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Abstract

Previous work on planning and execution has proposed a
three-tiered architecture where a middle layer exists between
planning-based generated plans, which define high-level ab-
stract actions, and low-level commands connected to a real-
world executor. This middle layer is usually termed as acting.
Current proposals to implement the acting layer vary, from
solutions utilizing declarative or programmatic language rep-
resentations, to solutions that do not incorporate a planner,
and ones that utilize hierarchical planning constructs and plan
refinement frameworks. In this paper, we propose a con-
trol architecture, CLAPLEX, that utilizes a new program-
ming language providing a simple interface to define the act-
ing layer with classical execution-monitoring constructs. This
language is seamlessly integrated with Python, a general pur-
pose programming language, that adds total flexibility to cre-
ating acting code. We also propose an architecture that in-
cludes a compiler from plans to acting code in that program-
ming language. We report on the successful use of this pro-
gramming language to create an open control program for an
office robot.

Introduction
Planning uses an agent’s initial state and generates a se-
quence of actions with the intent of achieving the agent’s
goals. Thus, a key component of a comprehensive planning
framework is the ability to execute plans. Most works in the
literature discuss the connection between planning and exe-
cution (Ingrand et al. 1996; Simmons and Apfelbaum 1998;
Guzmán et al. 2012; Pinover et al. 2020; Cashmore et al.
2015), with some (Patra et al. 2019b; Ghallab, Nau, and
Traverso 2016) paying attention to the use of a three-tiered
architecture that would be composed of a deliberative plan-
ning component, an acting component, and an executive. In
particular, this paper focuses on the acting component. Our
approach, takes as input a plan, executes each action in the
plan and monitors the execution of the action (inter and post
execution).

While architectures such as the one proposed in this paper
have been mainly used to control robotic systems (Pinover
et al. 2020; Schaffer et al. 2018), they are general enough
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to be used in other related domains, such as games, logis-
tics, or workflow execution for business processes. Each of
these types of applications require a different kind of ex-
ecutive. For instance, ROS (Macenski et al. 2022) is used
for robotic tasks, while DMN (OMG 2021) is commonly
used for workflow applications. Our work aims to provide
an executive that is independent of the application it is being
used in. Previous works have proposed many different ways
to create the acting component (Verma et al. 2005; Ingrand
et al. 1996; Ingham, Ragno, and Williams 2001). These ap-
proaches are very flexible in the kinds of acting code they
can generate, but lack seamless integration with external li-
braries.

In this paper, we define a planning-execution architecture,
CLAPLEX, based on the integration of deliberative plan-
ning with a programming language, ALA. CLAPLEX al-
lows developers to easily deploy acting and execution code.
The connection between planning and execution is real-
ized by compiling plans into control programs in ALA, the
CLAPLEX acting language, that includes the execution and
monitoring of actions. Each action in the plan is translated
to a primitive function call in ALA. The connection between
CLAPLEX and any external system, such as ROS, respon-
sible for executing the external system’s primitive actions,
is done by defining Python functions that can be embedded
in the code of the ALA control program. Given the use of
Python, the execution of the controller defined in CLAPLEX
can be easily linked to any external software libraries and
tools used to build applications in this external system. Our
current approach allows us to be agnostic to the underlying
executive-language. Changing Python as the executive lan-
guage would not require any change in the language, and
very little changes in the architecture.

In its current state, CLAPLEX, takes plans generated
from classical planners and translates them into ALA. While
CLAPLEX is currently designed for sequential determin-
istic plans, ALA already provides the ability to support
partial-order, conditional or temporal plans.

We start by introducing CLAPLEX, the system architec-
ture. We then introduce the ALA programming language,
discussing design choices made for language semantics and
providing the language syntax in EBNF format. We provide
an example of an automatically generated program and de-
scribe how it has been integrated with an execution and mon-



itoring framework. We present the interpreter and describe
how the language was used on a robot domain use case. Fi-
nally, we provide an account of related work.

