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Abstract

The use of Unmanned Aerial Vehicles (UAVs) has drasti-
cally increased over the last 10 years for a wide range of
applications that include topological surveys, package deliv-
ery, and surveillance. Maintaining safe and reliable opera-
tions is of utmost importance to minimize the risk of loss
or injury from unforeseen events, such as the occurrence of
abrupt faults in uncertain environments. In this work, a novel
Health-Aware framework for replanning under faulty con-
ditions with system-level state of health information is pre-
sented. Previous works in this field do not account for wear-
and-tear degradation in conjunction with abrupt faults. We
describe the problem of integrating health-state predictions,
execution, and replanning. Health-state information can pro-
vide additional constraints to a system during replanning, re-
sulting in plans that do not violate safety or performance con-
straints. We demonstrate the use of a machine learning-based
health-state prognostics system that provides highly accurate
remaining flight time estimates to an on-board replanning
agent. We show this machine-learning approach outperforms
a standard discharge-based health-state prediction model in a
simulated UAV domain.

1 Introduction
The use of autonomous systems such as Unmanned Aerial
Vehicles (UAVs) in civilian and military operations has dras-
tically increased over the last 10 years, requiring signifi-
cant advances in health management technologies to main-
tain safe and reliable operations. Most of these technolo-
gies employ some form of Fault-Adaptive Control (Ahmed,
Quinones-Grueiro, and Biswas 2023), which seeks to alter
the parameters of the controller or switch controllers to ac-
commodate the fault. These methods are focused on low-
level control and are primarily used to maintain a safe tra-
jectory. What they don’t account for, however, is the health
of the individual components and the subsequent health of
the overall system after the fault occurrence. This recogni-
tion is what we mean by Health-Aware, where component
and system State of Health (SOH) information is used to
generate safer and more reliable plans when faulty condi-
tions occur during a flight. In this context, (1) the system is
operating in a degraded but functional state capable of satis-
fying system-level safety and performance constraints, and
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(2) an abrupt fault occurs in a component and its magnitude
has been computed. The combination of the fault and the
preexisting degraded state means the UAV is no longer able
to finish its current mission while safely returning to base,
but could potentially finish part of its existing mission or
perhaps an alternate mission.

A motivating example is depicted in Figure 1, where a
UAV operates in an urban environment with some approx-
imate level of degradation (normal wear and tear) in its 8
motors and 6-cell battery. The UAV must reach a predeter-
mined number of waypoints, stop at each for a time period,
Ts, and return back to the starting location safely. On the
left, no fault occurs and it’s able to complete its flight. On
the right, a fault has occured with no SOH estimation or re-
planning, and the UAV fails to compelte its mission.

Figure 1: Nominal flight with no fault (L); failed flight with a
battery cell loss (R).

1.1 Contribution
The key contribution of this work is the development of an
online replanning framework that accounts for system-level
degradation and the onset of an abrupt fault. Such a frame-
work does not currently exist in the literature. Methods in
use today rely on simple prediction models that do not uti-
lize accurate health data about the system itself. Absent of



accurate system-level health information, we cannot certify
that the replanner will always generate safe solutions.

1.2 Problem Statement
We formulate this problem by first defining the UAV as a
dynamical system model and characterize its usage-based
degradation over time with individual component degrada-
tion models.

Definition 1 (Dynamical System Model)

xn+1 = f(xn,un, ϑn,wx)

yn = h(xn,un, ϑn,wy),
(1)

where xn ∈ ℜm denotes the state vector describing the dy-
namics of the system; yn ∈ ℜp represents the measured
variables in the system at time step n; un ∈ ℜo denotes
the input; ϑn ∈ ℜq is the set of component and system
parameters; and wx and wy capture the uncertainties and
disturbances associated with the system model and the sys-
tem outputs. Equations f and h are the state update and sys-
tem output functions, which together, characterize the sys-
tem dynamics.
Definition 2 (Component Degradation Model)

γin+1 = g(γin, αin,xn,wd) (2)

where γi ∈ ℜq is the set of degrading parameters for com-
ponent i; αin ∈ ℜq define the degradation rates for the set
of component degradation parameters; and wd captures the
uncertainty in the degradation models.

