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Abstract

Recent work on LatPlan has shown that it is possible to learn
models for domain-independent classical planners from unla-
beled image data. Although PDDL models acquired by Lat-
Plan can be solved using standard PDDL planners, the result-
ing latent-space plan may be invalid with respect to the under-
lying, ground-truth domain (e.g., the latent-space plan may
include hallucinatory/invalid states). We propose Plausibility-
Based Heuristics, which are domain-independent plausibil-
ity metrics which can be computed for each state evaluated
during search and uses as a heuristic function for best-first
search. We show that PBH significantly increases the number
of valid found plans on image-based tile puzzle and Towers
of Hanoi domains.

1 Introduction
Automated acquisition of domain models for planners from
subsymbolic data (e.g., images taken by cameras) poses
an important challenge for autonomous systems that must
operate in new, unknown environments. Recent work has
shown that it is possible to learn domain models for domain-
independent classical planners from unlabeled, unannotated
pairs of images representing the state of the world before and
after actions are executed (Asai and Fukunaga 2018; Asai
et al. 2022). LatPlan uses deep learning to learn a latent
propositional representation of the domain, which can be
output as a STRIPS PDDL model. These latent propositions
as well as the action model are learned from scratch, without
domain-specific prior knowledge, i.e., LatPlan grounds the
symbols (Steels 2008) and learns an action model with re-
spect to the latent propositions. Problem instances for these
learned models can be solved using standard search-based
planners using standard domain-independent heuristics.

However, an inherent issue with learned models is that
propositions and actions in the learned, latent PDDL model
do not necessarily correspond to those of the underlying
problem. Thus, a significant problem is that although stan-
dard search algorithms such as Fast Downward can find so-
lutions which are correct with respect to the latent PDDL
model, these solutions may not be valid with respect to the
underlying problem. For example, Figure 1 shows an invalid
plan found by LatPlan for the image-based MNIST-8 puzzle.

Figure 1: Visualizations of 2 latent plans for MNIST-8 puz-
zle (start: left → goal:right). The top plan is valid and opti-
mal. The bottom plan is invalid because the 7th image has
two “0”s and an unclear digit which could be interpreted as
a 2, 3, or 6.

Previous work focused on improving the architecture and
learning objectives so that models learned by LatPlan accu-
rately correspond to the underlying domains (Asai and Ka-
jino 2019; Asai et al. 2022). Despite these efforts, the current
implementation of LatPlan has limitations. Although Lat-
Plan can successfully solve image-based 15-puzzles, it has
not been able to find valid solutions for a 4-disk Towers of
Hanoi problem, even though it is much “simpler” than the
15-puzzle with respect to the size of the search space of the
underlying problem (Asai et al. 2022, Appendix M).

In this paper, we investigate a complementary approach.
Instead of the learning component, we focus on the search
component of LatPlan. Previous work relied on using un-
modified, standard planner (Fast Downward) to solve the
PDDL instances generated by LatPlan. We improve the
ability to find valid plans by making LatPlan-specific (but
domain-independent) extensions to the search component.

We propose Plausibility-Based Heuristics (PBH), which
uses the learned LatPlan model during the search to eval-
uate the plausibility of a state, i.e., the likelihood that the
state is valid with respect to the underlying domain. The
plausibility measure can be used as the heuristic evaluation
function h for best-first search (e.g., A∗, GBFS). Instead of
guiding search according to standard distance-based heuris-
tics, we prioritize search according to plausibility, as find-
ing a valid plan takes precedence over finding short but in-
valid plans. This is somewhat similar to the idea of using
novelty and width-based exploration in black-box domains
where standard heuristics do not lead to a solution (Lipovet-



zky, Ramı́rez, and Geffner 2015).
As LatPlan is a domain-independent, image-based do-

main learner/planner, an important goal of this work is
to identify useful, domain-independent plausibility metrics
which are useful on some subset of LatPlan domains. We
propose image-based plausibility measures which can be
computed during search from the propositional latent state.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews LatPlan. Section 3 discusses the validity of la-
tent space plans, and show that the ability to find valid plans
is highly sensitive to LatPlan hyperparameter settings. Sec-
tion 4 proposes metrics for the plausibility of states in la-
tent search spaces, and their use as heuristic functions for
best-first search. Section 5 experimentally evaluates PBH
and shows that it significantly improves the number of valid
solutions found by the search algorithm. Section 6 concludes
with a discussion of our results.