Architecture
Figure 1 depicts the planning-execution architecture of
CLAPLEX. The boxes in dashed outline represent in-
put/output information, while the solid filled boxes repre-
sent modules. As seen in the figure, the Planner module
takes as input the planning domain and problem files and
solves the planning problem. The plan is then fed into the
Compiler module to produce the ALA program.

The Syntactic Analysis module takes the pro-
gram as an input, together with the definition of the ALA
syntax in EBNF format, and produces the AST which is
used together with the Static Functions module by
the Executive to execute each action in the environment.
The Static Functions module is a Python program
that contains the definitions of primitive functions for the
execution, as well as the functions responsible for regress-
ing action preconditions to compute monitoring checks, and
execute the monitoring actions. This module is imported
at the top of the ALA program and is called whenever a
primitive, or a monitoring action is requested. Finally, the
Executive receives as input the domain and problem files
which are used to compute the plan’s regressed precondi-
tion, and state information from the environment to support
the execution of the ALA program.

Next, we will present in more detail the components of
the architecture. The CLAPLEX planning execution and
monitoring framework is supported by five modules, the
Planner, the Compiler, the Syntactic Analysis module, the
Static Functions module and the Executive. Overall, the ar-
chitecture takes as an input the planning domain and prob-
lem files and solves the planning problem. The plan is then
automatically compiled into the corresponding ALA pro-
gram in a domain-independent fashion. In generating the
ALA code, the same module is also responsible for em-
bedding monitoring checkpoints in the code. We provide
Algorithm 1, which details the way in which monitoring
checkpoints are included in the ALA code by appending
strings to list L and eventually adding the strings to ALA
code. These strings include the pieces of code responsi-
ble for regressing preconditions and executing monitoring
checks and plan actions. The algorithm starts by adding to
list L the regressed preconditions function and assigning
it to variable p. Since the Executive takes as input the
domain and problem files, they do not need to be added
as parameters to the get regressed preconditions func-
tion. Next, the algorithm loops over the number of action
in the plan and appends to the list the command responsi-
ble for executing the current action. Finally, the algorithm
adds a conditional statement command to the list of ALA
commands that checks whether the monitoring function re-
turns ‘fail’ for the current action and halts execution if that
is true, else continues with the loop. We make the assump-
tion that, by using the planning domain and current state, the
get regressed preconditions function is able to reconcile

Figure 1: CLAPLEX planning-execution-monitoring archi-
tecture.

high-level planning actions/preconditions to their low-level
state counterparts, to compute potential future failures.

The monitoring checks are responsible for pulling the re-
gressed preconditions of the actions to be executed, and as-
sessing if the plan will fail at any of the future action steps.
The functions used to monitor execution are placed in a
Python script and imported at the top of the ALA program.
Thus, the interpreter executes the actions in the plan while at
the same time functioning as an execution monitoring mod-
ule. As of now, our module halts the execution of the plan
as soon as the regressed preconditions fail for the action at
hand.

ALA- The Language
ALA is a high-level, modular, highly orthogonal program-
ming language for control. There are currently two ways to
use the language: 1) as an acting mechanism of a planning
system, where the compiler’s functionality is, for now, lim-
ited to translating sequential plans; and 2) as a programming
language to directly model acting programs. ALA is more
expressive than what the compiler supports. For instance,
the language currently includes powerful functionality, like
action parallelization which the compiler is not leveraging.
As is, the compiler translates classical plans by using ALA’s
sequential execution mode. The following subsections pro-



Algorithm 1: Algorithm for embedding monitoring checks
in the ALA code.
Input: Plan as a sequence of actions, a = {A1 · · ·AN},
Output: List of execution-monitoring commands to be in-
cluded in the control program

1: L← [‘p = get regressed preconds()’]
2: for ∀i ∈ {1, N} do
3: L← L+ [‘execute(Ai)’]
4: L← L+ [‘if monitor(p(Ai)) = fail then fail’]
5: end for
6: return L

vide details of the language’s functionality and semantics,
its syntax and the development of the interpreter. At the end
of the section, we provide an example of a ALA program
utilizing a good proportion of the currently available ALA
functionality.

