Modeling and Solving Parallel Machine Scheduling with Contamination Constraints in the Agricultural Industry

Felix Winter,¹ Sebastian Meiswinkel,² Nysret Musliu,¹ Daniel Walkiewicz²

¹Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, DBAI, TU Wien,

Vienna, Austria

²MCP Algorithm Factory, MCP GmbH, Canovagasse 7, 1010 Vienna, Austria

felix.winter@tuwien.ac.at, sebastian.meiswinkel@mcp-alfa.com, musliu@dbai.tuwien.ac.at, daniel.walkiewicz@mcp-alfa.com

Industry Abstract

In the modern agricultural industry large amounts of compound feed are produced to fulfill the demands of livestock farming. Usually a highly-automated production is used to handle the large-scale requirements in this domain. However, finding efficient production schedules is challenging, as several problem-specific constraints regarding contamination levels need to be fulfilled. Furthermore, job tardiness is a critical minimization objective in this domain as there is the need to distribute the products to many consumers. Currently, human planners often create the production schedules manually or simple greedy algorithms are used. Thus, there is a strong need for novel efficient automated scheduling methods.

In our work¹ we formally introduce a novel challenging real-life machine scheduling problem originating from the agricultural industry. As a set of predetermined jobs has to be scheduled on multiple machines, the problem can be categorized as a parallel machine scheduling problem with setup times (PMSP). A plethora of different techniques have been proposed to solve many PMSP variants and surveys such as (Allahverdi 2015) provide an overview of the literature. However, as practical machine scheduling problems appear in many different variations regarding the specified constraints and the objective function, complex large-scale applications are still being investigated in the recent literature (e.g. (Yepes-Borrero et al. 2021; Bitar, Dauzère-Pérès, and Yugma 2021)).

The real-life problem variant we investigate contains a set of unique contamination level constraints and additionally requires the consideration of optional cleaning jobs. Further, the objective function includes a domain-specific tardiness objective where due dates are associated to groups of jobs.

As exact approaches to the problem we propose several constraint programming models that include novel modeling techniques regarding the contamination constraints. Further, we investigate a local search approach to tackle large-scale real-life problem instances which utilizes problem specific neighborhood operators. We further provide 19 novel real-life problem instances from the agricultural industry that we use to evalute our methods.

Inst.	LB	Gap	СР	LS
11	403617	0	403617	403617
I2	295211	25.21	394696	394696
13	25702	0	25702	25702
I4	2305	0	2305	2305
15	24086	28.54	33707	33707
16	136288	0	136288	136288
17	707234	26.29	959455	959455
18	20816	0	20816	20816
19	97586	0	97586	97586
I10	80027	24.7	106274	106274
I11	412877	82.68	2434331	2383478
I12	604160	13.3	696805	696805
I13	1020957	0	1020957	1020957
I14	407439	0	407439	407439
I15	1268739	12.75	1454166	1454166
I16	773924	0	773924	776526
I17	528173	9.16	581404	581404
I18	32662	1.77	33251	33251
I19	232434	10.47	1082993	259614

Table 1: Results achieved with exact and heuristic methods.

An experimental evaluation of the proposed approaches shows that the constraint modeling approach is able to provide 9 optimal results and further produces high-quality solutions for all instances. The local search approach we propose can reach 8 optimal results, similar upper bounds as obtained by the exact methods for the majority of instances, and two overall best upper bounds. Table 1 summarizes the cost results for the 19 real-life instances (I1-I19), where each row includes the best lower bounds (LB), the duality gap (Gap), the best upper bound achieved by exact methods (CP) and the best results achieved by local search (LS).

Acknowledgments The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development and the Christian Doppler Research Association is gratefully acknowledged.

References

Allahverdi, A. 2015. The third comprehensive survey on scheduling problems with setup times/costs. *European Journal of Operational Research*, 246(2): 345–378.

Bitar, A.; Dauzère-Pérès, S.; and Yugma, C. 2021. Unrelated parallel machine scheduling with new criteria: Complexity and models. *Computers & Operations Research*, 132: 105291.

Yepes-Borrero, J. C.; Perea, F.; Ruiz, R.; and Villa, F. 2021. Biobjective parallel machine scheduling with additional resources during setups. *European Journal of Operational Research*, 292(2): 443–455.

Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

¹The full version of this work appeared in the proceedings of the 28th International Conference on Principles and Practice of Constraint Programming (CP 2022).