Each waypoint, wi ∈ W , i = {0, 1, ..., N} is defined
by 3-dimensional spatial coordinates in a global reference
frame along with expected arrival time (t) and reward value
(s):

wi = (x, y, z, t, s), (3)
where any waypoint coordinates (x, y, z) are bounded by the
area of operations (AO) of the UAV. The distribution of the
system parameters, ϑ, and the degradation parameters, γ, are
known. With the exception of take-off and landing proce-
dures, the altitude, z, is fixed, which restricts the problem
to the x-y plane, and the velocity set-point, vs, is assigned
prior to flight. A dynamically feasible reference trajectory
for the vehicle (T ) is generated offline using Probabilistic
Roadmaps (PRM) and the minimum jerk method based on
vs,W , and the AO (Darrah et al. 2022a).

The set of system performance and safety constraints, ℘,
maps a performance parameter to a Boolean domain {⊤,⊥}
where each constraint is described using a linear temporal
logic (LTL), and takes the form

℘i : yt, ϑt → {⊤,⊥} (4)

Equation 4 returns true if at least one of the performance
constraint functions returns false at time t, signifying that a
constraint has been violated. Together, the trajectory, T , the
associated set of waypoints, WT , the stopping period, ts,
and the system level safety and performance constraints, ℘,
comprise a mission plan,MP:

MP = (T ,WT , ts, ℘) (5)
Under nominal conditions, the UAV executes MP suc-

cesfully; under faulty conditions, a fault detection, isolation,

and identification (FDII) agent detects (1) that a fault has oc-
cured, (2) that component or subsystem n has failed fn, and
(3) the magnitude of the fault ||

−→
fn || (Bregon et al. 2014).

The diagnosis recomputes the system and degradation pa-
rameters of the dynamical system model, and a new state is
computed. The updated state and degradation estimates are
used by the remaining useful life (RUL) predictor to deter-
mine the maximum time remaining for the flight. This value
is then used by the replanner to define a subset of waypoints
that can be visited and allow the UAV to safely return to
base.
1.3 Paper organization
The rest of the paper is organized as follows: A literature re-
view of prognostics and replanning is covered in Section 2.
The online System Level Prognostics and replanning frame-
work is discussed in Section 3. The experiments that demon-
strate the framework are discussed in Section 4. The results
of the replanning experiments are detailed in Section 5, and
the conclusion and future direction is discussed in Section 6.

2 Related Work
The Health Aware framework brings together two fields of
study, that of prognostics and online replanning. Separately,
there is an abundance of literature on the two subjects. How-
ever, within the field of prognostics, it is only recently that
prognostics at the system-level has been discussed, and the
area is still relatively new. Online replanning has been a
topic of study for many years, including contingency plan-
ning, i.e. planning under faulty conditions. There is no actual
verifiable publications that discuss online replanning under
faulty conditions while accounting for system-level degra-
dation due to nominal use (such as general wear and tear).
Therefore, these two areas of study are briefly described in
the disjoint manner with which they are presented in the lit-
erature.
2.1 System Level Prognostics
System Level Prognostics is a methodology for estimating
the future performance of a system comprised of multiple
interacting components that degrade simultaneously, with
respect to a set of predefined safety and performance con-
straints. An event such as End of Life (EOL) occurs when
one or more of these constraints is violated (Equation 4),
and the time of that event less the current operational run-
ning time of the system is known as the RUL.

RUL must account for uncertainty, external influences,
component damage accumulation, the interactions among
these components, and the effects of multiple component
degradation on system performance. Components interact
with one another, so individual component degradation is
no longer an isolated function of inputs and environment,
but includes the complexities of feedback loops and inter-
actions with other components (Darrah et al. 2021). Sys-
tem EOL represents an estimated point in time when the
system performance drops below pre-specified thresholds.
System failure is expressed as the union of component fail-
ure conditions in conjunction with the violation of one or
more system level performance constraints. In general, prog-
nostics methodologies can be divided into three basic cate-



gories (Sikorska, Hodkiewicz, and Ma 2011; Daigle, Saha,
and Goebel 2012): model based, data driven, and hybrid ap-
proaches, discussed below.