Functionality and Semantics
A top-level execution mode specification, loops, if/while
statements, function definitions and function calls are some
of the constructs built into the ALA language capabilities.
These, together with support for conditional branching, vari-
able assignments, and mathematical and logical expressions
make up ALA’s rich control architecture.

Additionally, Python has been integrated with the lan-
guage in the form of function imports from separate Python
scripts, promoting code simplicity and the ability to ex-
pand the language’s capabilities to all additional Python con-
structs and packages. Potential uses include, but are not lim-
ited to, the integration of the CLAPLEX control program
with external systems, such as robots, and the use of prim-
itive functions to call on the execution of actions in these
systems.

The language has been developed to execute a set of ac-
tions, in one of three modes: sequential execution, parallel
execution or any-order execution. These modes mimic the
different plan control structures. While sequential execution
allows for the simpler total-order type of plans, all actions
called inside the ‘parallel’ execution mode keyword are exe-
cuted concurrently using Python’s multiprocessing module.
In this way, we are able to leverage a machine’s multiple
processors to execute all actions at the same time. On the
other hand, actions called inside the ‘any order’ execution
mode keyword are executed in a random sequence. Nesting
of different execution modes is allowed.

Syntax
We provide the full EBNF definition of ALA in the
Appendix. In this section, we provide an example of a plan
produced by the planner and specify how it is translated to
ALA code. The use case here involves a robot with mov-
ing and speech primitives. The plan solution is provided in
Listing 1 and includes a move action from position c1 to
position c2, followed by a greeting action at c2 that checks
that the robot and human are in the same location and fi-
nally a second move action from c2 to c4. In this example,

Listing 1: PDDL generated plan
1 (move c1 c2)
2 (greet-human p1 c2 c2 hi)
3 (move c2 c4)

Listing 2: Translated ALA code from PDDL code in List-
ing 1
1 import static_functions
2 program({}
3 sequence(
4 p = regressed_preconds(),
5 move(’c1’, ’c2’),
6 if (monitoring(p(1)) == ’fail’):
7 fail()
8 else:
9 greet_human(’p1’, ’c2’, ’c2’, ’hi’),

10 if (monitoring(p(2)) == ’fail’):
11 fail()
12 else:
13 move(’c2’, ’c4’)))

parameters prefixed by the letter c signify locations, while
the ones prefixed by p signify people. We utilize a compi-
lation module to convert the PDDL solution to ALA code.
The equivalent ALA code is included in Listing 2.

As shown in the automatically generated acting program,
we import a module called static functions at the
top of the script. This is the Python module which specifies
the primitives and is responsible for calling ROS to execute
them. Then, the control part of the script starts. Curly brack-
ets inside program designate allocated space for function
definitions, which for simplicity could be transferred to a
separate script and instead imported at the top. Right be-
low, the control sequence is called and prefixed with a mode
of execution keyword, in this case sequence. Inside the
brackets of the execution mode keyword, the syntax allows
us to use different control constructs like while-loops and if-
statements. For this example, we simply call the appropriate
primitive functions corresponding to the actions specified in
the plan.

In generating this program automatically, the compiler
takes the plan and uses Algorithm 1 to get a sequence of
commands, which includes monitoring. The compiler also
initially embeds a regressed preconditions command at the
beginning of the program. Furthermore, monitoring checks,
are added between each action in the plan. In this way, the
plan’s regressed preconditions are computed at the begin-
ning and the monitoring actions confirm that the precondi-
tions of the actions in the remaining part of the plan are met.
We use conditional statements dependent on the return val-
ues of the monitoring actions to decide whether to execute
the next action in the plan. As shown in Listing 2, the pro-
gram only allows the execution of greet human if the first
monitoring check does not return ‘fail’.

