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Abstract

Influential domain-independent planners have been devel-
oped to solve various types of planning problems. These plan-
ners often require a model of the acting agent’s actions, given
in some planning domain description language. Yet obtain-
ing such an action model is a notoriously challenging task.
This task is even more challenging in mission-critical do-
mains, where a trial-and-error approach to learning how to
act is not an option. In such domains, the action model used
to generate plans must be safe in the sense that plans gener-
ated with it must be applicable and achieve their goals. Previ-
ous works on safe action model learning addressed domains
with non-conditional effects. In this work, we propose the al-
gorithm Safe Action Model Learning of Conditional Effects
(Conditional-SAM) that can learn action models with condi-
tional effects. We show that the challenge of learning condi-
tional effects may require an exponential number of samples
and present a case study to demonstrate the capabilities of
Conditional-SAM.

Introduction
Planning is the fundamental task of choosing the right ac-
tions to achieve the desired outcome. An automated domain-
independent planner refers to an Artificial Intelligence (AI)
algorithm capable of solving a wide range of planning
problems (Ghallab, Nau, and Traverso 2016). Developing
a domain-independent planner is a long-term goal of AI
research. Researchers developed many domain-independent
planners for various types of planning problems. Such plan-
ners include Fast Downward (Helmert 2006), Fast For-
ward (Hoffmann 2001), COLIN (Coles et al. 2009) and
more. These planners often require a model of the act-
ing agent’s actions, given in some domain description lan-
guage (e.g., the Planning Domain Definition Language
(PDDL) (Ghallab et al. 1998)). Defining an agent’s action
model to solve real-world problems is extremely hard. Re-
searchers acknowledged this modeling challenge and algo-
rithms for learning agents’ action models from observations
have been proposed (Cresswell and Gregory 2011; Aineto,
Celorrio, and Onaindia 2019; Yang, Wu, and Jiang 2007;
Juba, Le, and Stern 2021). Since the learned model may dif-
fer from the domain’s actual action model, using it to plan
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raises two challenges: safety and completeness. The safety
risk is that the learned model may generate a plan that can-
not be applied in the domain or may not reach a state that
satisfies the problem goals. The completeness risk is that the
learned model may be too restrictive to generate plans for
solving solvable problems. This work focuses on safety, a
crucial property in mission-critical domains where a trial-
and-error approach for learning how to act or online re-
planning are not viable options. In such domains, the action
model used to generate plans must be safe, i.e., create plans
that must be applicable and achieve their goals. The Safe
Action Model Learning (SAM) family of algorithms (Stern
and Juba 2017; Juba, Le, and Stern 2021; Juba and Stern
2022) addresses the challenge of learning safe action mod-
els for planning. But, these algorithms do not learn planning
action models where actions might include conditional ef-
fects. A conditional effect is an effect that occurs only when
a specific condition holds, which is not necessary to the ac-
tion’s execution. Some researchers claim that conditional
effects can be compiled out of the agents’ action models,
but in practice, supporting them is important. Nebel (2000)
claimed that conditional effects cannot be compiled away
without a polynomial increase in the plan size. Compiling
them away requires adding additional actions for each con-
ditional effect because conditional effects enable the execu-
tion of multiple effects in parallel.

Moreover, we do not control the domain model used to
generate the trajectories in the learning task, and this model
may contain conditional effects. Learning these conditional
effects is challenging since they might not be observed upon
action execution. Even if they are observed, determining the
cause for these effects may require many observations. In-
deed, we show that for some domains, the task inherently re-
quires an exponential number of example trajectories (The-
orem 3).

Previous works on action model learning with conditional
effects (Oates and Cohen 1996; Zhuo et al. 2010) made
no safety guarantees for the learned models. This work ad-
dresses this gap by exploring the problem of learning safe
action models for PDDL (Ghallab et al. 1998) domains with
conditional effects. Specifically, we focus on PDDL do-
mains with conjunctive preconditions and antecedents with-
out existential quantifiers. For domains that satisfy these
requirements, we introduce the Safe Action Model Learn-



ing of Conditional Effect algorithm, i.e., Conditional-SAM,
which outputs an action model such that plans generated
using it are guaranteed to be successful. We show that
Conditional-SAM learns the correct action model with an
asymptotically optimal number of trajectories when the size
of the antecedents for the conditional effects is restricted,
which is the only case where the problem is tractable. We
also present an extension of Conditional-SAM that supports
lifted domains and universally quantified conditional effects.

Together with our theoretical analysis of the sample com-
plexity of learning conditional effects, we also demonstrate
the usefulness of our algorithm’s capabilities in practice. We
focus on a domain from the international planning compe-
tition and show that with a small number of input observa-
tions, Conditional-SAM learns an action model that can be
used, combined with a sound and complete planner to solve
every test set problem.

Preliminaries
We recall the terminology and statement of our problems.

The Planning Problem
We focus on planning problems in domains where action
outcomes are deterministic, the states are fully observable
and contain Boolean variables only. Such problems are
commonly modeled using a fragment of the ADL (Action
Description Language) (Pednault 1989) and formulated in
PDDL (Planning Domain Definition Language) (Ghallab
et al. 1998), which consists of a domain and a problem
description. A PDDL domain is defined by a tuple D =
⟨F,C,A⟩ where F is a finite set of Boolean variables, re-
ferred to as fluents (or predicates); C is a set of domain con-
stants (might be empty); and A is a set of actions. An action
model M for a set of actions A is a pair of functions preM
and effM that map every action in A to its preconditions and
effects.