1. Model based: Model-based prognostics approaches
use domain knowledge about a system and its failure
modes through the use of physics-based models. Model-
based prognosis is generally divided into two sequential
problems: a joint state-parameter estimation problem, in
which, using the model, the health of a system or com-
ponent is determined based on the observations; and a
prediction problem, in which, using the model, the state-
parameter distribution is simulated forward in time to
compute End of Life (EOL) and subsequently Remaining
Useful Life (RUL).
These approaches use first principles physics of the
system dynamics to develop parameterized degradation
models of a component (Li and Lee 2005; Kacprzyn-
ski et al. 2004). The primary assumption is that accu-
rate mathematical models are available, which can be
the case for individual components, but typically not for
complex Cyber Physical Systems (CPS). Model-based
approaches have the advantage of being able to rep-
resent physical understanding into the monitor which
also helps with explainability, and, choosing which fea-
tures to monitor such that a functional mapping from
the feature to the health of the asset is straight forward
as well (Luo et al. 2003). Both state and degradation
parameters need estimated first, and several techniques
have been proposed for state and parameter estimation
in nonlinear systems. These include least squares esti-
mation (LSE) (Smyth et al. 2002), Extended Kalman
Filters (EKF) (Corigliano and Mariani 2004; Mariani
and Corigliano 2005), Uncented Kalman Filters (UKF)
(Chatzi and Smyth 2009), and Particle Filters (Aru-
lampalam et al. 2002; Jha, Dauphin-Tanguy, and Ould-
Bouamama 2016).

2. Data-driven: Instead of a model of the system, sensor
measurements are used to learn the damage accumu-
lation function, and require run-to-failure training data
(An, Kim, and Choi 2015). Data driven approaches are
further divided into statistical methods (Si et al. 2011),
(Tsui et al. 2015) or neural networks (Zhang et al. 2019),
(Rezaeianjouybari and Shang 2020). Approaches such as
Gaussian Processes (Liu et al. 2013), Support Vector Ma-
chines (SVM) (Chen et al. 2013), or Bayesian techniques
(Youn and Wang 2012) fall under statistical methods. Re-
current Neural Networks (RNN) (Wu, Ding, and Huang
2020), (Dong, Li, and Sun 2017) or Convolutional Neural
Network (CNN) (Li, Ding, and Sun 2018) are the most
common deep learning architectures used.
Deep learning approaches typically fall under RNNs or
CNNs. RNNs are capable of accounting for temporal de-
pendencies by connecting the output of layer n to layer
n − 1. However, they suffer from the famous vanishing
gradient problem, which is where the gradients tend to-
wards zero during propagation through multiple partial
derivative calculations during backpropogation. LSTM
networks are typically used in favor of the original for-

mulation of the RNN. LSTMs introduce the concept of
gates and a memory cell. Bi-Directional LSTMs are a
further enhancement to these types of networks that al-
low for future information to pass backwards to update
the gradient during training (Darrah et al. 2022b).

3. Hybrid approaches: Hybrid approaches combine
model-based and data-driven techniques to utilize the
best of both approaches for accurate RUL estimations
(Chao et al. 2021). Typically, model-based methods are
used for state and parameter estimation, then a data-
driven model (such as a neural network) is used for RUL
prediction. Hybrid methods outperform either method in-
dividually (Liao and Köttig 2014), and there are numer-
ous ways these methods can be constructed. This is the
approach used in the Health Aware framework, and dis-
cussed in greater detail in Section 3.