Interpreting ALA code
In order to execute code written in ALA, we built an inter-
preter to Python. We used ANTLR (ANother Tool for Lan-



guage Recognition), (Parr 1992) a powerful parser gener-
ator. ANTLR supports the development of an executive in
two ways. It can be used to check that the CLAPLEX pro-
gram is syntactically correct, and builds the corresponding
Abstract Syntax Tree (AST).

ANTLR takes as an input the EBNF syntax, provided in
the Appendix, and generates parser, lexer and visitor files to
support the interpreter development. Finally, ANTLR takes
as an input a new CLAPLEX script, builds the AST and uses
the interpreter to execute the commands in the code.

CLAPLEX- A Robot Domain Use-Case
We provide an example ALA program, which we call
robot interact to demonstrate the extent of ALA’s
functionality after some enhancements were made to allow
for actions to be executed in parallel or in any order. We
use the key words parallel and any-order to replace
the keyword sequence in the original form of the lan-
guage. We have not yet improved the Compiler module to
support the automatic compilation of plans for parallel/any-
order execution, but we plan to use standard ways of com-
puting partial-order plans from total-order ones (Veloso,
Pérez, and Carbonell 1990). The program is shown in
Listing 3. While this program has been written manually,
the execution is completely automated by interpreting this
code and sending the corresponding commands to the robot
through ROS.

The program was executed on a robot with motion, speech
and object recognition primitives. Our aim was to utilize all
of our robot primitives in this example and showcase the
ability of the program to create open loops. Robot primitives
are called using ROS (Macenski et al. 2022). ROS provides
us with a set of libraries and tools useful for building robot
applications. We additionally used Python modules, such as
time and random, that support execution. We halt execution
using the time module to let the robot interact more fluidly
with the environment while the random module’s random
number generator function is used to choose a random angle
for the robot to turn when it finds an obstacle. ALA em-
powers the seamless integration of Python and ROS in this
example by utilizing external modules and connecting and
executing primitive actions on the robot while at the same
time demonstrating the language’s simple syntax for system
control.

At the start of the program, we use a sequential execution
mode to assign a value to variables v and h, Boolean vari-
ables for obstacle detection and human recognition. Then,
we use a parallel execution of sensing primitives for hu-
man recognition and obstacle detection, forward motion and
speech. As soon as the robot detects an obstacle, it stops
moving forward and chooses a random angle to turn to be-
fore continuing execution. At the same time, the robot greets
a person as soon as it detects one.

Figure 2 shows nine video frames of the robot performing
this task. The robot is originally placed facing the wardrobe.
As seen in the figure, as soon as the robot starts moving it
sees the wardrobe and turns to the right. The robot avoids the
wardrobe a second time between frames 3 and 4 and starts
moving towards the camera. As the robot moves towards the

Listing 3: ALA control program for robot interact

1 import static_functions
2 program({}
3 sequence(
4 v = 0,
5 h = 0,
6 parallel(
7 while (true):
8 (h = human_check(),
9 v = obstacle_check()),

10 while (true):
11 if (v == 0):
12 forward(0.3)
13 else:
14 (r_a = random_angle(),
15 move(0, r_a),
16 wait(2)),
17 while (true):
18 if (h == 1):
19 (speak(’Hello’),
20 wait(15)))))

camera, it recognizes a human behind the camera and says
Hello. It then turns and moves away from the camera be-
cause it recognizes the human as an obstacle.

Related Work
Multiple works on the integration of planning and acting
have been explored in the literature. One may find charac-
teristics of the CLAPLEX control and execution language in
prominent languages including PLEXIL (Verma et al. 2005),
RMPL (Ingham, Ragno, and Williams 2001) and TDL (Sim-
mons and Apfelbaum 1998). Modularity, expressivity and
syntax simplicity are shared by all four languages, with ad-
ditional common characteristics listed below. Other works
provide solutions vastly different to the proposed frame-
work, but still aiming at solving this discrepancy between
high level abstraction and low level execution (De Benedic-
tis et al. 2022).