2 Preliminaries and Background
A STRIPS planning task (Fikes and Nilsson 1971) is de-
fined by a 4-tuple T = ⟨P,A, I,G⟩. P is a set of propo-
sitions. A is a set of actions. I ⊂ P represents the initial
state, and G ⊂ P is the goal condition. A state is repre-
sented by a subset of P , and applying an action to a state
adds some propositions and removes some propositions in
the state. Each action a ∈ A is composed of three subsets
of P ,⟨pre(a), add(a), del(a)⟩, which are the preconditions,
add effects, and delete effects. An action a is applicable to a
state S iff pre(a) ⊆ S. By applying a to S, propositions
in S change to S(a) = ((S \ del(a)) ∪ add(a)). For a se-
quence of actions π = (a0, . . . , an), we use S(π) to denote
((((S \ del(a0 )) ∪ add(a0 )) \ del(a1 )) ∪ · · · ) ∪ add(an).
A solution to T is a sequence of actions that transforms I to
a state S satisfying G ⊆ S. A feasible solution, i.e., a plan,
is a sequence of actions π = (a0, . . . , an) that satisfies (i)
∀i, pre(ai) ⊆ I((a0, . . . , ai−1)) and (ii) G ⊆ I(π).

Latent-space planning using LatPlan Given only an un-
labeled set of image pairs showing a subset of transitions al-
lowed in the environment (training inputs), LatPlan learns a
complete propositional PDDL action model of the environ-
ment. Later, when a pair of images representing the initial
and the goal states (planning inputs) is given, LatPlan finds
a plan to the goal state in a symbolic latent space and returns
a visualized plan execution.

Assume that the environment poses a STRIPS planning
problem. Assume that images (e.g., images taken using a
camera) are represented as a vector of integers. Let O be the
space of observations, where an observation o ∈ O is an
image representing a state of the environment.

The input to LatPlan is X , a set of pairs of images.
Each image pair (xi,before,xi,after) ∈ X represents a tran-
sition from an observation xi,before to another observation
xi,after caused by an unknown action. Based only on X , Lat-
Plan learns two functions: (1) Encode(o) : O → (0, 1)N ,
which maps an image o to a propositional vector, and (2)
Decode(o) : (0, 1)N → O, which maps a propositional vec-
tor to an image (Fig. 2). N is a hyperparmeter for the num-
ber of latent propositions. LatPlan learns a Discrete Vari-

Figure 2: State Autoencoder

ational Autoencoder (DVAE) which perform both Encode
and Decode. Unlike a standard autoencoder (Hinton and
Salakhutdinov 2006) where unit activations are continuous,
the DVAE uses a binary (propositional) activation (Jang,
Gu, and Poole 2017; Maddison, Mnih, and Teh 2017). The
propositional output/input of Encode/Decode is called the
latent representation.

Using Encode and Decode, and X , LatPlan generates a
latent domain Dl = ⟨P l, Al⟩, where P l is a set of (la-
tent) propositions and Al is a set of actions in latent space.
Each action al ∈ Al is composed of three subsets of P l,
⟨pre(a l), add(a l), del(a l)⟩, and action al is applicable to a
state Sl iff pre(al) ⊆ Sl. By applying al to Sl, the proposi-
tions in Sl change to Sl(al) = ((Sl \ del(a l)) ∪ add(a l)).

Let oI be an image of a start state in the environ-
ment (e.g., jumbled 8-puzzle configuration). Let oG be
an image representing a desired state of the environment
(e.g., solved 8-puzzle state). A latent STRIPS planning task
T l = ⟨P l, Al, I l, Gl⟩, where I l = Encode(oI ) and Gl =
Encode(oG). A solution πl = (al0, . . . , a

l
n) to T l is a se-

quence of actions that transforms I l to a state Sl that satis-
fies Gl ⊆ P l. As T l is just a standard STRIPS task, T l can
be solved using any planner which takes PDDL input.

