
33rd International Conference on
Automated Planning and Scheduling

July 8–13, 2023, Prague, Czech Republic

HPlan 2023
Proceedings of the 6th ICAPS Workshop on

Hierarchical Planning

Program Committee

Ron Alford The MITRE Corporation
Gregor Behnke University of Amsterdam
Pascal Bercher the Australian National University
Susanne Biundo Ulm University
Kutluhan Erol Izmir University of Economics
Robert Goldman Smart Information Flow Technologies (SIFT)
Daniel Höller Saarland University
Jane Jean Kiam Universität der Bundeswehr München
Ugur Kuter Smart Information Flow Technologies (SIFT)
Pascal Lauer Saarland University
Rouxi Li University of Maryland, College Park
Songtuan Lin the Australian National University
Felipe Meneguzzi University of Aberdeen
Conny Olz Ulm University
Simona Ondrčková Charles University
Sunandita Patra IIT Kharagpur
Damien Pellier Laboratoire d’Informatique de Grenoble
Xing Tan Lakehead University
Julia Wichlacz Saarland University

Organizing Committee

Pascal Bercher The Australian National University
Daniel Höller Saarland University
Julia Wichlacz Saarland University
Ron Alford The MITRE Corporation

ii

Preface

The motivation for using hierarchical planning formalisms is manifold. It ranges from an explicit and
predefined guidance of the plan generation process and the ability to represent complex problem solving
and behavior patterns to the option of having different abstraction layers when communicating with a
human user or when planning cooperatively. This led to numerous hierarchical formalisms and systems.
Hierarchies induce fundamental differences from classical, non-hierarchical planning, creating distinct
computational properties and requiring separate algorithms for plan generation, plan verification, plan
repair, and practical applications. Many techniques required to tackle these – or further – problems in
hierarchical planning are still unexplored.
With this workshop, we bring together scientists working on many aspects of hierarchical planning to
exchange ideas and foster cooperation.

This year, in the 6th edition of the HPlan workshop, we accepted 8 papers, one of which was also
accepted at SoCS 2023. As in all previous editions, we have a very high-quality review process, with
3 reviewers for most papers, and 4 for a few. We again had one conditional accept (that was accepted
in the end) with another round of reviewing after the demanded changes were done.

Two papers are challenge papers, whereas all others are regular scientific papers. One of the challenge
papers proposes an HTN formalism with time, with the aim at developing HDDL 2.1, an extension
of the (still young) HDDL standard. The other explores the potential of Hierarchical Task Networks
(HTN) and Hierarchical Domain Definition Language (HDDL) in enhancing safety in single-pilot oper-
ations (SPOs) by encoding private pilots’ maneuvers and addressing challenges in onboard companion
technologies. The scientific papers again cover a large variety of topics. One paper is concerned with
learning of task parameters in the context of learning HTNs. Several papers are concerned with solving
HTN planning tasks. For HTN planning with time, one paper proposes a compilation technique for
obtaining novel heuristics by making use of existing heuristics for non-temporal planning. For non-
temporal HTN planning, one paper deploys deep learning for heuristic design and predicting effects of
compound tasks. The last paper concerned with solving HTN problems is also making contributions
to heuristic search. It also exploits effects (and preconditions) of compound tasks, but uses them for
pruning dead-ends in a progression search rather than for heuristic computation. Another paper deals
with the scenario where planning fails due to execution errors and proposes a plan repair technique to
deal with them. Once a (potential) solution was found, one might want to verify that it is indeed a
solution to the given problem. One paper investigates the computational complexity of this verification
(and whether it’s an optimal solution), both for HTN and classical planning.

Pascal, Daniel, Julia, Ron
HPlan Workshop Organizers,
July 2023

iii

iv

Invited Talk

Each year so far we had one or two invited talks. This year, by Héctor Munoz-Avila.

Automated Learning of Hierarchical Knowledge for Planning and Acting

In this talk I will cover a variety of algorithms for learning hierarchical knowledge for planning developed
together with collaborators over the years. This will include a variety of formalisms ranging from
hierarchical task networks (HTNs) to hierarchical reinforcement learning. I will also present our studies
on a variety of planning settings including deterministic planning, nondeterministic planning and
planning and acting with a two-level architecture of feedforward neural networks. I will show results of
empirical evaluation versus various baselines as well as theoretical analysis regarding the expressiveness
of the resulting algorithms and architectures. This work has been published in AAAI, IJCAI, AAMAS
and ACS conferences, among others.

Bio

Dr. Munoz-Avila is a Program Director at NSF’s
Information and Intelligent Systems (IIS) Divi-
sion, where he is cluster lead for the Information
Integration and Informatics (III) program. Prior
to joining NSF, Dr. Muñoz-Avila was a (tenured)
professor of Computer Science and Engineering
and of Cognitive Science at Lehigh University.
He was founding co-director of Lehigh’s Institute
for Data, Intelligent Systems, and Computation
(I-DISC). Dr. Muñoz-Avila is recipient of a Na-
tional Science Foundation (NSF) CAREER and
held a Lehigh Class of 1961 Professorship. He
has been chair for various international scientific
meetings including the Sixth International Con-

ference on Case-Based Reasoning (ICCBR-05) and the twenty-fifth Innovative Applications of AI Con-
ference (IAAI-13). He was funded by the Office of Naval Research (ONR), the National Science
Foundation (NSF), the Defense Advanced Research Projects Agency (DARPA), the Naval Research
Laboratory (NRL) and the Air Force Research Laboratory (AFRL).

v

vi

Table of Contents

Scientific Papers

A Look-Ahead Technique for Search-Based HTN Planning: Reducing theBranching Fac-
tor by Identifying Inevitable Task Refinements

Conny Olz and Pascal Bercher

Accepted at Proceedings of the 16th International Symposium on Combinatorial Search (SoCS 2023):

. .https://ojs.aaai.org/index.php/SOCS/article/view/27284/27057

Extracting Hierarchical Task Networks Parameters from Demonstrations

Philippe Hérail and Arthur Bit-Monnot
. 1 – 9

Implicit Dependency Detection for HTN Plan Repair

Paul Zaidins and Mark Roberts and Dana Nau
. 10 – 18

Integrating Deep Learning Techniques into Hierarchical Task Planning for Effect and
Heuristic Predictions in 2D Domains

Michael Staud
. 19 – 27

On Guiding Search in HTN Temporal Planning with non Temporal Heuristics

Nicolas Cavrel and Damien Pellier and Humbert Fiorino
. 28 – 34

On the Computational Complexity of Plan Verification, (Bounded) Plan-Optimality Ver-
ification, and Bounded Plan Existence

Songtuan Lin and Conny Olz and Malte Helmert and Pascal Bercher
. 35 – 43

Challenge Papers

Can HTN Planning Make Flying Alone Safer?

Jane Jean Kiam and Prakash Jamakatel
. 44 – 48

HDDL 2.1: Towards Defining a Formalism and a Semantics for Temporal HTN Planning

Damien Pellier and Alexandre Albore and Humbert Fiorino and Rafael Bailon-Ruiz
. 49 – 53

vii

https://ojs.aaai.org/index.php/SOCS/article/view/27284/27057

viii

Extracting Hierarchical Task Networks Parameters from Demonstrations

Philippe Hérail, Arthur Bit-Monnot
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Abstract

Hierarchical Task Networks (HTNs) are a common formal-
ism in automated planning. However, HTN models are mostly
designed by hand by expert users. While many of the state-of-
the-art approaches for learning HTN try and learn the struc-
ture and its parameterization in a single step, other focus
specifically on learning the structure of the model.
Many of these structure-focused approaches, however, learn
models with non-parameterized actions, task and methods,
which limits their generalization capabilities. In this paper,
we propose a constraint satisfaction-based approach for ex-
tracting parameters for a given HTN structure using a set of
demonstration traces.

Introduction & Motivation
Hierarchical Task Networks (HTNs) are a common planning
formalism that hierarchically decomposes abstract tasks un-
til they are refined into a sequence of executable primitive
actions. However, these models are difficult to design for
non-expert users, and several approaches have been devel-
oped to learn HTNs instead of handcrafting them.