Recall that a literal refers to either a fluent or its negation.
A state of the world is a set of literals that includes, for ev-
ery fluent f , either f or ¬f . The preconditions of an action
a, preM (a) is a set of literals that must be satisfied before
applying a. If no preconditions are specified, the action is al-
ways executable. The effects of an action a, effM (a) specify
the outcome of applying a. A conditional effect is tuple ⟨c, e⟩
where c is the antecedent (condition), and e is the result (ef-
fect); both c and e are conjunctions of literals. The semantics
of a conditional effect ⟨c, e⟩ is that if the antecedent c holds
before the action is applied, then the result e occurs. Condi-
tional effects can be viewed as a generalization of effects that
are not conditional by specifying the trivial antecedent true
to such conditions. The outcome of applying a to a state s
according to action model M , denoted aM (s), is a new state
in which every literal has its value as in state s except those
literals changed by the actions’ effects. Formally, the next
state s′ = aM (s) satisfies the following rules:
1. ∀(c, e) ∈ effM (a) : (c ∧ s ⊬ ⊥) → e ∈ s′

2. ∀l ∈ s,∄(c, e) ∈ effM (a) :
((c ∧ s ⊬ ⊥) ∧ (¬l ∈ e)) → l ∈ s′

A PDDL problem is defined by a tuple P = ⟨I,G,D⟩
where I is the initial state, containing all the literals that rep-
resent the state of all objects in the problem; G is the set of
fluents that define the goal state, and D is the domain de-
scription. An action a is applicable in a state s if s satisfies
the literals in pre(a). Applying a in s, denoted a(s), results
in a state that differs from s only according to the assign-
ments in eff(a). A plan Π = ⟨a1, a2, ...an⟩ is a sequence of
actions. We say that a plan Π is valid if a1 is applicable in I
and G ⊆ an(an−1(...(a1(I)))).

The Learning Problem
There are different approaches to learning action models. In
this work, we focus on learning action models from obser-
vations of previously executed plans represented as a set of
trajectories.
Definition 1 (Trajectory). A trajectory T =
⟨s0, a1, s1, . . . an, sn⟩ is an alternating sequence of
states (s0, . . . , sn) and actions (a1, . . . , an) that starts and
ends with a state.

The trajectory created by applying Π to a state s is the
sequence

〈
s0, a1, . . . , a|Π|, s|Π|

〉
such that s0 = s and for

all 0 < i ≤ |Π|, si = ai(si−1). In prior work (Wang 1994,
1995; Walsh and Littman 2008; Stern and Juba 2017; Arora
et al. 2018; Aineto, Celorrio, and Onaindia 2019) a trajec-
tory

〈
s0, a1, . . . , a|Π|, s|Π|

〉
is often represented as a set of

action triplets
{
⟨si−1, ai, si⟩

}|Π|
i=1

.
This work focuses on learning action models for actions

with conditional effects. Conditional effects complicate the
learning process. Given an action model with |L| literals, the
number of possible antecedents for every conditional effect
grows exponentially in the number of literals |L|. Thus, if
|L| is too large, the problem becomes intractable.

Safe Action Models We follow prior work by Juba et
al. (2021) and require that the learned action model is safe,
where safe here means that any plan generated with the
learned action model is also executable with the real, un-
known action model.
Definition 2 (Safe Action Model (Juba, Le, and Stern
2021)). An action model M ′ is safe with respect to an action
model M if for every state s and action a it holds that

preM ′(a) ⊆ s → (preM (a) ⊆ s ∧ aM ′(s) = aM (s)) (1)

In other words, M ′ is safe w.r.t. M if for every state s and
action a, if a is applicable in s according to M ′ then (1) it
is also applicable in s according to M , and (2) applying a in
s results in exactly the same state according to both M and
M ′.

Approach
We present our approach to safely learn conditional effects.

Assumptions
We make the following simplifying assumptions:
1. Actions’ preconditions and conditional effects’ an-

tecedents are conjunctions of literals.



2. For each literal l′, there is at most one antecedent that
results in achieving l′. Formally, for each literal l′

((c, e) ∈ eff(a) : l′ ∈ e)

→ (∄(c′, e′) ∈ eff(a) : l′ ∈ e′ ∧ c ̸= c′) (2)

The first assumption is made by many action model learn-
ing algorithms (Aineto, Celorrio, and Onaindia 2019; Juba,
Le, and Stern 2021; Yang, Wu, and Jiang 2007) and does
not extensively reduce the number of suitable domains. The
second assumption is needed to guarantee the complexity
properties made later in the paper.

In addition, we assume that the maximal number of liter-
als in an antecedent is at most n, which is a fixed parame-
ter known in advance. We prove later that without this as-
sumption, learning conditional effects is intractable. From a
practical point of view, the last assumption requires a hu-
man modeler to specify the maximal number of literals in an
antecedent for the domain, which is still significantly easier
than manually defining the entire action model.

Conditional-SAM Inductive Rules
Conditional-SAM learns an action model by applying the
following rules:
Definition 3 (Conditional-SAM Inductive Rules). For every
action triplet ⟨s, a, s′⟩ ∈ T it holds that:
1. For every literal l /∈ s, then l /∈ pre(a)
2. For every literal l′ /∈ s′ then ∄(c, e) ∈ eff(a) where (c ∧

s ⊬ ⊥) ∧ (l′ ∈ e)
3. For every literal l′ ∈ s′ \s then ∃(c, e) ∈ eff(a) : (c∧s ⊬

⊥) ∧ (l′ ∈ e)
4. For every literal l′ ∈ s′ \ s and set of literals c such that

c ∧ s ⊢ ⊥, then ∄(c′, e) ∈ eff(a) such that c ⊆ c′ and
l′ ∈ e.

