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Abstract

We describe a prototype Vehicle System Manager (VSM) for
NASA’s Gateway, a human-capable spacecraft that will also
be capable of autonomous operations. The VSM design fo-
cuses on replanning in the presence of faults. The VSM con-
sists of an execution system, planner, and fault management
system, integrated via an over-arching mission management
component. We describe the VSM architecture and each of its
components. We describe a series of use cases, centered on a
spacecraft propulsive operation that can fail at different times,
for different reasons, and how the VSM detects and responds
to these failures. We show the VSM is capable of detecting
faults and loss of capability, and subsequently replanning, in
the presence of each failure scenario.

1 Introduction
NASA plans to construct a habitable spacecraft, currently
referred to as Gateway (Crusan et al. 2018), in the vicin-
ity of the Moon. Gateway consists of a Habitat, Airlock,
Power and Propulsion Element (PPE), and Logistics mod-
ule. Gateway will support up to 4 crew for 30 days. The PPE
will provide orbital maintenance, attitude control, commu-
nications with Earth, space-to-space communications, and
radio frequency relay capability in support of extravehicular
activity (EVA) communications. The Habitat provides hab-
itable volume and short-duration life support functions for
crew in cislunar space, docking ports, attach points for ex-
ternal robotics, external science and technology payloads or
rendezvous sensors, and accommodations for crew exercise,
science/utilization and stowage. The Airlock provides capa-
bility to enable astronaut EVAs as well as the potential to
accommodate docking of additional elements, observation
ports, or a science utilization airlock. A Logistics module
will deliver cargo to the Gateway.

The need for autonomy for Gateway is reflected in the
Gateway concept of operations (Crusan et al. 2018) and its
requirements, as well as requirements for the first of its com-
ponents, the PPE (NASA 2018). NASA has developed and
tested multiple technologies to enable the autonomous op-
eration of a dormant space habitat. These technologies in-
clude a Vehicle System Manager (VSM), integrated with
flight software, to control the habitat. The work in this pa-
per builds on previous VSM work (Badger, Strawser, and
Claunch 2019; Aaseng et al. 2018) to develop and demon-

strate autonomy technology using contemporary flight soft-
ware and automated reasoning technology.

While plan synthesis for complex operations such as those
for Gateway is an interesting problem, we focus on the prob-
lem of managing faults. When there are no faults or un-
expected events, there is no need to replan, and execution
of the current plan proceeds without disruption. Managing
faults requires detection of the faults, replanning and execu-
tion to respond to faults, including in the event that mission
objectives can no longer be accomplished when the fault oc-
curs.

For the purposes of the VSM, we are focused on the im-
pact of faults on mission plans. It is important to distinguish
faults from impacts. Fault response may depend not only on
what fault occurred, but its impact. The loss of a single com-
ponent may reduce mission capability (the loss of a space-
craft’s only engine means it can’t perform propulsive ma-
neuvers) or cause a loss of redundancy (the loss of one of
two engines still leaves a spacecraft able to maneuver) . Un-
derstanding the fault management technology and level of
abstraction is important when discussing the design of the
VSM as a whole. For example, when faults are detected at a
low level of abstraction (say, part of a spacecraft power sys-
tem), it is necessary to map faults to impacts at the level of
abstraction at which plans are represented.

Faults can be transient or permanent; for the purposes of
this paper, transient faults can be mitigated via fault recov-
ery plans or behaviors, and permanent faults are detected
by observing that the fault persists after mitigation efforts.
This functionality can be implemented in different ways, i.e.
at the level of an executive, or at a higher level of mission
management. In general, fault impacts may lead to replan-
ning. This requires the VSM to integrate information from
the fault management system and other sources to both de-
cide whether replanning is needed, and how to construct the
planning problem to solve.