Several of the current approaches to HTN learning (Hogg,
Muñoz-Avila, and Kuter 2008; Zhuo, Muñoz-Avila, and
Yang 2014) do not generate new abstract tasks as part of the
learning process but instead rely on annotated tasks to pro-
vide intermediate tasks in the hierarchical structure. Some
systems that try and extract new intermediate tasks automat-
ically learn models that are non-parameterized, which limits
their generalization capabilities (Li et al. 2014; Chen et al.
2021). Segura-Muros, Pérez, and Fernández-Olivares (2017)
propagate the arguments upwards in the hierarchy, but it
is unclear how their technique would work with recursive
tassk or how it would scale to more complex hierarchies.
In another research area, that of program synthesis (Manna
and Waldinger 1971), Programming By Example (PBE) ap-
proaches (Raza and Gulwani 2018; Dong et al. 2022), also
need to map parameters to examples. However, they rely on
a Domain Specific Language (DSL) that constrains the set of
arguments in the structure of the possible programs and do
not have to determine the structure of the model parameters,
relying instead on human input.

We argue that an HTN learning system able to infer new
abstract tasks should be able to automatically parameterize
the resulting structure to generalize to new environments

with similar characteristics. We therefore take the view that
HTN learning may be split in three steps: structure, param-
eters and preconditions learning. To tackle the second step,
namely learning parameters of a fixed structure, we propose
a MAX-SMT (Nieuwenhuis and Oliveras 2006) approach
that exploits set of demonstration traces for a given top level
task tdemo and the decomposition trees of tdemo into the
traces.

Learning Problem
Hierarchical Task Networks
In this paper, we consider HTNs as a tuple H = (T ,A,M)
where T is a set of abstract tasks,A a set of primitive actions
andM a set of possible methods decomposing the tasks t ∈
T into ordered subtasks {td | td ∈ {T ∪ A}}.

A primitive task (or action) a ∈ A models the ba-
sic acting capabilities of the agent, and represents a di-
rectly executable command. They are represented using an
identifying symbol and a set of parameters, such as a =
action name(arg1, . . . , argn). Actions are associated with
preconditions and effects that enable verifying the validity
of a plan.

An abstract (or non-primitive) task t ∈ T is associated
with a set of methodsMt that allow decomposing it. Similar
to actions, they are represented using an identifying symbol
and a set of arguments.

A method m ∈ Mt is associated with a symbol and
a set of arguments, like abstract and primitive tasks. The
method’s preconditions are denoted as Prem. The method’s
subtasks, Nm, is a totally ordered sequence of subtasks in
{T ∪ A}, representing a possible decomposition of t. This
totally-ordered task network represents a way to achieve the
task t and is only applicable in the current state if its precon-
ditions Prem hold.

Inputs & Objectives
We consider as input the structure of an HTN model, its
primitive actions defined with their parameters, a set Tdem
of known abstract tasks to be demonstrated and a set D of
demonstration traces made of a sequence of ground actions.
Each trace demonstrates a ground instance of a given task
tdem , for which the parameters are known and fixed. New
abstract tasks t, t /∈ Tdem will be called synthetic tasks.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

1

Furthermore, we consider that a decomposition tree map-
ping each demonstrated task tdem ∈ Tdem to each demon-
stration trace is available. Note that such decompositions can
routinely be obtained using HTN planning, as used for plan
verification (Höller et al. 2021), or through parsing tech-
niques (Li et al. 2014).

For simplicity, we consider that the structure of the HTN
model does not contain any of the demonstration tasks as
a method’s subtask, i.e., that the model is non-recursive
through these demonstration tasks. A proposition to remove
this assumption is presented at the end of this paper.

The goal of the parameter learner is to capture the rela-
tionship between the arguments of the subtasks of the hierar-
chy, both vertically (across levels) and horizontally (between
siblings tasks in a single method). This in turn will enable a
solver to efficiently use the model for planning, and may be
used to extract useful preconditions.

Approach to Parameter Learning
In order to parameterize an HTN, our algorithm is decom-
posed into two main steps:

1. The identification of the set of candidate parameters for
all non-parameterized abstract tasks and methods in the
domain.

2. The simplification of this set of parameters. This is done
by identifying, in the ground examples of the demonstra-
tions, the usage patterns of the hierarchy in order to infer
possible unifications of candidate parameters.

Identification of the possible parameters
To identify the superset of possible parameters, we defined
properties for this set, listed below. These properties where
based on our observation of domains from the International
Planning Competition (IPC).

1. The parameters of a method m must allow to set the pa-
rameters for all its subtasks, and | args(m)| must be fi-
nite.

2. Each parameter of a synthetic task must be used in at
least one of its methods.

We designed algorithm 1 following these properties,
which propagates arguments from methods’ subtasks to their
parent tasks until no new argument can be extracted.

The propagation of arguments upwards would require
defining a parent task for the whole hierarchy, which is
difficult in the presence of recursive task definitions. To
solve this issue, the function EXTRACT SUBHIERARCHIES
(Alg. 1, line 2) takes each unique abstract task symbol t and
convert it into a basic self-contained hierarchy containing
only the task th, with symbol t as top level task, its methods
Mt and the direct subtasks of each method m ∈Mt.

The decomposition into subhierarchies is illustrated in
Figure 1, with ttop being a demonstrated top level task with
fixed arguments, ts an abstract task with unknown argu-
ments and the tpi

being primitive tasks. The ? symbol is here
used to denote an unknown set of arguments for a given task
or method.

Algorithm 1: Parameter Superset Generation

1: H ← HTN model structure
2: Hsubs ← EXTRACT SUBHIERARCHIES(H)
3: repeat
4: P ← args(Hsubs) ▷ Existing parameters
5: for all hsub ∈ Hsubs do
6: hsub ← PROPAGATE ARGS UPWARDS(hsub)
7: end for
8: Pnew ← args(Hsubs) \ P ▷ New parameters
9: for all hsub ∈ Hsubs do

10: hsub ← UPDATE SUBTASKS ARGS(hsub,Pnew)
11: end for
12: until Pnew = ∅

This decomposition into subhierarchies has the added
benefit of permitting the parameter extraction process to
work simultaneously with demonstrations for different top
level tasks ttop ∈ Tdem .

m1(?) m2(?)

ms
1(?)

ttop(A1, A2)

tp1
(B1) ts(?) tp1

(D1) tp2
(E1, E2)

tp1
(F1) ts(?)

ms
2(?)

∅

(a) Example task hierarchy, showing how ttop can be decomposed
using the methods m1 and m2.

m1(?) m2(?)

ttop(A1, A2)

tp1(B1) ts(?) tp1(D1) tp2(E1, E2)

(b) Subhierarchy for ttop .

ms
1(?)

ts(?)

tp1(F1) ts(?)

ms
2(?)

∅

(c) Subhierarchy for ts .

Figure 1: Example HTN structure and corresponding sub-
hierarchies. Tasks in rounded rectangle boxes, such as tp1

,
represent primitive tasks while oval boxes, such as ts rep-
resent abstract tasks. The ∅ as the only subtask in a method
represent a method that rewrites to no subtask.

As recursive tasks could in theory propagate new argu-
ments upwards infinitely, we need to enforce the termina-
tion of our algorithm in this case. To this end, we need to
know the propagation history of an argument. We therefore
augment each parameter p of a task or method in a subhier-
archy with the set M̂p of methods through which it has been

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

2

propagated upwards, so that p̂ = (p,M̂p).

Algorithm 2: PROPAGATE ARGS UPWARDS(hsub)

1: for all m ∈Mt do
2: for all p̂ ∈ args(SUBTASKS(m)) do
3: args(m)← args(m) ∪ {p̂}
4: if m /∈ M̂p then
5: p̂′ ← (p,M̂p ∪ {m})
6: args(th)← args(th) ∪ {p̂′}
7: end if
8: end for
9: end for

Algorithm 2 details the procedure used to propagate pa-
rameters from the subtasks to the methods and top level task
of a given subhierarchy hsub. Line 3 propagates all the ar-
guments from the subtasks of m into the args(m). Then, the
condition on line 4 makes the methods act as filters, prevent-
ing parameters that already crossed this method’s boundary
from reaching the top level task once again. This guarantees
termination in case of recursive task definitions. In such a
case, if a task of symbol t is defined with n recursive instan-
tiation of itself in its methods’ subtasks, it will end up with
n+ 1 sets Pt

i of potential parameters: Pt
0 would contain the

parameters induced by all the non-recursive subtasks, and
the remaining sets Pt

i , i ∈ [1, n] will contain the parameters
used in each recursive subtask instantiation. We argue that it
is a reasonable limitation as an HTN planner can:
1. Parameterize all the non-recursive subtasks.
2. For each recursive subtask instantiation, choose whether

the parameters are the same as the parent task or not.