The first rule indicates which literals cannot be precondi-
tions for an action. The second rule indicates which literals
cannot be considered a conditional effect of an observed ac-
tion. The third rule indicates which literals must be effects of
an observed action. Every literal l′ observed in s′ \s is guar-
anteed to be an effect of a and there exists (c, e) ∈ eff(a)
such that c is consistent with s and l′ ∈ e. Note that the
first rule also exists in the original SAM learning algorithm.
The second and third rules correspond to similar rules in the
original SAM learning but extend them to support condi-
tional effects. The fourth induction rule is derived from As-
sumptions 1 and 2. From Assumption 1, we know that the
antecedents for conditional effects consist of conjunctions
of literals. Thus, for each conjunction of literals c that is not
satisfied in s, then every conjunction c′ that contains c will
also not be satisfied in s. Furthermore, Assumption 2 states
that there are no disjunctive conditional effects. Thus, if we
observe l′ as the result of the action, any conjunction of lit-
erals c that is not satisfied in s cannot be the antecedent of
the conditional effect for l′.
Example 1. Consider a domain with 3 fluents f1, f2, and
f3, where the size of antecedents is bounded by 1 (i.e.,
n=1), and assume to represent a state by a Boolean vec-
tor of size 3. Now, assume we observed an action triplet

⟨(T, T, F ), a, (F, T, F )⟩. Using the first inductive rule, we
infer that ¬f1, ¬f2, and f3 are not preconditions of a. By
using the second inductive rule, a cannot have an effect
(c, e) such that c is consistent with f1 ∧ f2 ∧ ¬f3 and the
result is either f1, ¬f2, or f3. Since n = 1, this rules out
the conditional effects where c is one of the following sets
{true}, {f1}, {f2}, {¬f3} and e is either {f1} or {¬f2} or
{f3}, e.g., (c, e) = ({f1}, {¬f2}). According to the third
inductive rule either ¬f1 is a non-conditional effect of a or
({f1}, {¬f1}), ({f2}, {¬f1}), or ({¬f3}, {¬f1}) are con-
ditional effects of a. Finally, according to the fourth induc-
tive rule ({¬f2}, {¬f1}) and ({f3}, {¬f1}) cannot be con-
ditional effects.

Conditional-SAM Algorithm
Let A(T ), L(T ) be the set of actions and literals observed
in the trajectories T . The Conditional-SAM algorithm main-
tains three data structures: pre, PosAnte, and MustBeResult.
pre is the set of literals considered as the preconditions of
the action. It is initialized to all the literals l ∈ L(T ).
Conditional-SAM removes unnecessary preconditions ac-
cording to Rule 1 in Def. 3. PosAnte maintains, for every
action a and literal l, a set of conjunctions of literals, repre-
senting the conjunction of literals that may be antecedents of
a conditional effect of a, which results in l. This data struc-
ture is initialized to include every subset of literals of size n
or less. Conditional-SAM removes elements from PosAnte
using Rules 2 and 4 in Def. 3. MustBeResult maintains, for
every action a, the set of literals observed to be the result of
the action a. This data structure is initialized as an empty set
and populated using Rule 3 in Def. 3.

We present the main functionality of Conditional-SAM in
Algorithm 1. For each action a ∈ A(T ), Conditional-SAM
starts by initializing pre, PosAnte and MustBeResult as spec-
ified above. Conditional-SAM then applies the inductive
rules and compiles the action model for each action triplet
⟨s, a, s′⟩ ∈ T to update and populate pre, PosAnte, and
MustBeResult as specified above.

After populating pre, PosAnte, and MustBeResult,
Conditional-SAM compiles the complete action model us-
ing the function LearnConditions. The function LearnCon-
ditions starts by initializing eff(a) for each action a ∈ A(T )
to an empty set and pre∗(a) to be the observed precondi-
tions of the action. Then, for every literal l that can be an
effect of the action, the function creates the data structure
PA, which contains all subsets of possible antecedents in
PosAnte which are disjoint from pre(a).

Using PA, the function creates NotAnte, which is the con-
junction of the negations of the sets of literals in PA. In con-
trast to NotAnte, the data structure Ante is the conjunction of
all the possible antecedents in PA.

After creating the above conjunctions, the function veri-
fies whether l ∈ MustBeResult(a). If so, the tuple ⟨Ante, l⟩
is added to eff(a). If PA consists of more than a single set of
antecedents, then there is an ambiguity on which antecedent
is the cause of l. Thus, LearnConditions adds the or clause,
(l ∨ NotAnte ∨ Ante), composed of three parts as follows:
First, allowing the action to be applicable if the result, l, is
observed in the pre-state. Second, the action is permitted if



none of the antecedents hold in the pre-state. Lastly, a is ap-
plicable if all the antecedents hold in the pre-state. If one of
the above holds, the action will be executed.

In case l was not observed as a result of the action, the
function adds (l ∨ NotAnte) to pre∗(a). Since we have yet
to observe l as a result of the action, we cannot guarantee
that it is not an effect. Since ⟨Ante, l⟩ /∈ eff(a), to maintain
the action’s safety, we want to guarantee that l will not ap-
pear in the post-state. Thus, we only permit the execution of
the action in states that guarantee that l will not be the re-
sult of a. Note that if NotAnte ⊆ pre(a), then l will never
result from applying a. Finally, LearnConditions returns the
learned preconditions and effects of the observed actions.

