
tially also based on different ideas, like minimum-distance
states on the other side of the decision boundary as illus-
trated in Figure 2 (Croce and Hein 2020; Madry et al. 2018;
Szegedy et al. 2014)). Portfolio methods are of interest too,
as they might manage to reap the benefits of different strate-
gies across benchmarks.

Acknowledgments
This work was funded by DFG Grant 389792660 as part of
TRR 248 – CPEC (https://perspicuous-computing.science).
This work has received funding from the European Union’s
Horizon Europe Research and Innovation program under the
grant agreement TUPLES No 101070149.

References
Akintunde, M.; Lomuscio, A.; Maganti, L.; and Pirovano, E.
2018. Reachability Analysis for Neural Agent-Environment
Systems. In Thielscher, M.; Toni, F.; and Wolter, F., eds.,
Principles of Knowledge Representation and Reasoning:
Proceedings of the Sixteenth International Conference, KR
2018, Tempe, Arizona 30 October - 2 November 2018, 184–
193. AAAI Press.
Akintunde, M. E.; Kevorchian, A.; Lomuscio, A.; and
Pirovano, E. 2019. Verification of RNN-Based Neural
Agent-Environment Systems. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii USA, January 27 - February 1, 2019,
6006–6013. AAAI Press.
Amir, G.; Schapira, M.; and Katz, G. 2021. Towards Scal-
able Verification of Deep Reinforcement Learning. In For-
mal Methods in Computer Aided Design, FMCAD 2021,
New Haven, CT, USA, October 19-22, 2021, 193–203. IEEE.
Ball, T.; Majumdar, R.; Millstein, T. D.; and Rajamani, S. K.
2001. Automatic Predicate Abstraction of C Programs. In
Burke, M.; and Soffa, M. L., eds., Proceedings of the 2001
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), Snowbird, Utah, USA,
June 20-22, 2001, 203–213. ACM.
Barrett, C. W.; and Tinelli, C. 2018. Satisfiability Modulo
Theories. In Clarke, E. M.; Henzinger, T. A.; Veith, H.; and
Bloem, R., eds., Handbook of Model Checking, 305–343.
Springer.
Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mari-
otti, A.; Micheli, A.; Mover, S.; Roveri, M.; and Tonetta,
S. 2014. The nuXmv Symbolic Model Checker. In Biere,
A.; and Bloem, R., eds., Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings, volume 8559 of LNCS, 334–342.
Springer.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H. 2003.
Counterexample-guided abstraction refinement for symbolic
model checking. JACM, 50(5): 752–794.

Croce, F.; and Hein, M. 2020. Reliable evaluation of adver-
sarial robustness with an ensemble of diverse parameter-free
attacks. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proc. Mach. Learn. Res., 2206–2216.
PMLR.
de Moura, L.; and Bjørner, N. 2008. Z3: An Efficient SMT
Solver. In Ramakrishnan, C. R.; and Rehof, J., eds., Tools
and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2008 Budapest, Hungary, March
29-April 6, 2008. Proceedings, volume 4963 of LNCS, 337–
340. Springer.
Dutta, S.; Chen, X.; and Sankaranarayanan, S. 2019. Reach-
ability analysis for neural feedback systems using regressive
polynomial rule inference. In Ozay, N.; and Prabhakar, P.,
eds., Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control, HSCC
2019, Montreal, QC, Canada, April 16-18, 2019, 157–168.
ACM.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Benton, J.; Lipovet-
zky, N.; Onaindia, E.; Smith, D. E.; and Srivastava, S.,
eds., Proceedings of the Twenty-Ninth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2018,
Berkeley, CA, USA, July 11-15 2019, 631–636. AAAI Press.
Graf, S.; and Saı̈di, H. 1997. Construction of Abstract
State Graphs with PVS. In Grumberg, O., ed., Computer
Aided Verification, 9th International Conference, CAV ’97,
Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254
of LNCS, 72–83. Springer.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In de Weerdt, M.; Koenig,
S.; Röger, G.; and Spaan, M. T. J., eds., Proceedings of
the Twenty-Eighth International Conference on Automated
Planning and Scheduling, ICAPS 2018, Delft, The Nether-
lands, June 24-29, 2018, 408–416. AAAI Press.
Gupta, A.; and Strichman, O. 2005. Abstraction Refinement
for Bounded Model Checking. In Etessami, K.; and Raja-
mani, S. K., eds., Computer Aided Verification, 17th Inter-
national Conference, CAV 2005, Edinburgh, Scotland, UK,
July 6-10, 2005, Proceedings, volume 3576 of LNCS, 112–
124. Springer.
Henzinger, T. A.; Jhala, R.; Majumdar, R.; and McMillan,
K. L. 2004. Abstractions from proofs. In Jones, N. D.; and
Leroy, X., eds., Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2004, Venice, Italy, January 14-16, 2004,
232–244. ACM.
Huang, S.; Fan, J.; Li, W.; Chen, X.; and Zhu, Q. 2019.
ReachNN: Reachability analysis of neural-network con-
trolled systems. ACM Trans. Embed. Comput. Syst., 18(5s):
106:1–106:22.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
Deep Reactive Policies for Probabilistic Planning Problems.