2.2 Replanning
Online replanning assumes that an agent is initially fol-
lowing a predefined plan and due to new information must
change the plan (Bonet and Geffner 2011). With an updated
knowledge base, a new plan can be computed that would al-
low it to achieve a subset of its objectives (Komarnitsky and
Shani 2016). In the domain of CPS, an inviolable objective
will always be to maintain safe operations and minimize risk
of failure. A vast majority of the algorithms to solve these
types of problems are well known, but their implementation
in these systems is not a trivial task. In a static environment,
everything can be computed offline without worry of proces-
sor limitations or computational complexity. In a dynamic
environment, a complex system such as a UAV must repeat-
edly make these calculations and trigger a replanning mode
if it detects a failure along its current trajectory. Quiñones-
Grueiro et al. (2021) developed a multi-objective cost func-
tion was implemented to assess risk, and a path search al-
gorithm was utilized offline to generate a new trajectory and
communicated to the UAV.

Krishnan and Manimala (2020) considered both the mini-
mal path length and the minimal risk of collision for design-
ing a path-planning algorithm suitable for real-time applica-
tions. They, however, do not consider the state of health of
the UAV in the optimization problem. Real-time path plan-
ning for UAVs in the context of obstacles as dynamic traffic
and geofences is explored by Chatterjee and Reza (2019).
They use RRTs and build on top of the DAIDALUS soft-
ware by NASA to implement maneuver computation for col-
lision avoidance. To save computation time, the authors pro-
pose heuristics for early termination of tree generation for
RRTs. Zammit and Van Kampen (2020) compared an A*
graph search algorithm with limited look-ahead and inter-
mediate goals, against RRTs for path planning. In their sce-
nario of traversing through openings in walls laid out in a
single principal direction, A* outperforms the more random
exploration of RRT. This may be because the heuristics for
intermediate goal points and the cost to goal are monotonic
with respect to the optimal trajectory and its true cost.

Fickert et al. (2021) proposed a replanning technique
based on A* as above but include multiple initial states in
the search space to account for replanning time. Typically



Figure 2: Online Architecture for Health-Awareness.

an initial state is manually selected during online replan-
ning that attempts to account for replanning time. However,
their approach does not account for faults or degradation.
Ure et al. (2013) proposed the first and one of only a few
works that discuss Health-Aware planning. They assigned a
capability score based on the health of the system and use
a Markov Decision Process to solve the replanning prob-
lem. Their approach, however, does not account for abrupt
faults that occur mid-flight. Kita et al. (2023) discussed un-
certainty with travel times for an office delivery robot and
proposed an adaptive parameter update method to better es-
timate the probability distribution of the travel time. Like
numerous previous works, they did not account for wear-
and-tear degradation or abrupt faults. Balaban et al. (2013)
developed a mobile robotics test platform for prognostics
based decision making studies. This work is most closely re-
lated to the Health-Aware framework presented here. How-
ever, the authors did not implement a deep learning model
for prognostics and did not have multiple degrading compo-
nents in the system.

3 Methodology
The Health-Aware Framework is comprised of four key el-
ements: (1) a state-space dynamical system model; (2) in-
dividual component degradation models; (3) a system-level
Remaining Useful Life (RUL) model; and (4) a replanning
agent. The first two components were defined in the prob-
lem statement in Section 1. The system-level RUL model is
defined as
Definition 3 (System Level Remaining Useful Life Model)

tr = F(xn, γn, ϵn, E(un+1, ...)), (6)
where F represents a Bi-Directional Long-Short Term
Memory (Bi-LSTM) network with inputs consisting of the
system state, xn, degradation parameters, γn, control and
position errors, ϵn, and expected future usage, E(un+1, ...).
Several publications discuss various architectures for RUL
estimation, all which achieve relatively decent accuracy. We
have chosen the Bi-LSTM architecture due to success in pre-
vious experiments and its simplicity (only 2 layers).
3.1 Replanning
There are a number of approaches to solution generation
such as dynamic programming, evolutionary programming,

mixed integer linear programming, or graph-based methods
such as A*. The replanning function is framed as an orien-
teering problem (Golden, Levy, and Vohra 1987) and defined
by