Algorithm 1: Conditional-SAM Algorithm
1: Input: T , n
2: Output: A safe action model.
3: for a ∈ A(T ) do
4: pre(a)← L(T )
5: MustBeResult(a)← ∅
6: PosAnte(l, a)←

⋃n
i=1 L(T )i ∪ {true}

7: end for
8: for ⟨s, a, s′⟩ ∈ T do
9: for l s.t. l /∈ s do

10: pre(a)← pre(a) \ {l} ▷ Rule 1
11: end for
12: for l ∈ s′ \ s do ▷ Rule 3
13: MustBeResult(a)← MustBeResult(a) ∪ {l}
14: end for
15: for l′ /∈ s′ and c ∈ PosAnte(l′, a) s.t. (c ∧ s ⊬ ⊥) do
16: PosAnte(l′, a)← PosAnte(l′, a) \ c
17: end for ▷ Rule 2
18: for l′ ∈ s′ \ s and c ∈ PosAnte(l′, a) s.t. c ∧ s ⊢ ⊥ do ▷

Rule 4
19: PosAnte(l′, a)← PosAnte(l′, a) \ c
20: end for
21: end for
22: return LearnConditions(pre,MustBeResult,PosAnte)

Example 2. Given a domain with 3 literals and an action a
where pre(a) = ∅, l1 ∈ MustBeResult(a), PosAnte(a, l1) =
{{l2}, {l3}}, PosAnte(a, l2) = ∅, and PosAnte(a, l3) =
∅. The resulting preconditions and effects after applying
LearnConditions are pre∗(a) = (l1)∨ (¬l2∧¬l3)∨ (l2∧ l3)
and eff(a) = (l2 ∧ l3, l1).

Note that while we assume that all the actions in the real-
world model do not support disjunctive antecedents (As-
sumption 2), the safe action model we create does allow such
actions. This highlights that the safe action model is not nec-
essarily equivalent to the real action model, but as we show
later, it is guaranteed to be safe with respect to it.

Theorem 1. The action model M ′ learned by
Conditional-SAM is safe w.r.t the action model that
generated the input trajectories T

Proof. Conditional-SAM learns a superset of the original
actions model’s preconditions. Thus, for each action a and
state s such that a is applicable according to M ′, it is guar-
anteed to be applicable according to M∗.

Algorithm 2: Conditional Effects Learning Function
1: Input: pre,MustBeResult,PosAnte
2: Output: pre and eff for all actions.
3: for a ∈ A(T ) do
4: eff(a)← ∅
5: pre∗(a)← pre(a)
6: for l ∈ L(T ) \ pre(a) where PosAnte(l, a) ̸= ∅ do
7: PA← {c ∈ PosAnte(l, a)|(pre(a) ∩ c) = ∅}
8: NotAnte←

∧
c∈PA ¬c

9: Ante←
∧

c∈PA c
10: if l ∈ MustBeResult(a) then
11: Add to eff(a): (Ante, l)
12: if PA is not a single clause then
13: Add to pre∗(a): (l ∨ NotAnte ∨ Ante)
14: end if
15: else
16: Add to pre∗(a): (l ∨ NotAnte)
17: end if
18: end for
19: end for
20: return ⟨pre∗, eff⟩

Given an action a and a state s in which a is applicable ac-
cording to M ′, the resulting state s′ = aM ′(s), is equivalent
to s′∗ = a∗M (s), we prove this by contradiction. Assume
that s′ ̸= s′∗. There can be two possibilities: (1) ∃l ∈ s′

such that l /∈ s′∗, or (2) ∃l /∈ s′ such that l ∈ s′∗. Since
a is applicable in s according to M ′, it is also applicable
according to M∗. Since Conditional-SAM only adds effects
observed in the trajectories, according to rule 3, there can-
not be a literal l such that (1) holds. If l ∈ s′∗ but l /∈ s′,
then Conditional-SAM did not observe l as a result of a and
thus did not add it as an effect. According to line 16 one
of (l ∨ NotAnte) hold in s. If l ∈ s, then l ∈ s′ according
to M ′ (since a does not remove it), which contradicts (2).
Similarly, if NotAnte ⊆ s, then the antecedent of l according
to M∗ is negated in s thus l /∈ s′∗ which also contradicts
(2). Thus Conditional-SAM learns a safe action model with
respect to M∗.

Theoretical Analysis
In this section, we theoretically analyze the complexity of
the Conditional-SAM algorithm, proving that under a fixed
antecedent size (n) its space, runtime, and sample complex-
ity are tractable, and show that our sample complexity bound
is tight.

Space and Runtime Complexity
Consider the space complexity of Conditional-SAM. For ev-
ery action a ∈ A and every literal l ∈ L, Conditional-SAM
maintains the data structures pre(a), PosAnte(l, a) and
MustBeResult(a). The size of pre(a) is at most |L|. The
size of MustBeResult(a) is also at most |L|. The size of
PosAnte(l, a) is observed when it is initialized, containing
every conjunction of literals of size at most n, including the
empty set (representing the antecedent true). Thus, the size

of PosAnte(l, a) is at most
∑n

i=0

(|L|
i

)
≤

(
|L|·e
n

)n

. We note
that the space complexity of LearnConditions is linear in the



size of PosAnte. Consequentially, the space complexity is

|A||L|+ |A||L|+ |A||L|
n∑

i=0

(
|L|
i

)
∈ O

(
|A||L|n+1

( e
n

)n)
(3)

Recall that n is a fixed constant — the maximal number of
literals in an antecedent.

Next, we analyze the runtime complexity of
Conditional-SAM. The initialization process requires
the same runtime complexity as its space complexity, i.e.,
O(|A||L|n+1

(
e
n

)n
). Then, Conditional-SAM iterates over

all action triplets and applies the inductive rules in Def. 3.
This requires O(|T ||L|n+1

(
e
n

)n
), since as discussed above,

the size of PosAnte(l, a) is at most |L|n
(
e
n

)n
.