Algorithm 3: UPDATE SUBTASKS ARGS(hsub,Pnew)

1: for all ts ∈ SUBTASKS(hsub) do
2: t← sym(ts)
3: Pt

new ← {p̂ | p̂ ∈ args(t) ∧ p̂ ∈ Pnew}
4: for all p̂ ∈ Pt

new do
5: args(ts)← args(ts) ∪ p̂
6: end for
7: end for

Finally, Algorithm 3 presents the procedure to update the
subtasks, called after each round of argument propagation.
It is a straightforward procedure that is used to keep a con-
sistent parameterization of every abstract task.

Figure 2 illustrates the parameter generation using Algo-
rithm 1, focusing specifically on the subhierarchy for ts from
the example presented Figure 1, as it is independent of any
other subhierarchies. Figures 2a and 2b shows the effect of
the function PROPAGATE ARGS UPWARDS while Figure 2c
shows the update of the subtasks. Note that due to the recur-
sive nature of ts, the added parameter during the subtasks
update is F ′

1, as it may or may not be bound to F1. This
process is then repeated, as shown in Figure 2d. This time
however, the filtering condition for the argument propaga-
tion (Alg. 2, line 4) is triggered by F ′

1, preventing it from

ms
1(F1)

ts(?)

tp1
(F1) ts(?)

ms
2

∅

(a) Iter. 1, upwards propaga-
tion, step 1.

ms
1(F1)

ts(F1)

tp1
(F1) ts(?)

ms
2

∅

(b) Iter. 1, upwards propaga-
tion, step 2.

ms
1(F1)

ts(F1)

tp1(F1) ts(F
′
1)

ms
2

∅

(c) Iter. 1, subtasks update.

ms
1(F1, F

′
1)

ts(F1)

tp1(F1) ts(F
′
1)

ms
2

∅

(d) Iter. 2, upwards propaga-
tion, step 1.
Final subhierarchy for ts.

Figure 2: Example of argument superset generation for ts.

m1(B1, F1) m2(D1, E1, E2)

ttop(A1, A2)

tp1
(B1) ts(F1) tp1

(D1) tp2
(E1, E2)

Figure 3: Extracted parameters for ttop

being added to the parameters of ts. As no new changes can
be made to the subtasks of ts (even considering the subhier-
archy for ttop), all the possible arguments of this subhierar-
chy have been extracted.

Figure 3 shows the resulting parameters for the task ttop
after applying the same parameter extraction procedure.

From this parameterized HTN, we can easily extract pa-
rameterized decomposition trees by replacing argument in-
stantiations in the primitive actions and the demonstrated top
level tasks and propagating these substitutions throughout
the tree. A basic example of decomposition tree is given in
Figure 4, where a1, a2, d1, e1 and e2 represent constants.
These decomposition trees will be used to simplify the set
of task and method parameters from the demonstration ex-
amples.

ttop(a1, a2)

m2(?, ?, ?)

tp1
(d1) tp2

(e1, e2)

(a) Before substitutions.

ttop(a1, a2)

m2(d1, e1, e2)

tp1
(d1) tp2

(e1, e2)

(b) After substitutions.

Figure 4: Example of argument propagation in a decomposi-
tion tree for a demonstration of ttop(a1, a2) as the sequence
tp1(d1)→ tp2(e1, e2).

Recursive Task Definition: Specific Considerations The
extraction and substitution procedure described in the previ-

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

3

ous section would actually lead to poor parameterization in
the case of recursive tasks definitions, allowing the top level
arguments to only refer to the first or second instantiation in
the recursive chain.

A common usage of recursive task definitions is to encode
the “do something until condition” pattern, which would be
difficult to parameterize without considering the last step
of the recursion. The ubiquitous goto(L1, Ld) pattern, pre-
sented Figure 5, is an example of such a pattern used in many
planning domains, used to move an agent from a location L1

to a location Ld. This is done recursively by chaining move
actions through intermediate locations until the agent arrives
at Ld, mainly to obey location connection preconditions. As
can be seen in this example, the Li parameter is used to con-
strain the next instantiation of goto and the Ld parameter
constrains all of them.

mmove(L1, Li, Ld)

goto(L1, Ld)

move(L1, Li) goto(Li, Ld)

mthere(L1, Ld)

∅

Figure 5: Subhierarchy for a goto pattern. Preconditions
omitted for clarity.

To solve this issue, we propose a small modification of
the extracted parameters for recursive subhierarchies, pre-
sented Figure 6, as well as a preprocessing step leveraging
the demonstrations, before extracting the full parameterized
decomposition trees presented earlier. This process will be
illustrated using a simple subhierachy structure, but could
be easily generalized to any task with a single recursive sub-
task. While this covers many of the use cases, more work
is needed for this to work on arbitrary task hierarchies. The
main idea is to be able to map parameters of the top task of a
given recursive subhierarchy to parameters from the demon-
strations’ primitive actions, while considering that recursive
tasks should be able to refer to parameters at the end of a
recursion.

m1(P1, . . . , Pn, P
′
1, . . . , P

′
n)

ttop(P1, . . . , Pn)

tp(P1, . . . , Pn) ttop(P
′
1, . . . , P

′
n)

m2

∅

(a) Basic recursive hierarchy.

m1(P1, . . . , Pn, P
′
1, . . . , P

′
n)

ttop(P
t
1 , . . . , P

t
n)

tp(P1, . . . , Pn) ttop(P
′
1, . . . , P

′
n)

m2(P
t
1 , . . . , P

t
n)

∅

(b) Modified recursive hierarchy.

Figure 6: Parameters modification for recursive tasks.

We first modify the parameters to keep track of the non-
recursive parameters from which the recursive one has been

generated, modifying the extracted structures from the pre-
viously extracted one, presented Figure 6a, into the one
presented in Figure 6b. In this example the P t

i parameters
shows that this parameter originated from the Pi parameter
of the task tp, but we do not know whether it should refer to
the immediate instantiation of Pi or if it needs to refer to its
last instantiation. The P ′

i are the instantiation of the param-
eters of the task ttop in the recursion chain, generated in the
same way as in the example Figure 2.

We then can substitute the ground parameters in the non-
recursive subtasks in each recursion chain, as presented in
Figure 7 where all the pji represent constants.

ttop(P
0
1 , . . . , P

0
n)

m1(p
0
1, . . . , p

0
n, P

1
1 , . . . , P

1
n)

tp(p
0
1, . . . , p

0
n) ttop(P

1
1 , . . . , P

1
n)

m1(p
1
1, . . . , p

1
n, P

2
1 , . . . , P

2
n)

tp(p
1
1, . . . , p

1
n) ttop(P

2
1 , . . . , P

2
n)

· · ·

ttop(P
k
1 , . . . , P

k
n)

m1(p
k
1 , . . . , p

k
n, P

k+1
1 , . . . , P k+1

n)

tp(p
k
1 , . . . , p

k
n) ttop(P

k+1
1 , . . . , P k+1

n)

m2(P
k+1
1 , . . . , P k+1

n)

∅

Figure 7: Generic decomposition tree for a recursive hierar-
chy.

Applying this process to a goto task for which we want
to learn the parameters, we obtain the subhierarchy pre-
sented in Figure 8. A decomposition tree for a given exam-
ple demonstration trace is given in Figure 9. This task will
be used as a running example to illustrate the remainder of
this section.

m1(X,Y,X
′, Y ′)

goto(Xt, Y t)

move(X,Y) goto(X ′, Y ′)

m2(X
t, Y t)

∅

Figure 8: Extracted subhierarchy for a goto task before re-
cursion processing.

Allowed Structures We then need to determine, ∀i ∈
[1, n], if P t

i is bound to Pi or P ′
i , or to the parameters of the

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

4

move(l1, l2) move(l2, l3) move(l3, ld)

(a) Demonstration trace.

goto(X0, Y 0)

m1(l1, l2, X
1, Y 1)

move(l1, l2) goto(X1, Y 1)

m1(l2, l3, X
2, Y 2)

move(l2, l3) goto(X2, Y 2)

m1(l3, ld, X
3, Y 3)

move(l3, ld) goto(X3, Y 3)

m2(X
3, Y 3)

∅

(b) Decomposition tree.

Figure 9: Possible example trace and corresponding decom-
position tree example for the goto task. Colors are used to
highlight identical constants.

last step of the chain, noted PL
i . Furthermore, we want to

know if some parameters are bound together in the method,
transferring information from one step of the chain to the
next. We note P+

i the instantiation of the parameter Pi in
the next step and P the set of all arguments in the example
and the subhierarchy. PGnd ⊂ P represents the set of ground
arguments, Pm ⊂ P represents the set of lifted arguments
of a method m in the considered subhierarchy and Ptop ⊂ P
the set of lifted arguments of the top level task.