In de Weerdt, M.; Koenig, S.; Röger, G.; and Spaan, M.
T. J., eds., Proceedings of the Twenty-Eighth International
Conference on Automated Planning and Scheduling, ICAPS
2018, Delft, The Netherlands, June 24-29, 2018, 422–430.
AAAI Press.
Ivanov, R.; Carpenter, T. J.; Weimer, J.; Alur, R.; Pappas,
G. J.; and Lee, I. 2021. Verifying the Safety of Autonomous
Systems with Neural Network Controllers. ACM Trans. Em-
bed. Comput. Syst., 20(1): 7:1–7:26.
Katz, G.; Barrett, C. W.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks. In Majumdar, R.; and
Kuncak, V., eds., Computer Aided Verification - 29th Inter-
national Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part I, volume 10426 of LNCS,
97–117. Springer.
Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus,
C.; Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljic, A.;
Dill, D. L.; Kochenderfer, M.; and Barrett, C. 2019. The
Marabou Framework for Verification and Analysis of Deep
Neural Networks. In Dillig, I.; and Tasiran, S., eds., Com-
puter Aided Verification - 31st International Conference,
CAV 2019, New York City, NY, USA, July 15-18, 2019, Pro-
ceedings, Part I, volume 11561 of LNCS, 443–452. Springer.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2018. Towards Deep Learning Models Resis-
tant to Adversarial Attacks. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings. OpenReview.net.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nat., 518(7540): 529–533.
Podelski, A.; and Rybalchenko, A. 2007. ARMC: The Log-
ical Choice for Software Model Checking with Abstraction
Refinement. In Hanus, M., ed., Practical Aspects of Declar-
ative Languages, 9th International Symposium, PADL 2007,
Nice, France, January 14-15, 2007, volume 4354 of LNCS,
245–259. Springer.
Stahlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In Kumar, A.;
Thiébaux, S.; Varakantham, P.; and Yeoh, W., eds., Proceed-
ings of the Thirty-Second International Conference on Au-
tomated Planning and Scheduling, ICAPS 2022, Singapore
(virtual), June 13-24 2022, 629–637. AAAI Press.
Sun, X.; Khedr, H.; and Shoukry, Y. 2019. Formal Verifi-
cation of Neural Network Controlled Autonomous Systems.
In Ozay, N.; and Prabhakar, P., eds., Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Com-
putation and Control, HSCC 2019, Montreal, QC, Canada,
April 16-18, 2019, 147–156. ACM.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I. J.; and Fergus, R. 2014. Intriguing prop-

erties of neural networks. In Bengio, Y.; and LeCun, Y., eds.,
2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Confer-
ence Track Proceedings, 2503–2511.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. JAIR, 68:
1–68.
Tran, H.; Cai, F.; Lopez, D. M.; Musau, P.; Johnson, T. T.;
and Koutsoukos, X. D. 2019. Safety Verification of Cyber-
Physical Systems with Reinforcement Learning Control.
ACM Trans. Embed. Comput. Syst., 18(5s): 105:1–105:22.
Vinzent, M.; Sharma, S.; and Hoffmann, J. 2023. Neural
Policy Safety Verification via Predicate Abstraction: CE-
GAR. In Thirty-Seventh AAAI Conference on Artificial In-
telligence. AAAI Press.
Vinzent, M.; Steinmetz, M.; and Hoffmann, J. 2022. Neural
Network Action Policy Verification via Predicate Abstrac-
tion. In Kumar, A.; Thiébaux, S.; Varakantham, P.; and
Yeoh, W., eds., Proceedings of the Thirty-Second Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2022, Singapore (virtual), June 13-24 2022. AAAI
Press.
Wu, M.; Wu, H.; and Barrett, C. 2022. VeriX: Towards Veri-
fied Explainability of Deep Neural Networks. arXiv preprint
arXiv:2212.01051.