Finally, in the LearnConditions function, the runtime
complexity is bounded by the most intensive computational
part, which is the part that creates the restrictive conditions.
The complexity of this part is linear in PosAnte(l, a). Thus
the total runtime complexity of LearnConditions is bounded
by O

(
|A||L|n

(
e
n )

n
))

Thus, the total runtime complexity of
the algorithm is O

(
|A||L|n

(
e
n )

n
)
+ |T ||L|n+1

(
e
n )

n
))

.

Sample Complexity
Theorem 2. Let D be a distribution over pairs
⟨P,Π⟩ where P is a problem from a fixed do-
main D and Π is a plan solving P . Given

m ≥ 1
ϵ

(
ln(3)|F ||A|+ 2 ln(2)|F ||A|

(
2|F |e
n

)n

+ ln 1
δ

)
trajectories (where e is the base of the natural logarithm)
obtained by executing Π for m independent draws from D,
Conditional-SAM returns an action model M ′ such that
with probability 1 − δ, for a new P drawn from D, the
probability that there exists a plan in M ′ solving P is at
least 1− ϵ.

Proof. In view of Theorem 1, it suffices to show that for a
pair ⟨P,Π⟩ drawn from D, the preconditions of Π in M ′

are satisfied for each step of the execution of Π in the real
action model M∗; indeed, the states obtained by M ′ and M∗

are identical, so Π will then also solve P in M ′.
Recall that Conditional-SAM passes the sets pre,

MustBeResult, and PosAnte for each action a and, in the
case of PosAnte, for each literal l to Algorithm 2. A lit-
eral l only appears in pre(a) for an action a if ¬l has never
been observed in the pre-state when action a was taken.
Similarly, a clause ¬c may appear as (a subclause of) some
clause of the precondition pre∗ of a in M ′ if c remains in
the antecedents set PosAnte(e, a) of some candidate effect
e ∈ MustBeResult(a) for which more than one such candi-
date remains, or for which e /∈ MustBeResult(a) and c is in
PosAnte(e, a). Note that if ¬c is falsified in a state s (pro-
hibiting a in s in M ′), s ⊆ c. Hence, if the execution of
Π in M∗ would result in a being taken in s resulting in s′,
Conditional-SAM would remove c from PosAnte(e, a) for
all e /∈ s′, and c from PosAnte(e, a) if c ⊈ s and e ∈ s′ \ s.

We now claim that the probability that Conditional-SAM
obtains a set of antecedents PosAnte(l, a) and set of precon-
ditions pre(a) that prohibits the execution of Π with prob-
ability greater than ϵ is at most δ: a is only prohibited by

pre∗ in s if (1) l ∈ s for some ¬l ∈ pre(a); if (2) s ⊆ c
for some c ∈ PosAnte(l, a) where l /∈ MustBeResult(a) and
¬l ∈ s; or, if (3) l ∈ MustBeResult(a), ¬l ∈ s, s ⊆ c
for some c ∈ PosAnte(l, a), and s ⊈ c′ for some (other)
c′ ∈ PosAnte(l, a). When the execution of Π includes tak-
ing such an action a in such a prohibited state s, in the first
case we see Conditional-SAM removes the falsified ¬l from
pre(a); for every effect e of a in s, any c ⊈ s are removed
from PosAnte(e, a) so cases (2) and (3) cannot occur; and for
every literal ẽ that is not an effect of a in s, since ẽ /∈ s′, all
(c, ẽ) for c ⊆ s are removed from PosAnte(ẽ, a), so neither
case (2) nor (3) can occur. Thus, we see that either at least
one literal is deleted from pre or at least one c is deleted from
some PosAnte(e, a) when such an (s, a, s′) occurs in the tra-
jectory, so that a is permitted by pre∗(a) in s subsequently.
Since literals are only deleted from pre and clauses are only
deleted from PosAnte, Conditional-SAM then cannot return
the eliminated collection of preconditions and antecedents
sets.

Quantitatively, for any collection of preconditions and
antecedents sets for which such a problem and plan
would be obtained from D with probability greater than ϵ,
Conditional-SAM can only return the corresponding collec-
tion with probability at most (1 − ϵ)m when it is given m
examples drawn independently from D. Observe that there
are 3|F | possible sets pre for each a ∈ A, and 2

∑n
k=0 2k(|F |

k )

possible sets PosAnte for each l and a. Thus, there are at
most

3|F ||A|22|F ||A|
∑n

k=0 2k(|F |
k ) ≤ eln(3)|F ||A|+2 ln(2)|F ||A|( 2|F |e

n )
n

possible collections of pre and PosAnte. Since (1 − ϵ)m ≤
e−mϵ, taking a union bound over all possible collections of
pre and PosAnte that prohibit the execution of the associated
plan with probability at least ϵ, we find that for the given m,
the total probability of Conditional-SAM obtaining such a
collection of preconditions and antecedents sets is at most δ.
Thus, with probability 1−δ, the action model indeed permits
executing the plans associated with problems drawn from D
with probability at least 1− ϵ as needed.

Conditional-SAM therefore enjoys approximate com-
pleteness with high probability so long as the number of
training trajectories is sufficiently large. The one unsatisfy-
ing aspect of our bound is that the number of trajectories
is exponential in the size of the antecedents of the condi-
tions in the conditional effects we consider. Unfortunately,
we find that this is unavoidable and our bound is asymptoti-
cally optimal (for any fixed n) for safe action model learning
for domains with conditional effects:
Theorem 3. Any learning algorithm that is guaranteed to
return a safe action model must be given at least m ≥
Ω( 1ϵ (|F ||A||(|F |/3n)n| + log 1

δ )) samples to be able to
guarantee that with probability at least 1 − δ the learned
model permits a plan solving Π drawn from D with proba-
bility at least 1− ϵ for 0 < ϵ, δ < 1/4.