The main architectural components of the VSM include
Fault Management, Execution and a Planner. The integra-
tion of all components of a VSM requires an over-arching
component that integrates information from, and orches-
trates the behavior of, each of the individual components
described above. Hearkening back to early work in au-
tonomous agents, we introduce a Mission Management and
Metareasoning function (M3) that executes a continuous



control loop, watching for faults and impacts, and replan-
ning when necessary. The key challenges to overcome arise
due to the specific interfaces of planning, scheduling and
fault management, and how M3’s design is driven by these
interfaces. We describe a series of scenarios based on a
propulsive maneuver that can fail for different reasons, at
different times. We demonstrate the VSM’s ability to detect
faults and replan in several scenarios derived from this use
case.

In Section 2, we describe a replan/rescheduling problem
that involves temporal and causal relations between tasks
with different priorities. We describe each of the components
of the VSM in more detail in Section 3. In Section 4 we walk
through several scenarios to describe how the VSM detects
and replans in the presence of faults. We describe previous
work in Section Section 5. We conclude the paper with some
of our future work in Section 6.

2 Motivating Scenario: Spacecraft Burn
Replanning

Problem Specification: our scenario is centered on a ma-
jor propulsive maneuver, or “burn”, during which one or
more engines fire to change Gateway’s trajectory or orbit.
It is common practice to ensure there are two possible (sets
of) engine(s) prepared to conduct important maneuvers at
a specified time; this can be thought of as a form of con-
tingent plan. The optional engine choice is referred to as
the “down-mode”. For our scenario, the primary engine is
a single powerful engine able to generate a large amount of
thrust. The secondary set of engines that can be used in the
“down-mode” are less powerful engines. The nominal burn
task is referred to by MAIN, the task performed in the event
of a down-mode is BACKUP. There are two important time-
points related to the burn period: time of ignition (TIG) and
engine shutdown (ES) (fancy names for start time and end
time of the burn).

There are a series of tasks in the plan constrained rela-
tive to the TIG and ES. The temporal constraints on differ-
ent tasks and time-windows are described below (with time
units measured in minutes):
• MAIN and BACKUP burn durations are respectively 4

minutes and 1 hour.
• The burn is required to be within a Thermal
Excursion period. Thermal Excursions
can last at most two hours. Consecutive Thermal
Excursions must be separated by at least 10 hours.

• The backup engines need to be heated by executing
a BACKUP Preheat; the constraint for this action is
[TIG - 90, ES]. This contingent action is needed
because if the BACKUP down-mode burn is needed, it
may not be possible to pre-heat those engines immedi-
ately. It is unconditionally executed (even if down-mode
is detected early enough.)

• If the main engine is used for the burn, we turn off the
main engine heaters, and execute MAIN Htr Deact
during the burn; the relevant duration constraint is [TIG
- 20, ES + 60]. Note the MAIN Htr Deact ac-
tion can be removed if the burn down-mode is detected

and occurs early enough, i.e. before TIG - 20. Other-
wise, if this action was started and the burn down-mode
occurs late (i.e. in the interval [TIG - 20,TIG]), it
will end when the longer BACKUP burn ends.

• Other burn related tasks and their respective durations
are: (1) Doppler & Ranging: [TIG - 390,
TIG - 30]; (2) Burn Doppler : [ES + 30,
ES + 60]; (3) Tank Pressurization: [TIG
- 120, TIG - 60]; (4) Data Recording &
Downlinking: [TIG - 15, ES + 5].

In addition to the burn related tasks, there are 3 pay-
load tasks (DFTO-1,DFTO-2,DFTO-3) that occur after
the burn. The temporal constraints on those planned payload
tasks are:

• Payload task durations are respectively dur(DFTO-1)
= 30, dur(DFTO-2) = 30, dur(DFTO-3) =
60.

• Payload tasks can not overlap.
• DFTO-1 and DFTO-3 require a Thermal
Excursion.

• DFTO-3 must be performed within the time-window of
[TIG + 660, TIG + 780]

• a 6-hour Ranging activity starts after DFTO-3 ends.

In addition to the constraints above, there are preferences
the users would like to see satisfied in the final solution:

• DFTO-1 ideally should occur within the 2-hour time
window [TIG + 570, TIG + 690] where the 70m
DSN antenna is visible (DSN = Deep Space Network).
There is a DFTO-1-Downlink activity contingent on
this constraint being respected.