Definition 4 (Replanning Function)
G = (W,D,H,R),

MP ′ = G(G, wf , Ts, tr, wg)
(7)

where G is a graph with waypoints, w ∈ W , and edges are
the travel time between any two pair of waypoints in a dis-
tance matrix D, the travel time from a given waypoint to the
goal location is the heuristic stored in a vector H, and the re-
ward value for each waypoint is stored in a reward vector R.
G is a function that takes as input the graph, G, the starting
wayoint after the failure, wf , the stopping time at each way-
point, Ts, the remaining flight time, tr, and the goal location,
wg , which is the same as the start location. A new mission
plan, MP ′ is generated with a new trajectory. Once a ten-
tative solution is generated, the algorithm checks to see if it
is feasible (i.e. does exceed the remaining flight time), and
then prioritizes by total reward, rt. If no feasible trajectory
is found, the algorithm returns None, otherwise, it returns
the new trajectory,WT ′

. The waypoints on the original tra-
jectory have a reward value of 5, and all other waypoints
have a value of either 0 or 1. Rewards are used to prioritize
the selection of original waypoints over alternate waypoints
where possible. Flight-time calculations are captured with g.
The algorithm is provided below in Algorithm 1.

The algorithm takes as input the graph, G, the starting
waypoint after fault has been identified, wf , a vector of stop-
ping times at each waypoint, Ts, the time remaining until
failure, ts, and the goal waypoint, wg . In Line 2, the vis-
ited waypoints, V , is assigned an empty set, and in Line 3,
the priority queue, PQ, is assigned a tuple consisting of the
reward for the initial waypoint, Rwf , the stopping time at
the current waypoint, Twf

s , the waypoint itself, wf , and an
empty set for the path. In Line 5, the tuple is popped and
represents the total reward, rt, the total path cost, g, the cur-
rent waypoint, wi, and the current trajectory,WT ′

. Lines 6
and 7 are the stopping condition that will return the new tra-
jectory. In lines 9 and 10, the current waypoint is added to
the visited set and to the new trajectory. If the path cost plus



Figure 3: Replanning framework. Offline mission plan generation (L); online monitoring and replanning (R)

the estimated distance to the goal waypoint is less than the
time remaining (line 11), then the neighbors of the current
waypoint, wN

i , are evaluated. The path cost is updated to in-
clude the travel time between the current waypoint and its
neighbor and the stopping time at the neighbor (line 14). In
Line 15 the reward is updated, then Line 16 does the same
check as Line 11 for the neighbor, and adds it to the priority
queue in Line 17.

Algorithm 1: Constrained Routing with Rewards

1: procedure ROUTING(G, wf , Ts, tr, wg)
2: V ← {}
3: PQ← (Rwf , T

wf
s , wf , {})

4: while PQ ̸= ∅ do
5: rt, g, wi,WT ′ ← POP(PQ)
6: if wi = wg then
7: returnWT ′

+ wi

8: if wi /∈ V then
9: V ← V + wi

10: WT ′ ←WT ′
+ wi

11: if g +Hwi
< tr then

12: for n ∈ wN
i do

13: if n /∈ V then
14: g ← g +Dwi,n + Tn

s
15: rt ← rt + Tn

r
16: if g +Hn < tr then
17: PUSH(PQ, (rt, g, n,WT ′

))

18: return None

3.2 Online Architecture for Health Awareness
The online Health-Aware architecture is depicted in Figure
2, consisting of an estimation scheme to estimate the sys-
tem state, x, and degradation parameters, γ; a prediction
scheme to predict the remaining flight time, tr, (RUL), and
a fault detection, identification, and isolation (FDII) scheme
to detect faults and their magnitude, f and ||