PLEXIL’s tree like structure which includes action leaf
nodes and expandable control nodes in the tree, is equivalent
to ANTLR’s native tree like structure, available to the user
and implicitly embedded to the ALA interpreter. The dis-
tinguishing aspect of ALA is that the code does not include
embedded tree like programming constructs and is written in
a simpler language format, easily interpreted by new users.
The ALA non-declarative, programmatic representation has
allowed the language to be fully integrated with Python li-
braries. An additional advantage to PLEXIL is that the code
fed to the interpreter is readable, as opposed to XML code
sent to PLEXIL’s Universal Executive (as recognized by its
authors (Verma et al. 2005)). Just as PLEXIL, ALA can be
utilized as a standalone execution-only system.

RMPL supports similar constructs to ALA, including con-
ditional branching, iteration, parallel composition, sequen-
tial ordering and preemption (Ingham, Ragno, and Williams
2001). However, while RMPL code specifies the state to
be achieved and not the action to be executed, CLAPLEX
actions are decided by a planning module. RMPL’s con-



Figure 2: Video frames of robot executing the code in List-
ing 3.

straint based modeling and language constructs like parallel
and sequential execution, and IF-THENNEXT-ELSENEXT,
UNLESS-THENNEXT, WHEN-DONEXT, WHENEVER-
DONEXT, DO-WATCHING control constructs, are simpli-
fied by ALA’s if-else, for/while loop statements and key-
words like parallel/sequence. Thus, ALA covers the extent
of the RMPL functionality, but using a simpler language.

TDL and ALA differ in how the resulting control code
is executed. While TDL is compiled to C++ code before
execution (Simmons and Apfelbaum 1998), ALA is inter-
preted and executed in Python. The TDL utilization of a
C++ platform-independent task-management library is com-
parable to ALA ’s ability to utilize functions and primitive
calls held externally in separate scripts and imported to the
executing script, promoting clean scripting and code mod-
ularity. In the CLAPLEX case, this library exists in two

modes, ALA code, or Python code. The functions contained
in the scripts can include from simple primitive action ex-
ecution to complex control and monitoring structures. Just
as the CLAPLEX- Python integration, the TDL - C++ in-
tegration encodes the scripted code into a Task-trees. While
TDL includes a elaborate structure on task tree execution
flow, ALA’s use of ANTLR, an off-the-shelf parser genera-
tor, means that there is no need to explicitly develop an AST
or its traversal logic.

Behavior Trees are the de facto standard in the gaming in-
dustry for use in the control structure and behavior of Non-
Player Characters and for robotic manipulation (Colledan-
chise and Ögren 2017). Our choice of embedding function
return values in the ALA syntax and the ANTLR parser gen-
erator, creates a programming language with control struc-
ture and semantics resembling the execution flow of behav-
ior trees (top to bottom and left to right execution), pro-
moting modularity and supporting two-way control trans-
fers (Colledanchise and Ögren 2017). In the case of TDL,
its functions have no return values and thus, two-way con-
trol transfers are not supported.

PRS is another control and monitoring language with a
declarative representation syntax supporting reactive reason-
ing capabilities and the ability to be asynchronously con-
nected to low-level modules (Ingrand et al. 1996). We can
draw a parallel between ALA and PRS in that while ALA
is not represented declaratively, it does indeed support re-
active reasoning, because of its rich control constructs and
its seamless integration in Python. The two languages dif-
fer in that PRS does not incorporate a planner, rather calls
a library of pre-specified plans and chooses among the ones
most suitable for the goal at hand.

The STP architecture is a hierarchical control framework
designed for adversarial multi-agent environments, with a
specific focus on robot soccer (Browning et al. 2005). Al-
though the architecture does not delve into the specifics of
the acting layer, it provides a comprehensive description of
the control framework’s unfolding process, spanning from
high-level goals of a robot team to the individual actions
and action parameters of each robot within the team. While
our current approach does not encompass an adversarial or
multi-agent environment, we consider this work useful for
future work, as it offers insights into unpackaging complex
actions into simpler primitive controls, drawing inspiration
from concepts such as long-term goal determination and
strategic planning.