Leveraging the structure of the subhierarchies and the
demonstrations, we cast the problem of grouping parame-
ters together as a MAX-SMT problem with the goal of opti-
mizing the size of the groupings of method parameters and
the number of top level task parameters bound to their last
instantiation in a recursion chain.

From the presented model in Figure 6b, we can extract
the following structural constraints where hard constraints
represent properties that must hold for the model to be con-
sistent:
∀i ∈ [1, n]

HARD(P t
i = Pi ∨ P t

i = P ′
i) (1a)

HARD(P t
i = P ′

i ⇒ (P t
i = PL

i ∨ P ′
i = P+

i)) (1b)

HARD(P t
i = PL

i ⇔ P ′
i = PL

i) (1c)

HARD(P t
i = Pi ⇔ P ′

i = P+
i) (1d)

SOFT(P t
i = PL

i) (1e)

Constraints 1a and 1b are used to enforce consistency with
the origin of a top task parameter P t

i . Constraint 1a enforces
the fact that the top level task argument either comes from
the non-recursive subtasks (left) or the recursive instantia-
tion (right) while constraint 1b enforces the fact that a top
level parameter may only propagate information towards the
next step in a recursion or towards the last one.

The constraints 1c and 1d are used to enforce consistency
within the model generated by the constraint satisfaction
solver.

The soft constraint 1e encodes the desirable, but not
necessary, property that an argument is always passed re-
cursively which avoids the need of the planner to non-
deterministically choose its value.

Compatibility with Examples Equations 1*, are the con-
straints that must hold to ensure that parameter passing is
sensible in a hierarchy.

We can also extract the constraints defined in equations 2∗
from each example with a structure as presented in Figure 7.
We note ∀i ∈ [1, n],∀s, s′ ∈ [0, k]∪{L}, ps

′,s
i the argument

ps
′

i considered at step s, in order to allow parameters to refer
to independent constants at each step.

∀i ∈ [1, n]

HARD(PL
i = pk,Li) (2a)

∀s ∈ [0, k[,HARD(P+
i = ps+1,s

i) (2b)
∀s ∈ [0, k]

HARD(Pi = ps,si) (2c)

HARD

(∀s′ ∈ [0, k] ∪ {L},∀j ∈ [1, n],

sym(pk,Li) ̸= sym(ps,s
′

j)⇒ pk,Lj ̸= ps,s
′

j

)

(2d)

HARD

(∀s′, s′′ ∈ [0, k],∀j ∈ [1, n],

sym(ps
′,s

i) ̸= sym(ps
′′,s

j)⇒ ps
′,s

i ̸= ps
′′,s

j

)

(2e)

When considering our goto task, some possible con-
straints that ensure consistency with the example presented
in Figure 9 are presented in the next paragraphs.

Equation 2a defines the binding for the last instantiation of
each top task parameter as presented in the following equa-
tion: {

XL = lL3 Y L = lLd
}

(3)

Equation 4 shows the bindings from steps 0 and 1 in the
decomposition tree, showcasing the effect of the equations
2b and 2c.

{
X = l01 X ′ = l02

Y = l02 Y ′ = l03

}

0

{
X = l12 X ′ = l13

Y = l13 Y ′ = l1d

}

1

(4)

Finally, equation 5 shows the action of constraint 2d, pre-
venting unsound unifications involving the last instantiation
of a given task parameter.
{
lL3 ̸= l01 lL3 ̸= l02 lL3 ̸= l12 lL3 ̸= l1d lL3 ̸= lLd

}
(5)

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

5

Minimizing Method Parameters through Unification
To determine which parameters are bound together during
the optimization process, we define a set G of potential
groups for each p ∈ P and a function PGROUP (equation 6a)
which maps each unique parameter to a single group (equa-
tion 6c). We also define a function NOTCOUNTG (equa-
tion 6b) which will be used in the definition of the opti-
mization objectives and is defined through the constraint
presented in equation 6d.

PGROUP : P → G (6a)
NOTCOUNTGROUP : G → {0, 1} (6b)

HARD
(∀p1, p2 ∈ P

PGROUP(p1) = PGROUP(p2)⇒ p1 = p2

)
(6c)

HARD

∀g ∈ G,NOTCOUNTG(g)

⇔
{

∄p ∈ Pm1
, PGROUP(p) = g

∨∃p ∈ Ptop, PGROUP(p) = g




(6d)

We define the objectives for our optimization problem in
equation 7 with CSoft designating the set of soft constraints.
These objectives are considered in lexicographic order.

The first optimization objective (eq. 7a) is used to sat-
isfy two of our objectives: i) grouping method arguments
together, to allow transferring information from one step of
the recursion to the next and ii) binding subtask arguments
to top level tasks arguments.

The second optimization objective (eq. 7b) is used to sat-
isfy the constraints binding top level arguments to the in-
stantiation of arguments in the last step of recursion (eq. 1e)
in order to transfer information throughout the recursion.

max
∑

p∈Pm1

NOTCOUNTG(PGROUP(p)) (7a)

max
∑

c∈CSoft

SATISFIED(c) (7b)

Solving this problem will generate a set of equivalence
classes. We then replace each of these classes in the modi-
fied subhierarchy with a single new parameter, unifiying pa-
rameters with their right instantiation.

Considering again our goto task example, solving the as-
sociated MAX-SMT problem will produce the equivalence
classes presented equation 8. Replacing each equivalence
class in the subhierarchy Figure 8 with a parameter using the
naming scheme shown under the classes will yield the same
structure as presented in Figure 5, which is the expected re-
sult.
{X,Xt}︸ ︷︷ ︸

L1

{Y,X ′}︸ ︷︷ ︸
Li

{Y ′, Y t, Y L}︸ ︷︷ ︸
Ld

{XL} (8)

Parameter Simplification
Now that we have described a way to extract a set of possible
parameters for a given HTN, we need to identify how param-
eters are passed from to its methods and from a method to

its subtasks. This is done in a simplification step where we
unify parameters from distinct sources.

We wish for the set of parameters to be general enough
to be able to cover all the examples (and hopefully general-
ize well to new instances) while still restricting the decom-
position possibilities to limit the search effort required of
the solver. We propose to achieve this simplification through
two main procedures:

1. Parameter unification, where parameters are unified with
one another according to the examples.

2. Parameter removal, where parameters that will not help
the solver will be dropped.

Parameter Unification We want to unify as many param-
eters as possible from the examples given as input. This is
motivated by the fact that it will (i) reduce the number of
parameters to instantiate in the model and (ii) constrain the
parameters of the subtask of a given method, allowing them
to refer to the same constant for the whole method without
requiring the planner to infer that this is the best parameter-
ization.

To achieve this unification, we frame the problem as
MAX-SMT with the theory of equality and uninterpreted
functions. We define args(x) as the function that returns the
ordered set of arguments of x, where x may be a method, a
task, a subhierarchy or a set of subhierarchies and argi(x)
the function that returns the ith argument of x. We also de-
fine gndd(P) as the function that returns the set of possible
ground instantiation of a parameter P in the demonstration
d, d ∈ D.

As information may be propagated both upwards (from
the primitive tasks in the demonstrations) and downwards
(from a high level abstract task down to lower level ones),
both cases need to be considered. While it is feasible to ex-
press this as a single set of constraint, the formulation is
more complex and the practical performanc is worse, which
is why we decided to separate these two propagations into
two distinct steps. Even though the resulting parameteriza-
tion may not be optimal, preliminary results show that the
extracted parameters are consistent with the principles de-
fined earlier, while the set of constraints remains easy to
specify.

The constraints used to express the upwards propagation
of information are both extracted from the examples as well
as structural, and are defined in the following equations:

∀hsub ∈ Hsubs ,∀P1, P2 ∈ args(hsub), P1 ̸= P2

For any ground instantiation of hsub in d ∈ D and
associated grounding p1 of P1 (resp. p2 of P2):
{

SOFT(P1 = P2) if p1 = p2
HARD(P1 ̸= P2) if p1 ̸= p2

(9a)

∀hsub ∈ Hsubs ,∀P ∈ args(hsub)

∄d ∈ D, gndd(P) ̸= ∅
⇒ HARD(∀P ′ ∈ args(Hsubs) \ P , P ̸= P ′)

(9b)

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

6

∀hsub ∈ Hsubs ,

Ts = {ts ∈ SUBTASKS(Hsubs), sym(ts) = sym(th)}

HARD

(
∀(i, j) ∈ | args(th)|2, argi(th) = argj(th)

⇒ ∀ts ∈ Ts, argi(ts) = argj(ts)

)

(9c)

Equation 9a simply translates the fact that two parameters
can be unified if there is a positive example (soft constraint)
but must never be unified if there is a negative example (hard
constraint). Equation 9b is similar, enforcing that if a param-
eter has never been encountered in any example, then we
have no reason to unify it with any other one. Finally, equa-
tion 9c enforces that if two parameters of an abstract task of
symbol t have been unified in its “reference” definition (as
the root th of the corresponding subhierarchy), then every
instantiation of t as a subtask must unify these parameters
as well to remain consistent.