• DFTO-1 ideally precedes DFTO-2.

These preferences can be weighted, but for our purposes,
it is only important to know a total order on the two
preferences, in the event both can’t be satisfied.

Failure Scenarios: As described in the introduction,
our VSM is primarily designed to detect and respond to
faults. This scenario focuses on faults that may cause the
primary engine to be unavailable at TIG, causing the engine
down-mode.

Fault vs Impact: We differentiate between what has failed
(e.g. a controller card or switch) and the impact (loss of
engine that requires the burn down-mode). The VSM must
be able to determine both what has failed, and the impact of
this failure on the plan. Looking ahead to Figure 2 (bottom)
we see that there are two independent paths of control to
the main engine. This makes the propulsion system 2-fault
tolerant; that is, two independent faults are required to lose
the ability to fire the main engine.

Permanent vs. Transient Fault: the faults in our scenario can
be either permanent or transient. Transient faults can only
be detected by trying recovery plans and observing their
success or failure. Recovery plans can be attempted only a
limited number of times, in this case, 3. The VSM must have



the ability to determine whether a fault, and subsequent loss
of capability or redundancy, is a transient or permanent fault.

Impact of down-mode on the plan: Since the BACKUP burn
duration is 15 times the MAIN burn duration (60 min vs 4
min), all burn-related activities that are tied to the Engine
Stop (ES) time will need to be rescheduled to different times
if there is a burn down-mode. Moreover, if the down-mode
happens before the MAIN Htr Deact task starts, then
we can remove it from the new plan, but otherwise we must
leave it in the plan, and extend its duration. Finally, the
required separation of thermal excursions will also cause
replanning of the DFTO activities at the end of the plan
and possible omission of DFTO-1-Downlink. We do not
consider faults impacting the backup engine.

The table below illustrates the main features of the burn
down-mode scenarios we have described above. There are a
total of 4 faults that could occur; of the 15 possible sets of
faults that occur, we can divide the scenarios into those in
which the two permanent faults occur, and those in which
one or no permanent faults occur. Only in the event of two
permanent faults do we need to consider when the sec-
ond permanent fault has occurred, either before or after
PCA-SM-Heater-Deactivation has started. Finally,
there is the preferences on the DFTO constraints. The result
is 4 main fault scenario variations (transient only, one per-
manent fault, fault timing, and preferences). Table 1 shows
the number of options for each of the three faults and planner
preferences, and notes on each variant.

Class Property # Notes

Fault RPC-open 2 Transient
Fault PDE-Failed 2 Permanent
Fault Timing 2 Before/After MAIN Htr Deactivation start
Planner Preferences 2 DFTO order vs DSN coverage

Table 1: Scenario Variations.

3 VSM Design
The VSM architecture consists of multiple software compo-
nents, integrated via the cFS flight software message bus ar-
chitecture. The Planner is responsible for revising the burn
plan in the event of fault or loss of capability resulting in
burn down-mode. The Executive executes plan tasks and re-
turns results. Fault management is divided into three compo-
nents: Fault Detection (FD), Diagnostic Executive (DE) and
Fault Impacts Reasoner (FIR). Finally, all components are
overseen by the Mission Manager and Metareasoner (M3).
We implemented our VSM using a flight-software frame-
work adopted by the Gateway program. Core Flight System
(cFS) is a platform and project independent software frame-
work and set of reusable software applications (McComas,
Wilmot, and Cudmore 2016). There are three key aspects to
the cFS architecture: a dynamic run-time environment, lay-
ered software, and a component based design. It is the com-
bination of these key aspects that makes it suitable for reuse
on any number of NASA flight projects and/or embedded
software systems. Figure 1 shows our key autonomy soft-

ware components operating within the cFS software frame-
work. Our software components are built as Core Flight Sys-
tem (cFS) applications and operate over the cFS bus, ex-
changing messages with other components and utilize cFS
services. Subsequent sections are dedicated to explain their
roles and inter-operation in more details.