The ROGUE architecture combines high-level planning
and low-level execution to create an autonomous robotic
agent (Haigh and Veloso 1997). ROGUE acts as a task
scheduler, handling asynchronous requests from multiple
users. The architecture incorporates PRODIGY as the plan-
ning system, enabling real-world execution by mapping
planned actions to robot primitives. Monitoring capabilities
utilize sensing to detect differences between the expected
and actual states, updating domain knowledge and refining
future actions in the plan to achieve goals. Our current ap-
proach to monitoring halts execution as soon as an action
fails and this would be one of the options to consider for
potential future work on plan refinement.



Multiple papers in the literature call on plan refinement
methods as being useful in control, execution and moni-
toring frameworks. For instance, Propice-Plan uses ideas
like anticipation planning and plan synthesis to derive and
adapt plans in cases of implicit goal specification or in cases
of execution failure (Despouys and Ingrand 1999). ROS-
Plan (Cashmore et al. 2015), uses plan post-processing and
validation, as well as system alerts in the case that the envi-
ronment changes or the action fails, invalidating the current
plan and forcing the system to replan. Instruction Graphs
package an interactive approach to model verbal or writ-
ten commands in a graph structure and allow developers to
refine parts of the plan by correcting the parameters of ac-
tions or replacing an action altogether (Mericli et al. 2014).
RAP allows for the simulation of different actions in the sys-
tem to measure their impact, and chooses the appropriate
action to modify the plan (Pinover et al. 2020). Similarly,
both APE-Plan and RAE-Plan use Monte-Carlo simulation
roll-outs of the relevant operational models for planning and
plan refinement (Patra et al. 2019b,a). UPOM provides a so-
lution to search this operational model space and make de-
cisions about finding a near-optimal method for the current
action (Patra et al. 2020). Hy-CIRCA focuses on providing a
control structure for hybrid systems and combines the ideas
seen in multiple other papers on plan refinement, hierarchi-
cal planning and an execution engine for coordination and
replanning (Goldman et al. 2016). Similarly, (Turi and Bit-
Monnot 2022) uses hierarchical operational models and a
RAE implementation for plan refinement. This paper anal-
yses the operational model and extracts planning domains
from acting domains to select the best model for the task
at hand. Further to plan refinement methods, Mendoza et
al. (2015) introduces an execution monitoring framework
which identifies and corrects discrepancies between the ex-
pected model of the world and the experienced reality, as
a result of situations in which effects of actions in the real
world deviate from the effects that the planner expected.

While we recognize the problem posed by APE (Patra
et al. 2019b) on reconciling descriptive actions and opera-
tional models with rich control structures, our initial objec-
tive was to create a language that includes expressive con-
structs with rich control while fully integrating the language
with a high-level programming language. To solve this rec-
onciliation issue, APE uses the operational model for both
acting and planning, which we defer to later research. Cur-
rently, CLAPLEX uses a planning module to generate plans
and a compilation module to automatically generate ALA
acting code.

Finally, ROSPlan, (Cashmore et al. 2015) reconciles the
solution of a PDDL planner, generated on an abstract model
of the world, with ROS, a system that calls on a robot’s low
level controls. Our robot domain use-case also uses ROS to
execute robot primitives. The two approaches differ in that
CLAPLEX has been developed to be able to call any library
supported by Python, not only ROS. We could therefore use
CLAPLEX with any other software supporting robotics as
well as any other type of applications, as long as the execu-
tion system can be called within Python.