After solving the constraint satisfaction problem, equiva-
lence classes can be obtained, which are treated similarly to
what has been shown for the recursive task preprocessing:
for each equivalence class, only one single parameter is kept
for abstract tasks and method parameters.

To address the downward propagation of the information,
we try and unify parameters that are bound to higher level
tasks’ parameters, and therefore simply use a constraint sim-
ilar to the one in equation 9a, as defined below:

∀hsub ∈ Hsubs ,∀ts ∈ SUBTASK(hsub),

∀(Ps, Ph) = args(ts)× args(th)

For any ground instantiation of hsub in d ∈ D and
associated grounding ps of Ps (resp. ph of Ph):
{

SOFT(Ps = Ph) if ps = ph
HARD(Ps ̸= Ph) if ps ̸= ph

(10)
Analogously to the previous part, we then extract equiva-

lence classes from the solver result, and unify together argu-
ments according to these classes.

Figures 10 and 11 show an example of this process. Fig-
ure 10a shows an example of subhierarchy where we may
unify parameters as shown in Figure 10b, assuming we have
the decomposition trees as shown in Figure 11. The lower
level of methods and subtasks in Figure 10 is only included
for clarity when presenting the decomposition trees, the sub-
hierarchies considered in equation 10 actually have the same
structure as presented earlier in the paper.

Parameter Removal Once the unification process has
taken place, the HTN model may still contain abstract tasks
with a large number of parameters, leading to methods with
many parameters which will be difficult to instantiate for the
solver. Therefore, we propose to remove the parameters that
will hinder a solver’s performance rather than improve it.
We propose to define “useful” parameters as:
1. Parameters enabling early decision in the hierarchy,

propagating information downwards.
2. Parameters enabling parameter unification across sibling

subtasks.

ttop(Z)

mtop(X,Y)

t(X,Y)

m1(X)

a1(X)

m2(Y)

a2(Y)

(a) Before unification.

ttop(Z)

mtop(Z)

t(Z)

m1(Z)

a1(Z)

m2(Z)

a2(Z)

(b) After unification.

Figure 10: Example of extended subhierachy used for down-
ward information propagation.

ttop(p1)

mtop(p1, ?)

t(p1, ?)

m1(p1)

a1(p1)

ttop(p2)

mtop(?, p2)

t(?, p2)

m2(p2)

a2(p2)

Figure 11: Example decomposition trees for downward
propagation.

While we chose to focus on these two criteria first to de-
fine useful parameters, other possibilities are discussed at
the end of this paper.

To determine which arguments to remove, we define
two functions: PARENTS(p) and HAS SIBLINGS(p). PAR-
ENTS(p) returns the set of parameters that are used as par-
ents of a given parameter p in method’s subtask, allowing
to implement rule 1. HAS SIBLINGS(p) returns TRUE or
FALSE depending on whether p is used to unify parameters
of multiple sibling tasks, allowing to implement rule 2.

Algorithm 4: Parameter Removal
1: repeat
2: Pdrop ← ∅
3: for all p ∈ args(Hsubs) do
4: if PARENTS(p) = ∅ ∧ ¬HAS SIBLINGS(p) then
5: Pdrop ← Pdrop ∪ {p}
6: end if
7: end for
8: args(Hsubs)← args(Hsubs) \ Pdrop

9: until Pdrop = ∅

We then apply the procedure described in Algorithm 4,
where parameters are removed from the tasks and methods
until a fixed point is reached.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

7

Evaluation
We here present preliminary results indicating that our ap-
proach is able to extract reasonable parameters. The con-
straint solver used for evaluation was Z3 (de Moura and
Bjørner 2008).

Table 1 shows some results with regard to parameter ex-
traction on domains from the 2020 IPC competition1. All
the demonstrations were generated using the LILOTANE
(Schreiber 2021) planner for instances in the IPC repository
using a short 10 seconds timeout. The “IPC” column shows
the number of parameters (in method and tasks) for a ref-
erence domain from the competition, while the “Superset”
and “Simplified” columns respectively show the number of
arguments after the first generation phase and after the sim-
plification phase.

We can observe that the number of extracted arguments
is close to the one from the reference model and that the
simplification procedure is required for extracting models
of reasonable size. Results marked with the † symbol con-
tains recursive tasks, and do not make use of the procedure
detailed earlier, as it was not fully integrated into the pa-
rameter extractor at the time of writing this paper. However,
even though the extracted parameters are not as relevant in
this version, the true number of extracted parameters should
actually be lower, as the specific procedure for recursions
should allow more unifications of arguments in a given re-
cursive method.

Qualitatively, the extracted parameters are in line with
what we could expect a human user to design. The main ex-
ception is with regard to recursive methods, as expected. We
conjecture that some supplementary arguments, compared to
hand-designed domains, are caused by a lack of unifications
across methods in some cases. This issue is discussed in a
later section.

Parameter Count

Domain IPC Superset Simplified

CHILDSNACK 12 31 14
TOWERS† 34 158 54
HIKING† 62 721 76
SATELLITE† 29 96 22
ROVER† 58 252 72

Table 1: Argument extraction results on IPC domains.

Finally, a basic version of the parameter extractor was
used in a full learner, extending the work from Hérail and
Bit-Monnot (2022). This learner has shown similarly per-
forming models to hand-designed ones, for simple domains.
Figure 12 shows planning performance on a variant of the
TRANSPORT domain for learned models with this system,
compared to the reference IPC model. The different learned
models only varied in their structure, not in the parameter
extraction procedure. These model learning parameters are

1Available at https://github.com/panda-planner-dev/ipc2020-
domains

0.0 0.25 0.5 0.75 1.0
Proportion of solved instances

10 2

10 1

100

101

Pl
an

ni
ng

 ti
m

e
(s

)

Domain
Reference
k3l3* 0.1 nopre
k3l3* 0.1
k3l3 0.1
k0 0.1 nopre

Figure 12: Planning time for models learned the proposed
approach for parameter learning using the LILOTANE plan-
ner.

not detailed here as they are not relevant for this work. While
this does not evaluate the performance of the argument ex-
traction alone, it shows that it can be successfully integrated
in a more complete system.

Discussion
Parameter Generation Assumptions In the definition of
the assumptions surrounding the parameter superset genera-
tion, we considered that parameters of the preconditions of
a method are a subset of the parameters of the method’s
subtasks. While this assumption appears valid in most of
the IPC domains, if some domains require relaxing it, tech-
niques such as the use of deictic references (Pasula, Zettle-
moyer, and Kaelbling 2007) could be used to this end.

Parameter Removal While the presented approach shows
acceptable performance, both in terms of extraction speed
and model quality, the rules used to remove parameters
could easily be extended by taking into account pre- and
post-states.

Indeed, some IPC domains, such as the HIKING domain,
have methods that have constraints that rely on parameters
that are not passed down from a parent task nor are used
to unify sibling methods. Therefore, it may be interesting
to try and determine potential preconditions before the argu-
ment removal step and keep arguments that participate in the
specification of method preconditions, as it should lead to a
more efficient planning process from the solver. If effects of
abstract tasks (Olz, Biundo, and Bercher 2021) are to be ex-
tracted, a similar argument can be made to keep parameters
potentially participating in the definition of these effects.

Unification of Parameters Across Methods Addition-
ally, while we are able to propagate unification information
upwards from the demonstration, downwards from top level
tasks and sidewards across subtasks of a method, we cannot
unify multiple sibling methods’ parameters, without relying
on higher level tasks, as in the example presented Figure 10.

While we do not propose a solution in the case of demon-
strations taken in isolation, in the context of demonstrations
given with the explicit goal of teaching an agent, it does not

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

8

seem unreasonable to assume that multiple demonstrations
can be given in the same ground context. The learner could
then use this common context to infer additional parameter
unifications. Furthermore, if the demonstrations are given as
a form of curriculum, then it is reasonable to assume mul-
tiple high level tasks with user-defined arguments will be
given, building up the hierarchy incrementally starting with
lower-level abstract tasks, alleviating the impact of this issue
in practice.