3.1 Planner
While the plan as described above includes a large number
of features such as causal links, temporal constraints,
preferences, and contingent actions, for our purposes the
plan has been generated offline, and so we don’t require the
planner to perform complex de-novo plan synthesis. Instead,
the problem to solve is plan repair in the presence of the loss
of the main engine and subsequent burn down-mode. The
replanning problem is defined as an MILP; we use lp solve
to implement the Planner.

MILP Encoding: Apart from the burn, for each task X in
our scenario, there are the following variables:

• tsx: start time of X (continuous floating point value).
• tex: end time of X (continuous floating point value).
• Binary variable bx with bx = 1 means X exist in the final

plan and bx = 0 means it is not in the final plan.

Besides variables associated with tasks, there are the fol-
lowing various time-points:

• tTIG: Time of Ignition.
• tES : Engine Shutdown time.

• For the nominal burn, when MAIN is executed, then
tES = tTIG + 4.

• If faults lead to a burn down-mode and BACKUP is
needed instead, then tES = tTIG + 60.

• tbd: Burn down-mode occurrence time.
• 70m DSN time window [ts70m, te70m] of 2 hours that starts

at 9.5hrs after tTIG: ts70m = tTIG + 570 and te70m =
ts70m + 120.

• Thermal Excursion Windows TE1 and TE2 that are 10
hours apart and lasting up to 2 hours each: [tsTE1, t

e
TE1],

[tsTE2, t
e
TE2]

• teTE1 ≤ tsTE1 + 120: up to 2hrs long.
• teTE2 ≤ tsTE2 + 120: up to 2hrs long.
• tsTE2 ≥ teTE1 + 600: separate by 10hrs.

• Three fixed-duration payload (DFTO1-3):
[tsDFTO1, t

e
DFTO1], [tsDFTO2, t

e
DFTO2], and

[tsDFTO3, t
e
DFTO3]

• teDFTO1 = tsDFTO1 + 25

• teDFT02 = tsDFTO2 + 25

• teDFTO3 = tsDFTO3 + 60

• DFT03 time-window [tsDFT03W
, teDFT03W

] where
the DFT03 task can occur within. This time-window
starts 11 hours after tTIG and last 2 hours: tsDFT03W

=
tTIG + 660 and teDFT03W

= tsDFT03W
+ 120.
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Figure 1: The VSM Architecture

Encoding size optimization: If task X is mandatory (i.e., X
definitely appears in the final solution), then we can exclude
bx. Any task that has a fixed duration, then having both tsx
and tex are redundant and thus we only need one of them.
Moreover, if there is a fixed-time constraint between the
start/end time of a given task and TIG or ES then we also do
not really need to have tsx and/or tex modeled explicitly.

Fixed-time Constraints:
• BACKUP Preheat (PH): tsPH = tTIG−90 (starting

at tTIG − 1.5hrs) and tePH = tES (end at tES).
• 6-hour of Doppler & Ranging (DR) (before burn)

: tsD = tTIG − 390 (starting at tTIG − 6.5hrs) and teD =
tsD + 360 (last 6 hrs).

• 30 minutes of Burn Doppler(BD) (after burn):
tsDR = tES + 30 (starting at tES + 30) and teDR =
tsDR + 30 (last 30 minutes)

• 1-hour of Tank Pressurization (TP): tsTP =
tTIG−120 (starting at tTIG−2hrs) and teTP = tsTP +60
(last 1 hr).

• Data Recording and Downlink (DRD):
tsDRD = tTIG − 15 (starting at tTIG − 15) and
teDRD = tES + 5 (end at tES + 5)

• MAIN Htr Deact (PHD): tsPHD = tTIG−20 (start-
ing at tTIG − 20) and tePHD = tES + 60 (ending at
tES + 1hr)1.
1This constraint is only active when down-mode happens after

Precedence Constraints:

• Burn require thermal excursion (within the first thermal
excursion windows): tTIG > tsTE1, and tES < teTE1.