Conclusions and Future Work
In this paper we have introduced CLAPLEX, a System
Control, Planning and Execution programming architecture
backed by ALA, its control language, which aims to bridge
the gap between planning, acting and execution. The lan-
guage syntax and semantics resemble the compactness of a
program written in Python, while keeping a top-level con-
trol structure, and potentially more complex and fluid in-
ner architecture. We have additionally provided the language
syntax in EBNF together with some information on how we
built our interpreter using ANTLR.

In the future, we would be interested to explore potential
extensions of the current monitoring framework to reason
about other replanning strategies while executing. Addition-
ally, recent work describes how Monte Carlo rollouts can
be used for plan refinement (Patra et al. 2019b,a). This tech-
nique could allow us to drop the PDDL solution to ALA pro-
gram translation and bridge the gap in abstraction between
our declarative planning solution and programmatic execu-
tion. We would additionally be interested in developing the
current architecture to support partial-order, conditional and
temporal plans which would constitute a natural extension of
the architecture’s current methodology for including contin-
gent monitoring checks for action failures. Finally, we would
like to develop our current infrastructure to support the auto-
matic compilation of parallel and any-order plans to resem-
ble our current ability to automatically generate ALA code
from sequential plans.
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Appendix
The following listings include the complete EBNF syntax of
ALA.



Listing 4: EBNF syntax definition for CLAPLEX- Table 1
1 imports : imp program;
2 imp : IMPORT ((COMMA)? file_name)*;
3 program : PROGRAM LPAR
4 LCPAR
5 r_functions
6 RCPAR
7 ((COMMA)? execute_mode)+
8 RPAR;
9

10 r_functions : (r_function)*?;
11 execute_mode : EXEC_MODE sentences;
12 sentences : LPAR ((COMMA)? sentence)+

RPAR ;
13 sentence : var_assign|r_while|r_if|r_for

|r_case|execute_mode|func_call ;
14
15 r_while : WHILE cond=condition_block

COLON (sent_mult=sentences|sent=
sentence) #whilestmnt;

16 r_if : IF condition_block COLON (
sentences|sentence) (ELSEIF
condition_block COLON (sentences|
sentence))* (ELSE COLON (sentences|
sentence))? ;

17 r_for : FOR iter_var= var IN lst=r_list
COLON (sent_mult=sentences | sent=
sentence) #forstmnt;

18 r_case : CHECK mathematical_expr COLON
LPAR (CASE mathematical_expr COLON (
sentences|sentence))+ RPAR ;

19
20 condition : left=condition op=andor

right=condition #condnested
21 | LPAR NOT cond=condition RPAR #

condnot
22 | comparison_expr #condcomp
23 | bool_lit #condbool;
24 action : logic_expr #actlog
25 | comparison_expr #actcomp
26 | var_assign #actvar
27 | mathematical_expr ˜(SUB) #

actmath;
28
29 action_block : ((COMMA)? action)+ #

blockact ;
30 condition_block : LPAR cond=condition

RPAR #condblock;
31 r_function : FUNC name=func_name LPAR

args=elements RPAR COLON (sent_mult=
sentences | sent=sentence)? (RETURN
LPAR ret_args=elements RPAR)? #
function;

32 sentences_func : ((SEMI)? sentence)+ ;
33 func_name : CHAR_LIT ;
34 func_call : name=func_name LPAR ele=

elements RPAR #function_call;
35 file_name: CHAR_LIT_DOT;
36 r_list : LSPAR (empty|elements) RSPAR ;
37 elements : ((COMMA)? literal_expr)* ;
38 empty : ;

Listing 5: EBNF syntax definition for CLAPLEX- Table 2
1 expression : comparison_expr
2 | bool_lit;
3 logic_expr : op=NOT expr=expression #

notlogic
4 | LPAR left=expression RPAR

op=andor LPAR right=
expression RPAR #andorlog
;

5 comparison_expr : left=mathematical_expr
op=comp_oper right=mathematical_expr
#comp_expr;

6 var_assign : name=var_name op=
ASSIGN_OPER (lit_expr=literal_expr|
math_expr=mathematical_expr) #
var_assignment;