The latent space plan πl is a sequence of actions in the
latent representation, and can not be directly interpreted and
executed by the agent. Therefore, LatPlan uses its learned
action model and Decode to map the latent states visited by
πl to a sequence of images (y0, . . . ,yn), called the visual-
ization of πl, which can be interpreted and executed by the
agent, e.g., a human or robot can move the sliding tile puzzle
tiles according to the sequence of images.

3 Validity of Latent Space Plans
An inherent issue with domain learning systems is that the
learned domain may differ from the underlying, canoni-
cal domain. The latent domain Dl learned by LatPlan can
contain many states/actions which do not correspond to
any valid canonical state/actions. For example, although the
MNIST-8 puzzle corresponds to a canonical 8-puzzle with
a branching factor b of at most 4, the search space of the
learned MNIST-8 latent space domain used in the Section
5 experiments has a maximum (over all expanded nodes) b
of 124.9 (mean of 20 instances). Thus, the search algorithm
may incorrectly find latent search space plans which can not
be executed.

We define the following notion of validity of a plan gen-
erated by LatPlan, relative to some target STRIPS task T
which the latent domain learned by LatPlan is intended to
correspond to.

Definition 1. We say that πl is valid with respect to a canon-
ical STRIPS task T = ⟨P,A, I,G⟩ if: for each image yi in



the visualization of πl except the goal, yi corresponds to a
state Si ⊂ P , yi+1 corresponds to a valid state Si+1 ⊂ P ,
and ∃a ∈ A such that Si(a) = Si+1.

Similarly, length optimality of πl wrto T l does not nec-
essarily imply optimality wrto the underlying canonical task
T , so we define the following condition which is satisfied
when πl is optimal wrto T .

Definition 2. We say that πl is c-optimal relative to T if πl

is valid and |πl| is equal to that of the minimal-length plan
for T .

In Figure 1, the top plan is valid and c-optimal. The bot-
tom plan is invalid, because the 7th image from the left has
two “0”s and an unclear digit.

In the experiments below, the LatPlan input X is gener-
ated by a domain-specific generator which has full knowl-
edge of a canonical STRIPS domain (e.g., 8-puzzle), and
outputs a set of valid sample image pairs X for that domain.
The start/goal images oI and oG are also generated using this
generator. Therefore, for each LatPlan domain, plan validity
for a latent space plan πl is checked using a domain-specific
validator.

Since our experiments use validation code to test latent
plan validity, one might wonder whether we could simply
use this validator during search to prune invalid states. How-
ever, unlike domain-independent validators for PDDL do-
mains such as VAL (Howey, Long, and Fox 2004), the Lat-
Plan image-based plan validators are carefully tuned, hand-
coded domain-specific tools (see Asai et al. (2022, Ap-
pendix L.1)), which use extensive domain knowledge e.g.,
for MNIST-8, the knowledge that a valid state image is com-
posed of 8 unique tiles, each of which corresponds to a por-
tion of the unscrambled image. If we have such knowledge,
then instead of a weak learning model such as LatPlan, a
model learning method which can exploit such prior knowl-
edge would probably be a better alternative. Therefore, such
domain-dependent image validators are unlikely to be avail-
able in domains for which LatPlan is a viable approach.

3.1 Plan Validity and LatPlan Model Learning
Hyperparameters

LatPlan has 4 key hyperparameters related to model learn-
ing: (1) The number of latent propositional variables N =
|P l| (2) ϵ, the parameter for the Bernoulli(ϵ) distribution
used as the prior for the latent random variables in the
Binary-Concrete VAE (Asai et al. 2022, Sec 5.4). (3,4) the
regularization parameters β1 and β3 for the KL-divergence
used in the Evidence Lower Bound (ELBO) loss func-
tion. The best values for these hyperparameters are domain-
dependent. Asai et al (2022) showed that the accuracy of
the learned models depended significantly on hyperparame-
ter settings.