Proof. For any p ≥ 3|A|, consider a domain in which there
is a no-op action with no effects, and for each other ac-
tion ai ∈ A there is a fluent fi called a goal fluent that is



the effect of exactly one action, and this is the only effect.
The domain includes an additional set of (p − |A|)/2 flu-
ents called flag fluents, and (p− |A|)/2 fluents (so there are
|A| + 2(p − |A|)/2 = p fluents in total) called forbidden
fluents.

Now consider the following distributions on problems and
plans. The initial state of every problem sampled from D has
all goal fluents set to false, all but one (uniformly random)
forbidden fluent true, and exactly n of the flag fluents (uni-
formly at random) true. With probability 1 − 4ϵ, the goal
is empty. Otherwise, the goal includes a single goal fluent,
chosen uniformly at random, that should be set to true. All
other goal fluents, as well as the one forbidden fluent, must
be set to false. The corresponding Π always consists of a
plan with a single action; for the empty goal, the agent takes
the no-op action, and otherwise the agent takes the action
corresponding to the fi goal fluent to be set true in the goal.

For any problem with a non-empty goal that we did not
observe in the training set, the action model that is obtained
from the true action model by adding the forbidden fluent
as a conditional effect of the corresponding goal action with
the flag fluents as the condition, is consistent with the train-
ing set. Indeed, either the action appears with a different
set of flags so that one of the flag fluents in this condition
is falsified (and the corresponding effect does not occur),
a different forbidden fluent is false (so the relevant forbid-
den fluent is already true and the effect is not observed), or
else the action differs from the one we need to achieve this
goal, and then the effect is identical to the true action model.
Therefore, no safe action model can permit taking the action
needed to achieve the goal, and all other actions would reach
a state in which some incorrect goal fluent is set to true and
cannot be subsequently set to false.

Since the no-op goal only comprises 1− 4ϵ probability in
the goal distribution, we need to observe at least a 3/4 frac-
tion of the possible goals for a safe action model to attain
probability 1−ϵ. But, there are |A| goals, (p−|A|)/3 ≥ p/3

forbidden fluents, and
(
(p−|A|)/3

n

)
≥

(
p
3n

)n
sets of flags, and

in expectation, a sample of size m only contains 4ϵm exam-
ples of these pairs of goals and flag settings. We, therefore,
need Ω

(
1
ϵ (|F |/3)n|F ||A|

)
examples; likewise, to even ob-

serve any of the nonempty goals with probability 1 − δ, we
need Ω

(
1
ϵ log

1
δ

)
examples, giving the claimed bound.

Lifted Domains and Universal Quantifiers
It is common to describe PDDL domains and problems in
a lifted manner. In lifted domains, actions and fluents are
defined by a tuple, e.g., ⟨name(a), params(a)⟩, where the
parameters params(a) have types, e.g., truck and location,
giving a lifted action or fluent like so: move(?t - truck, ?from
- location, ?to - location) and at(?t - truck, ?loc - location).
A state is a conjunction of grounded fluents, which are pairs
of the form ⟨l, bl⟩ where l is a fluent, and bl is a function
that maps parameters of l to concrete objects. A plan is a
sequence of grounded actions, which are pairs in the form
⟨a, ba⟩ where a is an action and ba maps action parameters
to objects. A trajectory is an alternating sequence of states
and grounded actions.

Generally, the parameters in an action’s preconditions
and effects are bound to the action’s parameters. Thus, pre-
conditions and effects of an action in a lifted domain are
parameter-bound literals. A parameter-bound literal for an
action a is a pair (l, bla) where l is a literal and bla is a
function that maps every parameter of l to a parameter in
a. Let bindings(a) be the function that returns all parameter-
bound literals that can be bound to a. For a grounded action
aG = ⟨a, ba⟩ and parameter-bound literal l ∈ bindings(a),
we define g(aG, l) to be the grounded literal resulting from
assigning the objects in the parameters of aG to the pa-
rameters of l. Given a conjunction of parameter-bound lit-
erals c, g(aG, c) returns the corresponding conjunction of
grounded literals cG such that ∀l ∈ c : g(aG, l) ∈ cG. Sim-
ilarly, for a pair of conjunctions of parameter-bound literals
(c, e) we define g(aG, c, e) to be the pair (cG, eG) that are
the corresponding conjunctions of grounded literals. SAM
learning has already been extended to learn lifted classical
planning domains (Juba, Le, and Stern 2021) without con-
ditional effects. Conditional-SAM may be extended to lifted
domains similarly, based on the following extension to the
Conditional-SAM inductive rules (Def. 3).

Definition 4 (Lifted Conditional-SAM Inductive Rules).
For every action triplet ⟨s, aG = ⟨a, ba⟩ , s′⟩ ∈ T ,
1. For every l ∈ bindings(a) s.t. g(aG, l) /∈ s, l /∈ pre(a)
2. For every l′ ∈ bindings(a) s.t. g(aG, l′) /∈ s′, ∄(c, e) ∈

eff(a) where (g(aG, c) ∧ s ⊬ ⊥) ∧ (l′ ∈ e)
3. For every l′ ∈ bindings(a), if g(aG, l′) ∈ s′ \ s then

∃(c, e) ∈ eff(a), where (g(aG, c) ∧ s ⊬ ⊥) ∧ (l′ ∈ e)
4. For every l′ ∈ bindings(a) and set of literals c ⊆

bindings(a) if g(aG, l′) ∈ s′ \ s and g(aG, c) ∧ s ⊢ ⊥
then ∄(c′, e) ∈ eff(a) such that c ⊆ c′ and l′ ∈ e

Some PDDL domains and planners support domain con-
stants and universal quantifiers, which allow actions’ pre-
conditions and effects to include additional parameters that
are not bound to the actions’ parameters. Domain constants
are objects defined in the PDDL domain; they substantially
extend the set of objects defined in a PDDL problem when
linked with a particular domain. These objects can be bound
to any parameter of a precondition or effect. For example,
in the Logistics domain, we can define the constant base
that represents the base location of the trucks. Support for
constants is relatively simple: the bindings(a) function will
now return an extended set of parameter-bound literal that
includes binding the literal parameters to domain constants.