• DFTOs can’t overlap: let x12, x13, and x23 being the
binary variables represent the ordering constraints be-
tween the three payloads. Thus, x12 = 1 implies DFTO1
is before DFTO2 while x12 = 0 means DFTO1 is af-
ter DFTO2. With M being a large constant, the ”non-
overlapping” constraint is modeled as follow:

• tsDFTO1 − teDFTO2 > M × (x12 − 1)

• tsDFTO2 − teDFTO1 > −M × x12

• Similar constraints for x13 and x23

• DFTO1 and DFTO3 requires second Thermal
Excursions:

• tsDFTO1 ≥ tsTE2 and teDFTO1 ≤ teTE2

• tsDFTO3 ≥ tsTE2 and teDFTO3 ≤ teTE2

• DFTO1 requires 70m DSN coverage: tsDFTO1 ≥ ts70m
and teDFTO1 ≤ te70m

• Time window constraint for DFTO3: tsDFTO3 ≥
tsDFT03W

and teDFTO3 ≤ teDFT03W

Preferences:

it already starts (i.e., after tTIG − 20). If down-mode happens be-
fore heater Deactivation already started at tTIG − 20 then it will
last until tES + 60.



• V1 be the value assigned to satisfying the preference that
DFTO2 is in the 70m DSN coverage window. Let y1 be a
binary variable representing if DFTO2 is within the 70m
DSN coverage window (i.e., y1 = 1 if DFTO2 is within
the coverage window) and M is sufficiently large num-
ber.2

• tsDFTO2 − ts70m > M × (y1 − 1)

• te70m − teDFTO2 > M × (y1 − 1)

• V2 be the value assigned to satisfying the preference that
DFTO1 precedes DFTO2. Similar to the previous pref-
erence, we will use a binary variable y2 to represent
the precedence constraint between DFTO1 and DFTO2:
tsDFTO2 − teDFTO1 > M × (y2 − 1)

• bx = y1 for x =DFTO-1-Downlink, that is, if y1 = 1
we ensure DFTO-1-Downlink is in the plan, otherwise
DFTO-1-Downlink need not be in the plan.

Objective Function: maximize V1 × y1 + V2 × y2

3.2 Fault Management
We built our Fault Management applications using a Com-
mercial Off The Shelf (COTS) diagnostic reasoner, called
Testability Engineering and Maintenance System (Real
Time) (TEAMS-RT) (Mathur, Deb, and Pattipati 1998).
TEAMS-RT uses a declarative model of components, inter-
connectivity of components and associated information flow
between them, fault modes that components can suffer from,
logical tests indicating the presence or absence of faults, a
and mapping from test results to fault modes.

Figure 2 (top) shows a simple TEAMS model fragment,
consisting of three components, and three associated tests.
Tests are ‘logical tests’ as opposed to physical sensors asso-
ciated with the hardware. The direction of flow of capability
is indicated by the arrows. In this example, we see two tests
pass, and one test fails. Figure 2 (middle) shows the diag-
nostic matrix (D-Matrix) for this model. Each fault mode
for each component occupies a row of the D-Matrix, and
tests occupy columns. A 1 in a matrix cell indexed by (fault-
mode, test) indicates that the test provides information about
the fault mode. TEAMS uses a default reasoning assump-
tion, which is that a passed test exonerates any fault mode
informed by the results of the test, and that any fault mode
that is not exonerated is a suspect. If only one suspect is left
after all tests are evaluated, the fault mode is uniquely identi-
fied as responsible for the failed tests. Figure 2 (middle) also
shows the use of the default assumption in reasoning about
three hypothetical test results shown in the top figure.

Fault management is divided into three functions; Fault
Detection, Diagnositc Executive, and Fault Impacts Rea-
soning, all of which use TEAMS models.

2The two constraints ensures that y1 = 1 enforces that DFTO2
should be within [ts70m, te70m] while the reverse is not true: y1 = 0
doesn’t enforce NOT-containment. However, our objective func-
tion will ensure that it’s beneficial to have y1 = 1 so that there is
no scenario where y1 = 0 while DFTO2 is contained within the
70m DSN coverage.

Fault Detection (FD) processes system data to determine
if any defined off-nominal conditions exist. Each off-
nominal condition is associated with a test, which outputs
pass, fail or unknown.