We investigate how the ability to find valid solutions to la-
tent space planning problems is affected by the hyperparam-
eters used during the latent model learning. We ran LatPlan
on the MNIST-8 domain, with 60 different hyperparameter
value combinations (all combinations of (N, ϵ, β1, β3) for
N ∈ {50, 100, 300}, p ∈ {0.1, 0.5}, β1 ∈ {1, 10}, β3 ∈

{1, 10, 100, 1000, 10000}) to learn 60 different latent do-
mains, all using the AMA4+ action model (Asai et al. 2022).
We then solved the 20 instances for each of these latent do-
mains with Fast Downward using A∗ with a blind heuristic.

The search results (for each domain, the number of in-
stances for which solutions were found/valid/c-optimal) are
shown in Table 1. With the 3 best hyperparameters (N =
300, ϵ = 0.1, β1 = 10, β3 = 1), (N = 300, ϵ = 0.1, β1 =
10, β3 = 10) and (N = 300, ϵ = 0.5, β1 = 1, β3 = 1), op-
timal solutions are found for all 20 instances. However, for
the other 57 hyperparameter combinations, there are failures
to find any plans (regardless of validity), failures to find valid
plans, and/or failures to find optimal plans. Thus, hyperpa-
rameter settings for model learning have a significant impact
on the ability of LatPlan to find valid plans.

Note that although previous work by showed that LatPlan
can find valid plans on all of the domains tested, the re-
sults shown in this previous work (e.g., (Asai et al. 2022,
Table 11.1)) are for the hyperparameter configurations that
yielded the highest number of valid plans for each domain,
i.e., the hyperparameters were tuned for each domain (Asai
et al. 2022, p.1642).

In general, we do not know a priori the hyperparameter
values necessary to facilitate finding valid plans. Further-
more, hyperparameter tuning for this purpose is not possi-
ble in general, as that would require the ability to evaluate
whether the plans found by the planner are valid. While we
use a domain-specific ground-truth based validator in our ex-
periments, a ground-truth domain model is not accessible in
many situations where learning systems such as LatPlan are
necessary. Therefore, developing a method to compensate
for suboptimal model learning hyperparameter settings by
improving the search component offers a significant oppor-
tunity to improve the robustness of LatPlan.

4 Plausibility-Based Heuristics (PBH)
We propose an approach to estimating the plausibility of a
state based on invariance checking. We assume that valid
latent states satisfy some invariant property of the domain.
Consider the image-based sliding tile-puzzle or blocks world
domains. If we compare, for example, start state image with
the image of a valid state, although corresponding pixels
differ because parts of the scene are moved by actions, we
would expect that some overall statistical properties of the
pixels in the images are invariant – the locations of the pix-
els are changing (tile t moves from location i to j), but tiles
are not being deformed/created/destroyed by the actions.

Among the domains to which LatPlan has been applied so
far, all of the sliding-tiles variants, blocks world and Towers
of Hanoi satisfies this assumption. In contrast, the LightsOut
domain does not, as each action significantly changes ratio
of white/black pixels. The color version of Sokoban used in
(Asai et al. 2022) slightly violates this assumption, as empty
goal location cells have color cg , differently from the other
unoccupied floor cells (color cf ), so when the agent pushes a
box (color cb) from location b to a goal cell g, the distribution
of colors before the move (color(b) = cb, color(g) = cg)
and after the move (color(b) = cf , color(g) = cb) differ.