Fixed Parameter Tasks Finally, the presented constraints
consider that the tasks with fixed arguments only appear
as the root of a decomposition tree for extracting unifica-
tion constraints. However, if they were used as subtasks, the
mapping between their parameters and the primitive action
parameters would be undefined, as can be seen in the sub-
hierarchy in Figure 3: here, if ttop was used as part of an
arbitrary subhierarchy, this undefined mapping would break
the propagation of the arguments in the decomposition tree.

A possible solution would be to consider giving the ex-
pected effects of the demonstrated tasks along with the
demonstrations. This would allow extracting possible map-
pings for the task’s parameters, which could then be inte-
grated into the system of constraints used during parameter
simplification.

Conclusion
We presented a procedure to extract the parameters for a
given HTN structure. This procedure may be used to allow
HTN learning algorithms to focus on the model structure
to extract relevant parameters, but it could equally be used
in a system allowing a user to sketch the hierarchical struc-
ture of a domain and simply give some demonstrations of
the expected behavior, leaving the system to complete the
model. It may also be integrated into a larger system to au-
tomatically extract preconditions or even effects for task and
methods in the learned HTN models, leading to systems that
may compete with state-of-the-art learners while reducing
the burden of annotation placed on the user.

While the evaluation is still preliminary, the results show
that the approach extracts reasonable parameters for HTNs
from the IPC. However, a more thorough evaluation would
be necessary to identify the most pressing shortcomings and
promising improvements.

References
Chen, K.; Srikanth, N. S.; Kent, D.; Ravichandar, H.; and
Chernova, S. 2021. Learning Hierarchical Task Networks
with Preferences from Unannotated Demonstrations. In Pro-
ceedings of the 2020 Conference on Robot Learning, 1572–
1581. PMLR.
de Moura, L.; and Bjørner, N. 2008. Z3: An Efficient SMT
Solver. In Ramakrishnan, C. R.; and Rehof, J., eds., Tools
and Algorithms for the Construction and Analysis of Sys-
tems, Lecture Notes in Computer Science, 337–340. Berlin,
Heidelberg: Springer. ISBN 978-3-540-78800-3.
Dong, R.; Huang, Z.; Lam, I. I.; Chen, Y.; and Wang, X.
2022. WebRobot: Web Robotic Process Automation Us-

ing Interactive Programming-by-Demonstration. In Pro-
ceedings of the 43rd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementa-
tion, 152–167. San Diego CA USA: ACM. ISBN 978-1-
4503-9265-5.
Hérail, P.; and Bit-Monnot, A. 2022. Learning Operational
Models from Demonstrations: Parameterization and Model
Quality Evaluation. In ICAPS Hierarchical Planning Work-
shop (HPlan). Singapore (virtual), Singapore.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with Minimal Additional Knowl-
edge Engineering Required. In Proceedings of the 23rd
National Conference on Artificial Intelligence - Volume 2,
AAAI’08, 950–956. Chicago, Illinois: AAAI Press. ISBN
978-1-57735-368-3.
Höller, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2021.
Compiling HTN Plan Verification Problems into HTN Plan-
ning Problems. In Proceedings of the 4th ICAPS Workshop
on Hierarchical Planning (HPlan 2021), 8–15.
Li, N.; Cushing, W.; Kambhampati, S.; and Yoon, S. 2014.
Learning Probabilistic Hierarchical Task Networks as Prob-
abilistic Context-Free Grammars to Capture User Prefer-
ences. ACM Transactions on Intelligent Systems and Tech-
nology, 5(2): 32.
Manna, Z.; and Waldinger, R. J. 1971. Toward Automatic
Program Synthesis. Communications of the ACM, 14(3):
151–165.
Nieuwenhuis, R.; and Oliveras, A. 2006. On SAT Mod-
ulo Theories and Optimization Problems. In Biere, A.; and
Gomes, C. P., eds., Theory and Applications of Satisfiabil-
ity Testing - SAT 2006, Lecture Notes in Computer Science,
156–169. Berlin, Heidelberg: Springer. ISBN 978-3-540-
37207-3.
Olz, C.; Biundo, S.; and Bercher, P. 2021. Revealing Hid-
den Preconditions and Effects of Compound HTN Planning
Tasks – A Complexity Analysis. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(13): 11903–11912.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning Symbolic Models of Stochastic Domains. Journal
of Artificial Intelligence Research, 29: 309–352.
Raza, M.; and Gulwani, S. 2018. Disjunctive Program Syn-
thesis: A Robust Approach to Programming by Example.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 32(1).
Schreiber, D. 2021. Lilotane: A Lifted SAT-based Approach
to Hierarchical Planning. Journal of Artificial Intelligence
Research, 70: 1117–1181.
Segura-Muros, J. A.; Pérez, R.; and Fernández-Olivares, J.
2017. Learning HTN Domains Using Process Mining and
Data Mining Techniques. In ICAPS Workshop on General-
ized Planning. Pittsburgh, United States.
Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2014. Learn-
ing Hierarchical Task Network Domains from Partially Ob-
served Plan Traces. Artificial Intelligence, 212: 134–157.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

9

Implicit Dependency Detection for HTN Plan Repair

Paul Zaidins1,3, Mark Roberts3, Dana Nau1,2

1Dept. of Computer Science and 2Institute for Systems Research, University of Maryland, College Park, MD, USA
3Navy Center for Applied Research in AI, Naval Research Laboratory, Washington, DC, USA

1{pzaidins, nau}@umd.edu 3{paul.zaidins,mark.roberts}@nrl.navy.mil

Abstract

Two recent approaches to HTN replanning, IPyHOP and
SHOPFIXER, replan by adapting the previously planned solu-
tion when an action fails. IPyHOP replans the entire solution
tree after the failure, while SHOPFIXER uses pre-calculated
dependency graphs to replace portions of the tree; neither
uses forward simulation of the plan to predict where future
failures might occur.
This paper describes IPyHOPPER, which improves IPyHOP
by retaining more of the information provided by the hierar-
chy and using forward simulation to repair minimal subtrees
that contain future failures. Our experimental comparisons
show that in domains where errors are not rare, IPyHOPPER is
both faster and uses fewer iterations to repair than IPyHOP’s
repair mechanism. IPyHOPPER’s repair speedups are simi-
lar to those of SHOPFIXER when given a probabilistic error
model with nontrivial error rates.

1 Introduction
Given some level of domain expertise, a Hierarchical Task
Network (HTN) can be leveraged to solve complex prob-
lems quickly. Hierarchy is perhaps the most powerful fea-
ture of HTN planners. For planning in static, known envi-
ronments using this hierarchy is straightforward. However,
because the world is often dynamic and full of uncertainty,
acting must be properly coupled with online planning to op-
erate well in such conditions. So the speed and efficiency of
correcting errors in plans is important.

When a failure is encountered the most obvious solution
is to replan using the current state as the new initial state.
Even though it may be incorrect after a failure, the original
plan provides useful information regarding the hierarchy and
implicit action restrictions. Reusing portions of the original
plan may also promote plan stability (Fox et al. 2006).

Two recent approaches to plan repair involve updating
original solution tree: SHOPFIXER (Goldman, Kuter, and
Freedman 2020) and the Lazy-Refineahead repair algorithm
in the IPyHOP paper (Bansod et al. 2022). Both approaches
use portions of the original plan when facing disruptions
during execution, but differ in the following respects.
• Lazy-Refineahead uses the structure of the original plan

up to the point of failure, but discards the original plan
hierarchy past the failed action. In contrast, SHOPFIXER
pre-calculates dependency graphs, so that when action

ends in failure, the plan repair process can skip subtrees
that are not dependent on the action that failed. This al-
lows for minimal fixes, increasing plan stability and re-
ducing repair time.

• SHOPFIXER uses actions and methods in the SHOP 3
format (Lisp code with similar structure to PDDL), so
programmers must understand how to implement meth-
ods in that format. IPyHOP’s methods and operators
are Python functions, making them more accessible to
those unfamiliar with automated planning formalisms.
This makes the explicit dependency graph calculation,
as SHOPFIXER does, impossible due to the lack of well-
defined preconditions or effects.