Diagnostic Executive (DE) receives test results from
Fault Detection and packages them to send to TEAMS-RT.
TEAMS-RT correlates test points with failure modes, as
described previously; a failed test can implicate one or more
failure modes, while a passing test exonerates failures. With
sufficient data, a single failure mode can be identified that is
responsible for all failed tests, and an unambiguous failure
mode is identified. Otherwise, the reasoner determines
the smallest set of possible failure modes that could be
responsible for failed tests and presents an ambiguity group
of possible failures. For the purposes of this paper, we will
be working with a model that ensures faults can be uniquely
isolated, and we assume no unknown test results. There are
four faults DE can detect, as shown in Figure 2 (bottom).

Fault Impacts Reasoner (FIR). FIR receives failure in-
formation from DE and determines the resultant impacts of
confirmed failures. Impacts include the loss of capability,
such as the components that have lost electrical power due
to a fault in the electrical system. The loss of redundancy
due to a fault is also determined. Most critical functions in
spacecraft depend on redundancy to assure the availability
of the capability in spite of failures. Of particular concern is
any capability that could be lost by a single additional fail-
ure, or has become zero-fault tolerant. FIR identifies these
changes in redundancy to aid with identifying capabilities
at increased risk, helping operators to determine next worst
failures and take mitigation steps to reduce the risks of ad-
ditional failures, if possible. FIR, coupled with DE, draws a
crisp distinction between failed, that is, broken components,
from components and capabilities lost or affected by the fail-
ure of a component. Figure 2 (bottom) shows part of the
propulsion system TEAMS fault model, with two indepen-
dent control flows ensuring the main engine functions. The
loss of a single ‘string’ leads to loss of redundancy, indicated
by a message LOR(MAIN), while the loss of both strings
leads to loss of capability, LOC(MAIN). The details of how
the TEAMS model and faults are evaluated to determine loss
of capability or redundancy are described in (Aaseng et al.
2015); for our purposes, it is enough to know that M3 re-
ceives this information from FIR.

3.3 Executive
The plan is executed by the Plan Execution and Inter-
change Language (PLEXIL), developed as a collaborative
effort by NASA and Carnegie Mellon University, and sub-
sequently released as open-source software (Verma et al.
2006). PLEXIL is a language for representing flexible robust
plans intended to be executed in an uncertain and changing
environment. PLEXIL provides well defined execution se-
mantics with contingency handling which can be formally
validated and produces deterministic results given the same
sequence of environmental inputs. PLEXIL’s Execution En-
gine (executive) executes stored plans written in the PLEXIL
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language. PLEXIL is responsible for receiving tasks to exe-
cute from M3, and returning task execution status to M3.

For the purposes of the VSM, PLEXIL’s job is to execute
the fault recovery plan tasks. PLEXIL always ‘succeeds’ in
these tasks; the DE messages received after recovery plans
complete indicate whether the fault persists or not after re-
covery is attempted. Recall multiple recovery attempts are
permitted; we describe how this is handled in the next sec-
tion.

3.4 Mission Management and Metareasoning
The responsibility of the Mission Management and Metarea-
soning (M3) module is to integrate fault management, plan-
ning and plan execution. M3 is responsible for tracking the
execution of each task in the plan, by sending the tasks to
PLEXIL, and listening to the return status. M3 is also re-
sponsible for listening for DE and FIR messages, which in-
dicate the presence of faults, and the need to replan. Finally,
M3 is responsible for setting up the planning problem to
solve.

M3’s job is complicated by the combinations of faults
that can occur, determining whether those faults are tran-
sient or permanent, and tracking the history of previously
executed events that can influence replanning. Each fault-
mode is mapped to a unique fault recovery task. However,
M3 needs to keep track of whether the recovery plan re-

solves the fault or not by monitoring DE messages after exe-
cution completes. M3 also needs to keep track of how many
recovery attempts have been tried; the rationale for this de-
cision is provided at the end of this section.