7
8 mathematical_expr : left=

mathematical_expr op_exp=
arith_oper_exp right=
mathematical_expr #opExpr

9 | left=mathematical_expr
op_multdiv=

arith_oper_mult_div
right=
mathematical_expr #
opExpr

10 | left=mathematical_expr
op_addsub=

arith_oper_add_sub
right=
mathematical_expr #
opExpr

11 | number=num #defnegnum
12 | variable=var #defvar
13 | boolvar=bool_lit #

defbool;
14
15 literal_expr : num
16 | var
17 | bool_lit
18 | str_lit
19 | func_call;
20
21 str_lit : QUOTE (CHAR_LIT|WHITESPACE|

SYMBOL|DOT)* QUOTE ;
22 bool_lit : BOOL_LIT ;
23 num : (SUB)? NUM ;
24 var_name : CHAR_LIT ;
25 andor : AND|OR ;
26 log_oper : AND|OR|NOT ;
27 comp_oper : EQL_EQL|NOT_EQL|GNE|LNE|GEQ|

LEQ ;
28 arith_oper_add_sub : ADD|SUB ;
29 arith_oper_mult_div : MULT|DIVD ;
30 arith_oper_exp : EXP ;
31 var : CHAR_LIT ;



Listing 6: EBNF syntax definition for CLAPLEX- Table 3
1 IMPORT : ’import’ ;
2 COMMENT : ’#’ .*? ’/n’ -> skip;
3 R_TYPE : ’bool’|’str’|’int’|’float’;
4 EXEC_MODE : ’sequence’|’parallel’|’

any_order’ ;
5 BOOL_LIT : ’true’|’false’ ;
6 PROGRAM : ’program’ ;
7 LPAR : ’(’ ;
8 RPAR : ’)’ ;
9 SEMI : ’;’ ;

10 COMMA : ’,’ ;
11 LCPAR : ’{’ ;
12 RCPAR : ’}’ ;
13 RSPAR : ’]’ ;
14 LSPAR : ’[’ ;
15 QUOTE : ’\’’ | ’"’ ;
16 FUNC: ’func’ ;
17 COLON : ’:’ ;
18 RETURN: ’return’ ;
19 DO : ’do’ ;
20 WHILE : ’while’ ;
21 IF : ’if’ ;
22 ELSEIF : ’else if’ ;
23 ELSE : ’else’ ;
24 FOR : ’for’ ;
25 IN : ’in’ ;
26 CHECK : ’check’ ;
27 CASE : ’case’ ;
28 AND : ’and’ ;
29 OR : ’or’ ;
30 NOT : ’not’ ;
31 EQL_EQL : ’==’;
32 NOT_EQL : ’!=’;
33 GNE : ’>’;
34 LNE : ’<’;
35 GEQ :’>=’;
36 LEQ : ’<=’;
37 ASSIGN_OPER : ’=’ ;
38 EXP : ’ˆ’ ;
39 ADD : ’+’ ;
40 SUB : ’-’ ;
41 MULT : ’*’ ;
42 DIVD : ’/’ ;
43 NUM : ’1’..’9’+ (’0’..’9’)* |

((’0’..’9’)+ ’.’ (’0’..’9’)+) |’0’;
44 DOT : ’.’ ;
45 NONZERO : ’1’..’9’ ;
46 DIGIT : ’0’..’9’ ;
47 INT : (’0’..’9’)+ ;
48 CHAR_LIT : (’a’..’z’|’A’..’Z’|’0’..’9’|’

_’)+ ;
49 CHAR_LIT_DOT : (’a’..’z’|’A’..’Z

’|’0’..’9’|’_’|’.’)+ ;
50 WHITESPACE : (’ ’|’\t’|’\r\n’|’\n’|’pass

’|’#’)+ -> skip;
51 SYMBOL : ’-’|’_’|’@’|’%’|’&’|’(’|’)

’|’:’|’!’|’,’|’?’;
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