This paper describes IPyHOPPER, which extends IPyHOP1

to use plan repair techniques inspired by those in SHOP-
FIXER. IPyHOPPER improves IPyHOP’s repair efficiency by
retaining more of the information provided by the hierarchy
and using forward simulation. Rather than cutting the solu-
tion tree at the failed node, it selectively prunes future so-
lution branches using forward simulation to repair minimal
subtrees containing future failures. This avoids future fail-
ures that may arise from the plan alterations from repairing
the minimal subtree of the immediate failed action and alter-
ations brought from prior preemptive repairs. Our contribu-
tions include:

1. A new algorithm, IPyHOPPER, that performs a mix of
in-place repair with forward simulation;

2. Revised benchmarks to support evaluation of
IPyHOPPER against IPyHOP and SHOPFIXER; and

3. Experiments showing that IPyHOPPER reduces planner
iterations and execution time for the 5 tested domains
while keeping similar, or sometimes better, plan costs.

The rest of the paper gives a brief overview of related work,
presents our IPyHOPPER algorithm for minimal repair with
IPyHOP, and describes a comparison of the performance of
IPyHOPPER, Lazy-Refineahead, and SHOPFIXER.

1IPyHOP and IPyHOPPER can plan for both tasks and goals, but
for brevity we will refer to both of them as HTN planners. Section
2.5 provides further justification for this terminology.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

10

2 Related Work
Our work is based on the implementation of IPyHOP and we
compare to SHOPFIXER, so we will discuss each of these
before pointing out other related work.

2.1 IPyHOP
IPyHOP (Bansod et al. 2022), is an iterative, domain-
independent, totally-ordered, Goal Task Network planner
written in the Python programming language. Goals and
tasks are ordered tuples while methods and actions are ar-
bitrary Python code blocks. Input goals and tasks are repeat-
edly decomposed until only actions remain. This results in a
solution tree from which the plan can be read as the preorder
traversal of actions (i.e., leaves) of the tree.

IPyHOP’s repair algorithm, Lazy-Refineahead, works by
finding the failed action in the solution tree, removing all
nodes to the right of the failed action in the preorder traver-
sal, and then marking nodes that lost children. From there
the plan is repaired by iterating through the tree and redo-
ing decomposition at those marked nodes with the current
state used for the preorder traversal’s leftmost new nodes.
It should also be noted that method preconditions are only
checked during planning and during plan repair for methods
touched during repair.

2.2 SHOPFIXER

SHOPFIXER (Goldman, Kuter, and Freedman 2020) is a plan
repair system for the SHOP 3 (Goldman and Kuter 2019)
HTN planner. Unlike IPyHOP, SHOP 3 uses highly struc-
tured Lisp code for methods and actions. Variables are in-
stantiated primarily through unification. This allows for the
computation of causal links in the solution tree. SHOPFIXER
uses these causal links to isolate plan repair to only the sec-
tions of the solution tree that are relevant. This served as part
of the inspiration for IPyHOPPER, the principal difference
being that our methodology does not impose any structural
restrictions on the decomposition methods and actions, as
dependencies are found implicitly through simulation rather
than explicitly computed. Thus, IPyHOPPER can still speed
up plan repair even when a dependency graph is not known.

2.3 Plan Repair by Domain Modification
Given a planning domain D, task t and initial state s0,
suppose an HTN planner returns a solution plan π =
(a1, . . . , ai, . . . , an). While executing π, suppose an execu-
tion error occurs at ai, producing a state s′i rather than the
predicted state si. Höller et al. (2020) define a modified plan-
ning domain D′ in which (i) the predicted outcome of ai is
s′i and (ii) given D′, t, and s0, the HTN planner returns a
solution plan π′ such that the first i actions are the same as
in π. Thus if no further errors occur, t can be accomplished
by executing the part of π′ that starts at the action after ai.

Unlike IPyHOPPER, π′ preserves none of the unexecuted
part of π. We think the actions in π′ after ai are the same
as Lazy-Refineahead would have produced. Technically this
can be viewed as a hybrid approach between plan repair and
replanning.

2.4 Other Approaches
There has been work speeding up replanning by reusing plan
solution trees (Soemers and Winands 2016). This differs
from standard plan repair in that existing plans are modi-
fied for new tasks as opposed to altering an existing plan for
the same task given an interruption. RepairSHOP (Warfield
et al. 2007) uses a directed, dependency graph know as a
goal graph to track alternative decisions (decompositions
and instantiations). When plan repair is needed, the plan-
ner is reset to the planning state of the first applicable alter-
native found. HOTRiDE (Ayan et al. 2007) takes a similar
approach with its task-dependency graph.

2.5 Evolution of HTN Terminology
Some of the best-known early formulations of HTN plan-
ning included both goals and tasks (Currie and Tate 1991;
Kambhampati and Hendler 1992; Erol, Hendler, and Nau
1994). However, SHOP and its successors used a simplified
HTN formulation that omitted goals (Nau et al. 1999, 2001;
Goldman and Kuter 2019). Their popularity led researchers
to lose track of goals as a part of HTN planning, and HGNs
were subsequently conceived as separate from HTNs (Shiv-
ashankar et al. 2012, 2013). In this paper, we return to the
earlier concept that HTN planning includes both goals and
tasks.

3 Repairing Minimally with IPyHOPPER
Before we formally describe IPyHOPPER, we will contrast it
with an example from the IPyHOP paper. Figure 1(a) copies
Figure 1 by Bansod et al. (2022). It represents a notional
hierarchical plan for tasks t1, t2, and t3. Hexagonal nodes
indicate method instances mi for a task tj , and rectangular
nodes indicate an operator instance oi. The resulting plan,
π = ⟨o1, o2, ..., o11, o12⟩ is produced using a Depth First
Search (DFS) tree preorder traversal. Moreover, o7 produces
effects on which o11 relies, shown as a red dashed line; this
will be an important detail in the following comparison.

While executing π, o7 nondeterministically fails. The
Lazy-Refineahead algorithm discards the plan structure for
the parent of the failed node as well as the nodes to the
right of the failed node in preorder traversal, which includes
m1 t4, m1 t5, and m1 t3. This results in nine nodes re-
moved from the tree. But it might be the case that only a
few of these need to be changed to repair the plan.

Instead, IPyHOPPER preserves as much of the tree as pos-
sible to minimize computation and maximize stability (Fox
et al. 2006). It does this by combining forward simulation
(i.e., action application to each state) with localized repair.
As simulation progresses forward, each action is checked for
applicability. If the simulation succeeds for all actions in the
remaining plan, then the repair was localized to the failed
node. When the simulation fails for an existing action in a
plan, that is treated as a potential future failure, resulting in
further repair.

To make this concrete, consider Figure 1(b), where a
dashed green line indicates starting point of simulation with,
t4, the parent of the failed action having been unexpanded.
IPyHOPPER removes only the children of t4 to find a new

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

11

decomposition the parent of the failed action using the cur-
rent state, resulting in two new actions.

IPyHOPPER simulates forward from o13 to check for any
future problems from the repair. Forward simulation reveals
that actions o8, o9, and o10 will succeed so the tree support-
ing these actions remain in the plan. The result is shown in
Figure 1(c) between the green and orange dashed lines. At
this point, suppose o11 fails, perhaps because its precondi-
tion from o7 was not met by the new actions o13 and o14.
Figure 1(d) shows that IPyHOPPER makes another repair to
rightmost instance of t4, resulting in a new action o15. From
the original plan, actions o8, o9, and o10 remained. We in-
clude Figure 2 to demonstrate the difference in the repair
process with Lazy-Refineahead. Note how the parent and
all pre-order succeeding nodes are unexpanded regardless
whether the actions could still have been performed.

To summarize, IPyHOPPER repairs a plan by removing a
failed node’s immediate subtree then repairing while simu-
lating possible future failures. Using the new observed state,
it fixes the tree at the point of failure, traversing upward as
needed while simulating forward. If the simulation yields er-
rors, it fixes the next point of failure and continues simulat-
ing forward. This repeats until it reaches an unrecoverable
state or the end of the simulated plan without a failure. A
repair-simulate cycle might introduce further failures. This
occurs when failure points have a common ancestor and the
rightmost failure point has no applicable repair given the
previous failure point repair. In such a case, it backtracks
to the previous failure point. Backtracking to the root node
of our tree indicates no plan is possible. Otherwise, it returns
the repaired plan.

3.1 The Repair Algorithm
Algorithm 1 formalizes the above example. We assume here
that the root of the full tree exists as the parent of all tasks
provided to the planner as in IPyHOP.

Lines 2 and 3 place the parent of the failed action and cur-
rent state into the stack and enters the repair-simulate loop.
This loop continues until either simulation results in a suc-
cessful plan or the algorithm reaches an unrecoverable state.