Replanning after loss of capability requires solving the
MILP after setting up initial state and constraints, which in
turn depends on both parsing the FIR messages, and pre-
serving execution history of previous events. An interesting
issue that arises when transient faults occur: it is possible for
a FIR message to indicate loss of redundancy if both control
paths are impacted by faults, even if one of (or both!) are
transient faults. Since neither DE nor FIR are able to detect
transient faults, premature inspection of FIR messages could
lead VSM to believe replanning is needed. M3 needs to flag
faults as permanent and wait for fault recovery impacts to
settle prior to handling FIR messages.

We now describe each of these responsibilities of M3 in
more detail.

DE message handling and detection of transient fault:
when any fault is detected, we first assume that it is transient
and try to fix it. This is done by invoking the planner to
ask for a fault recovery plan Pf to be sent to PLEXIL.
As described previously, M3 can rely on DE messages
to indicate the presence of a unique fault. Fault recovery
planning is ‘trivial’ (e.g. look up RPC open-close plan in



response to DE message with RPC fault; this simple plan
has no conflicts with any other tasks in plan, and can execute
immediately). M3 then waits for a response from PLEXIL
indicating this plan executed successfully. After PLEXIL
executes Pf , M3 listens to DE’s messages for certain period
of time T to ensure that the fix’s effect is fully realized. If
the DE’s messages indicate that the fault is not observed
after the fixing action, then we know that it’s not permanent
and can stop the process. As noted above, M3 keeps track
of the number of recovery attempts, and when a fault can’t
be resolved within the number of tries specified, the fault is
considered permanent.

FIR message handling and permanent faults: in this
stage, M3 goes through the following steps: First, M3 lis-
tens to FIR’s messages for certain period of time S to ensure
that the FIR message content stabilizes. This is necessary be-
cause the prior attempts to fix the fault may require time to
settle out. Next, M3 accumulates system information from
different components such as telemetry and FIR. In our sce-
narios, M3 must map consequences in FIR to constraints on
a new planning problem. The simple case is that a FIR con-
sequence does not lead to replanning at all, e.g. if there is
only loss of redundancy to the main engine, there is no need
to replan. In general, though, we would map every loss of
capability or loss of redundancy option to a decision to re-
plan or not. This step also includes determining whether or
not MAIN Htr Deact has started by examining the his-
tory of executed tasks. Next, it sends the gathered system
information to the planner in the form of a new initial state
and constraints, to build the burn-replanning problem and
wait for the planner to return a plan P .

Referring to Sections 3.1 and 3.2, M3 maps a FIR impact
LOC(MAIN) to update the temporal constraint on tES , tTIG

from tES = tTIG + 4 to tES = tTIG + 60. M3 can also
internally track variables ex,s and ex,e indicating that task x
has started or finished, and conditionally set bx = 0 if MAIN
Htr Deact has not started.

To keep M3 design interfaces consistent, M3 invokes the
planner and pass the plan to PLEXIL for execution. We
could have designed PLEXIL recovery plans to listen to DE
messages with a conditional execution loop to try 3 times,
but to centralize all fault management message handling in-
side M3, we chose to keep PLEXIL plans, and thus its inter-
face, simple.

The overall logic of M3 is shown in Figure 3.

4 How It Works
We evaluated the VSM on all of the scenarios described in
Section 1. The VSM correctly detected transient vs perma-
nent faults, and generated the correct plans in all cases.

Figure 4 shows an example of how the VSM replans
when the burn down-mode occurs early, i.e. before TIG-20.
At the top of this figure, we show the original burn plan,
with the TIG time fixed, and the short 4 minute burn us-
ing the MAIN engine. The top of the figure also shows the
fixed 70m DSN window, and the fixed window during which
DFTO-3 can take place. When the burn down-mode is de-
tected early, which requires both permanent propulsion sys-
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Figure 3: M3 Logic: Burn Replanning

tem faults to have occurred and been detected, the planner
replans the burn, dropping the MAIN Htr Deact task,
and also shifting the first thermal excursion window. This
forces a shift of the later thermal excursion window, which
forces a choice of which preference to satisfy. We also as-
sume for this figure that preserving the order DFTO-1,
DFTO-2 is more important, than DFTO-1 DSN coverage.
Thus, the final plan preserves this ordering of the DFTOs,
moving DFTO-1 out of the DSN window; finally, we see
the DFTO-1-Downlink task dropped from the final plan.
Space precludes showing the other plans, but the VSM suc-
cessfully replanned in all 7 scenarios.