−→
fn ||, which are

used to recompute state and degradation parameters of the
system. The inputs, u, consist of the velocity profile, wind
conditions, and motor control signals, and are fed to the
system, the dynamical model of the system, the degrada-
tion models of the components within the system, and the
FDII monitor. The uncertainties and noise, ω, are also input
to the system and degradation models as Gaussian distribu-
tions. The FDII block also receives the system parameters,
ϑ, and outputs fault information back to the dynamical sys-
tem model to update the parameters of the system if a fault

is detected. There is a two-way link between the dynami-
cal system model and the UKF, as the UKF estimates the
system parameters and updates them as necessary as well.
This is a central part of the Health-Aware architecture. As
these estimates are continuously calculated online, the sys-
tem state and degradation parameters are passed to the RUL
model in the prediction step. The RUL model also receives
a vector of errors, ϵ, which are comprised of position er-
rors, arrival time errors, and control errors. In addition, the
RUL model takes the future expected load, E(un+1...), and
the performance constraints, which is a set of Boolean state-
ments on both system-level and component-level parame-
ters, such as cumulative position error (system-level), or bat-
tery state of charge (component-level). Together, the compo-
sition of these pieces form the online architecture for Health-
Awareness.

3.3 Online Replanning
The online replanning framework is presented in Figure 3,
consisting of a pre-departure component (L), and an on-
line component (R). During pre-departure, the mission plan,
MP is generated which loads the initial trajectory and per-
formance thresholds onto the embedded hardware and au-
topilot. The RUL model is also loaded onto the embed-
ded hardware at this time. During the online phase, the
Health-Awareness architecture performs monitoring, esti-
mation, and prediction tasks. If at anytime the remaining
flight time, tr, is less than the original trajectory flight time,
the replaning agent is activated and computes a new mission
plan. The autopilot receives the new waypoints and then ex-
ecutes the updated trajectory.

Together, the architecture for health awareness and online
replanning framework are used for online health-aware re-
planning. This methodology is demonstrated in the follow-
ing section.

4 Experiments
We demonstrate the benefits of the Health-Aware replan-
ning framework by showing the effects of replanning for
a UAV while undergoing usage-based degradation and an
abrupt fault. We show what happens when a UAV has access
to system-level SOH information and when it does not. To
satisfy the first part, we select a UAV that has completed be-
tween 40 and 60 flights, having flown at least 100km, with
the relevent degradation parameters shown in Table 1.

The abrupt fault we implement is the loss of a battery cell,
and for a LiPo 6S battery this results in the total charge ca-
pacitance being reduced by 1

6 . An exemplary trajectory is



Parameter description Initial Actual

Q Battery Capacitance 22.0 aH 20.95 aH
R0 Battery resistance .0011 Ω .0043 Ω
Rm1 Motor 1 resistance .2371 Ω .2674 Ω
Rm2 Motor 2 resistance .2370 Ω .2709 Ω
Rm3 Motor 3 resistance .2371 Ω .2799 Ω
Rm4 Motor 4 resistance .2372 Ω .2703 Ω
Rm5 Motor 5 resistance .2369 Ω .2727 Ω
Rm6 Motor 6 resistance .2371 Ω .2671 Ω
Rm7 Motor 7 resistance .2369 Ω .2806 Ω
Rm8 Motor 8 resistance .2374 Ω .2684 Ω

Table 1: System degradation parameters

shown in Figure 1, with the AO, trajectory, and waypoints
depicted for a successful flight in the top left. Alternate way-
points are depicted that could be considered during replan-
ning. The bottom left depicts the battery state of charge and
output voltage for a nominal flight. The right half of the fig-
ure shows what happens when a fault occurs with no replan-
ning at all, where the UAV ultimately fails mid-flight, and
the effects of the abrupt loss of a battery cell are evident.