ϵ 0.1 0.5
N 50 100 300 50 100 300

β3 β1 found valid c-optimal found valid c-optimal found valid c-optimal found valid c-optimal found valid c-optimal found valid c-optimal

1 1 20 9 9 20 19 19 20 20 19 20 13 13 20 19 19 20 20 20
10 20 4 4 3 3 3 20 20 20 20 7 7 2 0 0 0 0 0

10 1 20 8 8 17 17 17 20 20 19 20 4 4 18 16 16 18 18 13
10 20 0 0 20 11 11 20 20 20 20 6 6 1 0 0 0 0 0

100 1 20 15 15 20 9 8 11 11 0 20 9 9 20 19 19 0 0 0
10 20 4 4 20 5 5 0 0 0 20 10 10 0 0 0 0 0 0

1000 1 20 2 2 0 0 0 0 0 0 20 11 11 0 0 0 0 0 0
10 20 4 4 0 0 0 5 5 0 20 11 11 0 0 0 0 0 0

10000 1 12 0 0 6 0 0 0 0 0 5 0 0 7 2 2 0 0 0
10 12 1 1 4 0 0 0 0 0 12 0 0 7 0 0 0 0 0

Table 1: Hyperparameter sweep study of LatPlan (AMA4+ action model) on MNIST 8-puzzle. A latent domain was
learned for each all combinations of (N, ϵ, β1, β3) for N ∈ {50, 100, 300}, ϵ ∈ {0.1, 0.5}, β1 ∈ {1, 10}, β3 ∈
{1, 10, 100, 1000, 10000}), where N = |P l|, the number of latent propositional variables , ϵ is the parameter for the Bernoulli(ϵ)
distribution used as the prior for the latent random variables in the Binary-Concreate VAE, and β1 and β3 are the regulariza-
tion parameters for the KL-divergence used in the ELBO loss function. For each domain, 20 instances were solved using Fast
Downward (A∗ with blind heuristic).

Our invariant-based approach to computing the plausibil-
ity of a latent space state sl is as follows: Let rl be a refer-
ence state, a latent space state which is known/assumed to
correspond to a valid state in the canonical domain.

We apply a similarity metric to (sl, rl) which seeks to
capture an invariance property, such that a latent state which
is more similar to rl is more likely to correspond to a valid
canonical state than a state which is less similar to rl.

Regarding the choice of the reference state rl, any im-
age which is believed to be valid image (e.g., any image in
X ∪ oI ∪ oG) is a candidate to to be used as rl, but the effec-
tiveness of the similarity metric may depend on the specific
choice of rl In the experiments below, we use the reference
state rl = Encode(oG), which is the propositional latent
space state corresponding to the goal image oG. Investigat-
ing other choices for rl is future work.

Since latent propositions PL do not correspond straight-
forwardly to propositions P of the canonical problem T , it
is not obvious how to apply the idea of invariant-based plau-
sibility to latent state vectors. Preliminary attempts to de-
signing similarity metrics for latent state vectors have not
yet been successful. Thus, instead of directly using the la-
tent proposition vector sl to determine the plausibility of sl,
we can instead use the image corresponding to sl.

To obtain the image corresponding to latent state sl, we
use the Decode function learned by LatPlan to convert sl
to an image Msl = Decode(s l), where Msl is an array
of pixels (integers in [0, A]). We then apply simple image
analysis techniques to Msl in order to determine the plau-
sibility of sl. Let HM

sl
denote the histogram of an image

Msl . For simplicity, we write Hsl to mean HM
sl

. Hsl is an
array of bins, where bin H[b] is the frequency of pixels in
[⌊A/B⌋ × b, ⌊A/B⌋ × (b+ 1)] where B is the # of bins.

We use the standard χ2difference and KL-divergence to
compare sl and the reference state r:

pχ2 (sl) = −
∑
b

(Hr[b]−Hsl [b])
2

Hr[b]

(χ-squared difference)

pKL(s
l) = −

∑
b

Hr[b] log

(
Hr[b]

Hsl [b]

)
(KL-divergence)

The plausibility metrics proposed above can be used to
guide a best-first algorithm such as A∗ (Hart, Nilsson, and
Raphael 1968) or Greedy Best-First Search (GBFS). A∗ uses
a node evaluation function f(n) = g(n)+h(n), where g(n)
is the cost to reach node n from the initial node and h(n) is
the estimated cost from n to a goal. GBFS uses the evalua-
tion function f(n) = h(n). The heuristic functions hχ2 and
hKL directly use the corresponding plausibility metrics. We
scale hχ2 and hKL to an integer (as we implement these in
FastDownward, which uses integer-valued heuristics).