Universally quantified effects define one or more univer-
sally quantified variables (UQV) that may be bound to any
parameter of a literal used in them. We note that the result
of a universally quantified conditional effect must include at
least one UQV. Otherwise, if only the antecedents include
UQVs, then we can interpret such antecedents as disjunctive
universal preconditions. To clarify the formulation of uni-
versal effects, suppose that in our Logistics domain, we add
the functionality to unload all packages in the truck to their
current location. Figure 1 presents the unload-multi action
schema to implement this functionality.

Not all planners support universal effects, but universal
effects are common in benchmark domains that include con-



(:action unload-multi
:parameters (?truck-truck ?loc-location)
:precondition (at ?truck ?loc)
:effect

(forall (?p - package)
(when (in ?p ?truck)
(and (not (in ?p ?truck)) (at ?p ?loc)))))

Figure 1: Example unload-multi action with universal ef-
fects.

ditional effects. We briefly describe how Conditional-SAM
can be extended to support universal effects.

In general, the number of UQVs a universal effect may
define is exponential in the arity of the domain fluents. Still,
universal effects with more than two UQV are rare. Thus,
we will assume the number of UQVs in a universal effect is
a known fixed constant k. To support universal effects, the
bindings(a) function is modified to also return parameter-
bound literals that bind one or more literal parameters to
UQVs that may be used in action a’s effects. Similarly, the
g(aG, l) function is modified such that if l is a parameter-
bound literal that includes UQVs then g(aG, l) returns a set
of grounded literals matching the grounded action’s param-
eters combined with the UQVs. In addition, g(aG, c, e) re-
turns a set of matching pairs (cG, eG) if either c or e include
one or more UQVs. We now present the changes in the in-
ductive rules to support universally quantified variables.

Definition 5 (Conditional-SAM Inductive Rules with
UQVs). For every action triplet ⟨s, aG = ⟨a, ba⟩ , s′⟩ ∈ T :
1. For every l ∈ bindings(a) such that ∃lG ∈ g(aG, l)

where lG /∈ s, then l /∈ pre(a)
2. For every l′ ∈ bindings(a) such that ∃l′G ∈ g(aG, l′)

and l′G /∈ s′ then ∄(c, e) ∈ eff(a) such that ∃(cG, eG) ∈
g(aG, c, e) where (cG ∧ s ⊬ ⊥) ∧ (l′G ∈ eG)

3. For every l′ ∈ bindings(a) if ∃l′G ∈ g(aG, l′) such that
l′G ∈ s′ \ s then ∃(c, e) ∈ eff(a), where ∃(cG, eG) ∈
g(aG, c, e) such that cG ∧ s ⊬ ⊥ ∧ l′G ∈ eG

4. For every l′ ∈ bindings(a) and c ⊆ bindings(a) if
∃(l′g, cG) ∈ g(aG, c, l′) such that l′G ∈ s′ \ s and
cG ∧ s ⊢ ⊥ then ∄(c′, e) ∈ eff(a) such that c ⊆ c′ and
l′ ∈ e

The rest of the Conditional-SAM algorithm remains es-
sentially the same, where MustBeResult and PosAnte may
now contain parameter-bound literals that include UQVs.

Case Study
To empirically show the functionality of Conditional-SAM,
we implemented the algorithm and conducted experiments
on a single domain that contains conditional effects. The
experimented domain is an ADL version of the Satel-
lite domain available in the classic IPC (Long and Fox
2003) benchmark. We sampled a set of trajectories in
the domain, ran Conditional-SAM on the training trajec-
tories, and attempted to solve the test set problems in
that domain using the learned action model. To solve the
test set problems, we used the state-of-the-art solver Fast-
Downward (Helmert 2006). We then validated the resulting
plans using VAL (Howey, Long, and Fox 2004). We fol-
lowed a 5-fold cross-validation methodology by repeating

each experiment 5 times, sampling different trajectories for
learning and testing. The experiments were run on a Linux
machine with eight cores and 16 GB of RAM.

Figure 2: Fraction of problems solved for the Satellite do-
main.

In Figure 2, we present the average fraction of the prob-
lems solved as a function of the number of input trajecto-
ries used to learn the action model. We observe that when
Conditional-SAM received a single trajectory as its input,
the learned action model was able to solve 70% of the test
set problems, 21% had no solution, and for 9%, the solver
timed out. When Conditional-SAM used 31 trajectories, all
of the test set problems were solved.

Related Work
Several prior works learn action models from trajectories.
The Action-Relation Modelling System (ARMS) (Yang,
Wu, and Jiang 2007) algorithm learns a PDDL description
of action models by extracting a set of weighted constraints,
from the given trajectories, over the preconditions and ef-
fects of the available actions. The Simultaneous Learning
and Filtering (SLAF) (Amir and Chang 2008) algorithm is
a different algorithm for learning action models designed
for partially observable deterministic domains. The Learn-
ing Object-Centred Models (LOCM, LOCM2) (Cresswell,
McCluskey, and West 2013; Cresswell and Gregory 2011) is
another action model learning algorithm that analyzes plan
sequences, where each action appears as an action name
and arguments in the form of a vector of object names.
FAMA (Aineto, Celorrio, and Onaindia 2019) is a state-of-
the-art algorithm that improves the performance of LOCM.
It can learn action models when the observability of the ac-
tions is minimal. FAMA can learn from gapped action se-
quences of actions, and in the extreme, FAMA can even
learn when only given the initial and the final states as in-
put.