5 Previous Work
Previous work in the area of intelligent systems often in-
cludes combinations of planning, execution and fault man-
agement, but usually not all three. The Autonomous Sci-
encecraft Experiment (ASE) from JPL (Tran et al. 2004),
(Sherwood et al. 1998) demonstrated automated planning
for a low-earth orbiting remote sensing satellite. This plan-
ner focused on optimizing science, and did not incorpo-
rate fault management. The T-Rex autonomous agent (Mc-
Gann et al. 2008), used in undersea robotics, incorporated
numerous special-purpose planners for path planning, task
planning, tightly integrated with an execution system; this
fielded agent also did not incorporate fault management.

One exception to this rule is the seminal paper on the Re-
mote Agent (Jónsson et al. 1999) describes the first in-space
autonomous agent employing AI techniques. The Remote
Agent included a planner, executive, fault management, and
Mission Manager. A second partial exception is MEXEC
(Troesch et al. 2020), a planner/execution system evaluated
for future deep space missions on the ASTERIA Cubesat
mission, was integrated with fault management, but only to
the extent that execution would terminate and clear the cur-
rent plan in the event of a fault.

Our previous work in testing a VSM for human space-
flight (Aaseng et al. 2018) also demonstrated the integration
of planning, execution and fault management, integrated via
CFS. In one scenario, the planner performed load-shed in the
presence of a power systems fault that limited energy avail-
ability in an eclipse, with some modest constraints coupling
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Figure 4: VSM Replanning when down-mode detected early

pairs of loads. In a second scenario, the planner reasoned
about faults in one part of the life support system that led to
shutting down other parts of the life support system. In our
previous work, PLEXIL was responsible for integrating the
planner and DE, but did not use information from FIR.

6 Conclusion & Future Work
We describe a prototype Vehicle System Manager (VSM) for
NASA’s Gateway, a human-capable spacecraft that will also
be capable of autonomous operations. This VSM consists
of an MILP-based replanner, TEAMS-based fault manage-
ment, and PLEXIL as an executive, integrated via a single
over-arching M3. We show the VSM is capable of detecting
and replanning in the presence of different failure scenar-
ios centered on a propulsive burn down-mode, which alters
the timing of key activities. These scenarios feature transient
and permanent failures, detection of loss of capability, and
preferences and complex temporal constraints on plans.

We have demonstrated replanning of an existing plan fea-
turing temporal constraints and preferences in the presence
of faults. Obvious extensions to this include larger plan-
ning problems with more difficult features such as resources,
goals and de-novo causal reasoning.

We restricted out scenario to cases where DE identifies
unique root causes of faults; each fault maps to a recovery
procedure. In general, fault ambiguity can be addressed by
mapping sets of faults to recovery procedures, but the com-
binatorics become formidable. Alternatives include mapping

loss of capability or redundancy to recovery procedures,
which have the advantage of focusing of what was lost as
opposed to what the possible causes were, but capturing the
knowledge is still a challenge.

We note that FIR can identify loss of redundancy as well
as loss of capability. In more sophisticated scenarios, M3
could implement a burn-down-mode when the MAIN has lost
redundancy, and is zero fault tolerant, as opposed to lost.

We don’t have a ’declarative’ representation of M3 to rep-
resent the key design features we describe, such as the DE-
plan fault recovery mapping, FIR-planner invocation, num-
ber of attempts prior to declaring a fault permanent, and so
on. Codifying the configuration of M3 in a fully declarative
way would formalize its function and enable more sophisti-
cated behaviors to be specified in a more model-based way.

We would like to thank our Johnson Space Center friends
in the Flight Operations Directorate, in particular David
Lantz, for all their help in scoping the scenario in order to
mature the VSM, and the Gateway program and the NASA
Advanced Exploration System Program for all of their sup-
port for this work.
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