hχ2 (sl) = ⌊−pχ2 (sl)⌋ (1)

hKL(s
l) = ⌊−pKL(s

l)⌋ (2)
Our current implementation of PBH extends the state

evaluation procedure of the Fast Downward planner so that
when evaluating sl, it sends a request to an external server
process which uses LatPlan to convert sl to an image Msl

and then uses OpenCV to compute an image-based plausi-
bility metric based on Msl . This evaluation accounts for the
vast majority of the runtime consumed by the search algo-
rithm. Due to the slow state evaluation rate, solving a latent
PDDL instance using the current unoptimized implementa-
tion of PBH is much slower than searching the same PDDL
instance using unmodified Fast Downward. Since the focus
of this paper is on improving the ability to find valid plans,
optimization of the evaluation procedure, as well as search
algorithms which do not evaluate plausibility for every state
are directions for future work.

5 Experiments
We evaluate the search performance of PBH. We im-
plemented PBH by extending the Fast Downward search
code. We compared: (1) Baseline latent space search (A∗,
GBFS). using standard heuristics (the Blind (h = 1) heuris-
tic, the admissible LMCut (Helmert and Domshlak 2009)
and Merge-and-Shrink (Helmert et al. 2014) heuristics, as
well as the non-admissible FF heuristic (Hoffmann and
Nebel 2001)) and (2) A∗ and GBFS using plausibility-based
heuristics hχ2 and hKL (bin size B = 10).
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Baselines
A∗ blind 20 1 1 6.45 20 9 9 7
A∗ lmc 20 1 1 6.45 20 6 6 7
A∗ M&S 20 2 2 6.45 20 7 7 7
A∗ FF 20 0 0 7.85 20 5 5 8.1
GBFS blind 20 1 1 6.45 20 9 9 7
GBFS lmc 20 0 0 10.9 20 0 0 45
GBFS M&S 20 0 0 6.8 20 4 4 8.4
GBFS FF 20 0 0 28.9 20 0 0 57.15

PBH: Plausibility-Based Heuristics
A∗ hχ2 20 15 8 7.35 20 20 20 7
GBFS hχ2 20 20 8 7.7 20 20 6 21.5
A∗ hKL 20 19 8 7.65 20 20 20 7
GBFS hKL 20 20 4 8.75 20 20 9 30.2

Table 2: Search Results: Number of found/valid/c-optimal
instances (out of 20) and average plan length (optimal length
= 7 for both domains).

Comparison of ability to find valid plans We compare
the search algorithms on the following domains (all from
Asai et al. (2022), all using the AMA4+ action model): (1)
MNIST-8: 3x3 sliding tile puzzle where the tiles have hand-
written digits 0-8 from the MNIST dataset, (2) Hanoi(4,4):
Towers of Hanoi (4 towers, 4 disks), (3) Mandrill-15: 4x4
sliding tile puzzle where the goal is to unscramble the well-
known Mandrill face image. The learning hyperparameters
were (N = 50, ϵ = 0.1, β1 = 1, β3 = 1) for MNIST-
8, (N = 50, ϵ = 0.1, β1 = 1, β3 = 100) for Hanoi(4,4),
(N = 100, ϵ = 0.1, β1 = 1, β3 = 1) for Mandrill-15.

First, we compared the search performance on the
MNIST-8 and Hanoi(4,4) domains (20 instances each) Ta-
ble 2 shows the results (“found”: latent space plan found,
“valid”: plan is valid, “c-optimal”: plan is c-optimal). Al-
though baseline A∗ and GBFS find latent space plans, many
of them are not valid. Note that the average plan lengths
include invalid plans which can be either longer or shorter
than valid plans, so the average lengths differ from the opti-
mal valid length (7) even for A∗ using admissible heuristics
(blind, lmc, M&S).

PBH (both hχ2 and hKL) found significantly more valid
plans than the baselines. In particular, PBH successfully, re-
liably finds valid solutions for Hanoi(4,4), on which previ-
ous work had failed to find any valid solutions (Asai et al.
2022).