The algorithms presented above learn action models that
supply no guarantee that the actions learned are applicable
according to the agent’s actual action model definition. Con-
trary to these algorithms, the SAM family of algorithms is
designed to learn action models in a setting where execution
failures must be avoided (2017; 2021; 2022). To this end,
SAM generates a conservative action model. This approach
produces sound but may be incomplete.

To the best of our knowledge, there is no work with the
main focus of learning safe action models with conditional



effects. In (Oates and Cohen 1996), the authors created an al-
gorithm that can learn planning operators for STRIPS (Fikes
and Nilsson 1971) by interacting with the environments and
performing random actions and using search techniques to
learn the context-dependent operators. This approach uses
random walks which are costly in case that the agent can-
not recover from failures. Furthermore, the resulting action
model generated is grounded while our approach learns a
lifted PDDL domain. In (Zhuo et al. 2010), the authors’ main
focus was learning action models with quantifiers and impli-
cations. The authors also proved that their algorithm could
learn simple conditional effects with only one antecedent.
Since the authors’ goal is to reduce the domain compilation
time for domain experts, the domains their algorithm outputs
may be incomplete or even wrong. Similarly, SLAFS (Sha-
haf and Amir 2006) learns action models with conditional
effects that are consistent with its observations. This means
that these algorithms do not work in mission-critical set-
tings.

Conclusions and Future Work
In this work, we presented Conditional-SAM, an algo-
rithm that can learn action models for domains that in-
clude conditional and universal effects. We showed that
Conditional-SAM learns a safe action model w.r.t the real
unknown action model and presented sample complexity
theory for the algorithm. In a preliminary case study, we
showed that Conditional-SAM learns an action model that
can solve all test set problems with a small number of input
trajectories.

As future works, we have two main objectives: first, we
aim to explore methods to improve the algorithm’s scal-
ability and support domains with more expressive condi-
tional effects that might contain unbounded disjunctive an-
tecedents or even include numeric conditions and effects.
Second, we aim to extend our experimental evaluation of
Conditional-SAM over a large set of planning problems.

References
Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence, 275: 104–137.
Amir, E.; and Chang, A. 2008. Learning partially observ-
able deterministic action models. Journal of Artificial Intel-
ligence Research, 33: 349–402.
Arora, A.; Fiorino, H.; Pellier, D.; Etivier, M.; and Pesty, S.
2018. A review of learning planning action models. Knowl-
edge Engineering Review, 33.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2009. Temporal
planning in domains with linear processes. In International
Joint Conference on Artificial Intelligence (IJCAI).
Cresswell, S.; and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In International Con-
ference on Automated Planning and Scheduling (ICAPS),
42–49.
Cresswell, S.; McCluskey, T.; and West, M. 2013. Acquir-
ing planning domain models using LOCM. The Knowledge
Engineering Review, 28(2): 195–213.

Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence, 2(3-4): 189–208.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL –
The Planning Domain Definition Language. Technical Re-
port, Tech. Rep.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
planning and acting. Cambridge University Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine, 22(3): 57–57.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In 16th IEEE International Conference
on Tools with Artificial Intelligence, 294–301. IEEE.
Juba, B.; Le, H. S.; and Stern, R. 2021. Safe Learning of
Lifted Action Models. In International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR),
379–389.
Juba, B.; and Stern, R. 2022. Learning Probably Approx-
imately Complete and Safe Action Models for Stochastic
Worlds. In AAAI Conference on Artificial Intelligence.
Long, D.; and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artificial
Intelligence Research, 20: 1–59.
Nebel, B. 2000. On the Compilability and Expressive Power
of Propositional Planning Formalisms. J. Artif. Intell. Res.,
12: 271–315.
Oates, T.; and Cohen, P. R. 1996. Learning planning op-
erators with conditional and probabilistic effects. In Pro-
ceedings of the AAAI Spring Symposium on Planning with
Incomplete Information for Robot Problems, 86–94.
Pednault, E. P. 1989. Adl: Exploring the middle ground be-
tween strips and the situation calculus. In Proceedings of the
First International Conference on Principles of Knowledge
Representation and Reasoning (KR’89), 324–332.
Shahaf, D.; and Amir, E. 2006. Learning partially observ-
able action schemas. In Proceedings of the National Confer-
ence on Artificial Intelligence, volume 21, 913. Menlo Park,
CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999.
Stern, R.; and Juba, B. 2017. Efficient, Safe, and Probably
Approximately Complete Learning of Action Models. In
International Joint Conference on Artificial Intelligence (IJ-
CAI), 4405–4411.
Walsh, T. J.; and Littman, M. L. 2008. Efficient learning of
action schemas and web-service descriptions. In AAAI Con-
ference on Artificial Intelligence (AAAI), volume 8, 714–
719.
Wang, X. 1994. Learning planning operators by observation
and practice. In Second International Conference on Artifi-
cial Intelligence Planning Systems (AIPS), 335–340.



Wang, X. 1995. Learning by observation and practice: an in-
cremental approach for planning operator acquisition. In In-
ternational Conference on Machine Learning (ICML), 549–
557.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artificial
Intelligence, 171(2-3): 107–143.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence, 174(18): 1540–1569.