The remaining useful life calculation is the primary in-
put to the replanner. Current industry standards use the bat-
tery discharge rate to determine max flight time, and by this
method the remaining useful life can be calculated by

Definition 5 (Discharge-based Remaining Useful Life)

tr = tm − tm ·
(Σic)

Q
, (8)

where tr is the time remaining, tm is the max flight time
(typically provided by the manufacturer), Σic is the cumu-
lative current consumed, and Q is the total charge capaci-
tance. Under ideal conditions ignoring degradation, this is a
perfectly acceptable method of calculating remaining flight
time. However, degradation is a natural phenomenon that oc-
curs in all complex systems and therefore must be accounted
for. A functional mapping between system operation and
system state of health must be incorporated into a replan-
ning agent to provide more accurate flight time estimates.
This is shown in the right hand side of Figure 2.
4.1 RUL Model
The details of the RUL model development process can be
found in previous publications (Darrah et al. 2022a,b), how-
ever the dataset is briefly discussed for context. This is a
run to failure dataset, meaning there are multiple UAVs that
execute trajectories assigned at random until a safety or per-
formance threshold is violated. They fly under varying wind
conditions with stochastic degradation profiles in 9 compo-
nents, consisting of 8 motors with one degrading parame-
ter (internal resistance) and 1 battery with 2 degradation pa-
rameters (total charge capacitance and internal resistance).
There are 184 UAVs with a total of 17,629 flights. Of this,
88 UAVs were selected for the experiment, 66 for training,
11 for testing, and 11 for validation. The telemetry data con-
sists of 80 features sampled at 1 hz for a total of 19,876,367
records. Features sampled include battery data such as cur-
rent, voltage, and estimated state of charge; motor data such

Parameter description Value

L layers 2
cL1 layer 1 cells 80
cL2 layer 2 cells 40
d dropout rate 20%
dr recurrent dropout 25%
l1 l1 regularization 1e5

l2 l2 regularization 1e5

b batch size 64

Table 2: Bi-LSTM parameters.

as current and RPM; errors; and body data such as position,
velocity, acceleration, orientation, and angular velocity.

When accounting for the entire test set, the model has
an RMSE of 8.3%, expressed as a percentage of predicted
minutes until failure. When discarding the outlier (Figure 4,
middle-bottom row), the model RMSE is 2.6%. The results
of the RUL model are shown in Figure 4 for 10 test UAVs.
From these results we can be confident in accurate RUL es-
timates. The model architecture is a 2-layer Bi-LSTM with
the following parameters shown in Table 2.

5 Results
The results of the replanning experiment that demonstrates
the Health-Aware framework are shown in Figure 5. The
planner on the left receives a poor quality estimate from the
naive remaining flight time calculation and comes up with a
plan that is too optimistic and overestimates the RUL. Due
to this, it attempts to reach two waypoints from the origi-
nal trajectory, but ultimately fails before finishing the flight.
It would have received a total reward of 24 points, as op-
posed to 16 points received by the Health-Aware replanner.
However, the Health-Aware replanner had a more accurate
RUL estimate that accounted for system degradation and es-
timated a shorter remaining flight time. It opted to not at-
tempt to reach the the last waypoints (circled in red) and
chose alternate waypoints instead due to the fact reaching
the goal is an inviolable constraint.

6 Conclusion
In this work, we introduce novel Health-Aware replanning
framework that incorporates system-level SOH information.
By using a prognostics model to during online replanning,
we observe better flight time estimates and as a result a safer
trajectory is generated online that allows the UAV to reach
the goal location without failure.

This was a simple demonstration to show the viability of
the approach but there is plenty of research opportunities to
extend this work. Some initial areas to explore would be to
predict travel time and power consumption on a segment-by-
segment basis as it relates to current wind conditions. Edges
must then be dynamically computed as opposed to statically
defined in a matrix. Additionally, only one fault was con-
sidered in this work, the loss of a single battery cell. Other
faults could be implemented such as the loss of a motor, an
electronic speed controller (ESC) switching fault, or a par-
asitic load fault, to name a few. Also, only one trajectory
was used in this demonstration. There are currently 53 dif-
ferent trajectories available for selection in the simulation,



Figure 4: RUL Estimation results for 10 UAVs in the test dataset.

Figure 5: Naive replanner (L), with a 1,702 meter long trajectory; Health-Aware replanner (R), with a 1,608 meter long trajectory. Red circles
show different waypoints selected. The UAV travels clockwise in this particular trajectory.

and other trajectories should be used as well. Other UAVs
with different levels of usage and degradation should also
be used, here, only one was used.
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