On Mandrill-15, we ran a subset of the algorithm con-
figurations, as it requires significantly more runtime than
Hanoi(4,4) and MNIST-8. As explained in Section 4 the
runtime of our current unoptimized implementation of PBH
is very slow (state evaluation rate is less than 100 nodes
per second for Mandrill-15, and the average runtime is 8.3
hours). The results were as follows: (a) A∗ with blind heuris-
tic: 20 found, 15 valid, 15 c-optimal, (b) A∗ with landmark
cut: 20 found, 14 valid, 14 c-optimal, (c) A∗ with merge-
and-shrink: 20 found, 15 valid, 15 c-optimal, (d) GBFS with

Figure 3: Top: hχ2 values of states expanded during search
on MNIST-8 puzzle (20 instances). Bottom: hKL values of
states expanded during search on Hanoi(4,4) (20 instances).

blind heuristic: 20 found, 15 valid, 15 c-optimal, (e) A∗

with hKL: 20 found, 20 valid, 20 c-optimal. Thus, PBH
significantly improves the ability to find valid solutions on
Mandrill-15.

Search Behavior In order to compare the search behav-
ior of PGH vs. baseline search, we compare the plausibility
scores of all states expanded the search on all 20 instances
of MNIST-8 and Hanoi(4,4) by a baseline search (A∗/blind
for MNIST, GBFS/blind for Hanoi vs. PBH (A∗/hχ2 for
MNIST, GBFS /hKL for Hanoi). For both baseline and PBH,
we stored the plausibility values of the expanded states (the
baseline computes but ignores them during search). Figure 3
shows that the plausibility values of the states expanded by
the baseline are much more widely distributed than those of
the states expanded by hχ2 and hKL, confirming that search
with PBH focuses on highly plausible states.

6 Conclusion
In a system such as LatPlan which is intended to operate
autonomously in unknown environments without a teacher
who can identify whether a plan is valid or invalid, flawed
learned models which lead to invalid plans poses a signif-
icant challenge to the utility and robustness of the system.
This work showed that even if a learned, domain model
is flawed, the search algorithm can compensate by avoid-
ing suspicious (low plausibility) states, resulting in signifi-
cantly improved ability to find valid plans. Although PBH
was evaluated on LatPlan, we believe the overall approach
may be useful in similar planning systems where learned
problem representations have spurious states.

Our approach is domain-independent. The plausibility
metrics do not use any domain-specific notions, e.g., there
are no “tile/disc detectors”. Instead, we rely on properties



common to some subset of LatPlan domains, i.e., invari-
ance properties of the histogram of the image representation
of valid states, and our plausibility metrics successfully im-
prove search results in multiple domains. Developing plau-
sibility metrics for other types of domains, e.g., LightsOut,
is a direction for future work.

This paper evaluated using plausibility metrics as heuris-
tic evaluation functions to guide search instead of standard
distance-based heuristics. In some cases, this may result in
degraded search performance or solution quality compared
to distance-based heuristics. However, there are many situa-
tions where an invalid plan may be no better than finding a
poor quality solution or failing to find a plan altogether, so
in this paper we focus on prioritizing validity. Future work
will investigate combining plausibility with distance based
heuristics by using plausibility as a tie-breaking criterion
(Asai and Fukunaga 2017) or by considering both plausibil-
ity and distance in the heuristic evaluation function in order
to improve solution quality and search performance.

This work opens avenues for future work on search strate-
gies as complementary approaches to improvements to the
learning component in domain-learning systems. This paper
explored the use of plausibility metrics to evaluate the plau-
sibility of a single state during search. Extending the notion
of plausibility to paths, e.g., prioritizing paths according to
plausibility, may further improve search behavior. In this pa-
per, we focused on improving the ability to find valid plans
by straightforwardly applying plausibility as a heuristic eval-
uation function in standard A∗ and GBFS search. However,
PBH incurs significant runtime costs while computing the
plausibility of a state. Development of more sophisticated
search strategies which seek to reduce the number of plau-
sibility computations while still avoiding invalid plans is a
direction for future work.
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