Lines 5 and 6 read the top node and state from the stack
and replace the top node with its parent. This results in either
moving up the solution tree when repair fails for the current
subtree or moving to the previous repair when arriving at the
root.

Line 7 removes the current decomposition of f to allow
for a new decomposition. This begins the minimal repair,
from which Lines 8 to 12 will check to see if any decompo-
sition methods are relevant and if so will attempt to repair
the subtree of w rooted at p.

The expansion is performed using a modified IPYHOP
planning mechanism. The most important changes are pre-
venting planning to progress to the top node of a subtree
(thus allowing targeted subtree repair) and altering IPyHOP
methods to find all potential variable bindings rather than a
single binding (thus allowing functionality similar to unifi-
cation). There are two cases to consider: (1) If there are rel-
evant methods, but no applicable expansions, return to the
top loop at Line 4. (2) If no relevant actions exist, check if

p is a common ancestor of any other node in the stack and,
if so, remove p and its associated state from the stack as the
next loop will clobber previous repairs. Either case results in
a return to the top of the loop.

A successful repair of the subtree of w results in advanc-
ing the simulation at Lines 17 to 25. Simulation proceeds
by reading the suffix of π starting from w and following it
to completion from our current state. At this point, there are
two cases to consider. (1) If π has another failure, s′ be-
comes the state at failure, the parent of the action that failed
is placed on the stack, and the loop returns to the top. (2)
If the simulation completes the rest of π without failure we
terminate the loop and return π as the repaired plan to begin
executing. We note here that the stack thus functions as our
backtracking mechanism as the stack consists of the parents
of our repaired nodes. We exhaust all possible repairs for our
current node before returning to the immediate prior repair
point to look for a solution If the stack should become empty
(i.e., the algorithm arrive at the root), then tree must have
been stripped down to the root and π will be empty. When
this occurs, an empty plan indicates failure of the algorithm
to produce a viable repair.

Algorithm 1: IPyHOPPER plan repair algorithm.
1 Def IPyHOPPER(state: s, decomposition tree: w, failed

action node: f):
2 p← parent of f in w;
3 stack ← [(p, s)];
4 while stack not empty do
5 f, s← pop(stack);
6 p← parent of f in w;
7 unexpand f ;
8 if f has possible decomposition then
9 subTree← subtree of w with root f ;

10 attempt expansion of subTree from s;
11 if subTree cannot be fully expanded then
12 continue;
13 else
14 if if the parent p is an ancestor of a previous

node then
15 pop(stack);
16 continue;
17 π ← plan from w;
18 simulate(s, π);
19 if simulation failed then
20 s′ ← input state for failed action;
21 pa ← parent of failed action node;
22 push(stack, (pa, s′));
23 continue;
24 else
25 break;
26 π ← plan from w;
27 return π;

4 Experiments
We incorporated Algorithm 1 into Run-Lazy-Refineahead
with no other changes, resulting in IPyHOPPER. We com-
pared IPyHOPPER to IPyHOP as well as to SHOPFIXER.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

12

(a) (b)

(c) (d)

Figure 1: An example IPyHOPPER repair using Figure 1 by Bansod et al. (2022). See prose for a detailed description.

(a) (b)

Figure 2: With Lazy-Refineahead, 1(b), 1(c), and 1(d) would have been the above.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

13

4.1 IPyHOP Comparison
To evaluate how well IPyHOPPER improves the performance
of IPyHOP, we repeat the study on two domains from the
IPyHOP paper (Bansod et al. 2022).

The robobsub domain comes from the RoboSub 2019
competition. An autonomous submersible is expected to
complete a course consisting of several tasks. Not all tasks
must be completed for an attempt at the course to be con-
sidered complete, but these optional tasks yield additional
points. For such tasks non-empty decompositions are at-
tempted first by the internal ordering of the methods and
if no non-empty decomposition is applicable an empty de-
composition is returned rather than concluding no plan is
possible.

The rescue domain consists of several unmanned air and
ground vehicles attempting to perform search and rescue op-
erations following some disaster. One important difference
between these domains is that the rescue domain has states
from which recovery is impossible.

The experimental setup is identical except for more runs;
the starting seeds increased from 1,000 to 10,000 with num-
ber of trials per seed increased from 11 to 100. We evaluate
using two metrics from Bansod et al. (2022). Total decom-
positions assesses the total number of nodes expanded, thus
tasks and actions are both counted, while total action cost is
the sum of the costs of all actions attempted, including failed
and successful actions.

For the Rescue domain, we found that of our 10,000
seeds, 412 were unsolvable. Of the remaining 9,588 con-
figurations, 82 of them had at least one trial end in an un-
solvable state when using the Lazy-Refineahead algorithm.
IPyHOPPER had no such partial seed failures.

Rescue IPyHOPPER produces plans with lower total ac-
tion cost using fewer node expansions. Figure 3(a) shows
that IPyHOPPER produces a lower total action cost for most
problems, resulting in an averaged reduction of 2.28± 0.02
with 95% confidence. This is most likely a domain-specific
effect, as the algorithm does not impose any cost-related
conditions. Most plan costs occur in discrete, relatively nar-
row bands while IPyHOP produces a much less coherent
pattern. This is likely a consequence of the stability that the
new algorithm imposes through minimal plan changes.

Figure 3(b) shows that IPyHOPPER expands significantly
fewer nodes than Lazy-Refineahead for all configurations
(28.77 ± 0.03 with 95% confidence). This is in line with
expectations, as the failures in this domain are generally fix-
able by repairing only the immediate parent of the failed
node, while Lazy-Refineahead must replan all of the unexe-
cuted plan.

Robosub IPyHOPPER produces plans with higher total ac-
tion cost using fewer node expansions. Figure 3(c) shows
that IPyHOPPER produces plans with a significantly higher
total action cost for all problems (33.80 ± 0.02 with 95%
confidence). This is unexpected, but perhaps a consequence
of the unique feature of most actions being skippable in this
domain. Optional objectives are rewarded with additional
points, but are not required. The method of last resort to de-
compose such tasks is often simply to return nothing.

Table 1: Mean percentile change in paired sample differ-
ence for CPU time and mean iteration count by domain. A
negative value indicates that IPyHOPPER is outperforming
Lazy-Refineahead.

Change in mean Change in mean
Domain CPU time (%) iteration count (%)

Openstacks -34.5 -16.1
Rovers -40.7 -49.3

Satellites -34.0 -49.3

Figure 3(d) shows that IPyHOPPER not only expands sig-
nificantly fewer nodes (59.45 ± 0.07% with 95% confi-
dence), but also reveals a nearly constant number of node
expansions. This suggests IPyHOPPER is exceptionally sta-
ble for this domain.

4.2 SHOPFIXER Comparison
To compare IPyHOPPER to SHOPFIXER, we compare
the difference between Lazy-Refineahead and IPyHOPPER
on the SHOPFIXER domains explored by Goldman and
Kuter (2020): openstacks, rovers, and satellites.

Our first task was to adapt the SHOP 3 methods as faith-
fully as possible. This is somewhat challenging because the
exact format of the state is more ”Pythonic” and IPyHOP
does not use unification. We also needed to enable IPyHOP
methods to return multiple different instantiations based on
ground arguments. Otherwise, we replicated the spirit of the
SHOP 3 methods, actions, and deviations.

We ran each problem 1000 times with a nominal error rate
of 10%. To replicate the potential error distribution from the
SHOPFIXER experiments while allowing for multiple errors
in a single experiment, we scaled each action’s likelihood of
error linearly in proportion to the number of potential errors
for that action and the current state.

Errors were introduced randomly and are uniformly ran-
domly selected from all potential errors for that action and
the current state. In general this meant that the action-state
pair with the largest number of potential errors (as calculated
by a running max) would have some error occur with proba-
bility equal to the nominal probability. Time spent calculat-
ing execution errors was not included in time measures for
the planner. All domains here had only recoverable failures,
so we did not need to consider the case of failed planning.

We recorded three metrics: action count, CPU time, and
iteration count. Action count is the number of all actions at-
tempted, thus both failed and successful actions are counted.
CPU time is the elapsed process time from immediately
prior to the initial call to the planner for a plan to immedi-
ately after the successful completion of the last action. Iter-
ation count is the total number of iterations the planner runs
for both in initial planning and every call to the plan repair
algorithm. Iteration count includes iterations spent travers-
ing through the solution tree without expanding nodes, and
is slightly different than node expansions.

Openstacks IPyHOPPER has similar performance in terms
of action counts but generally uses less CPU time and fewer

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

14

(a) (b)

(c) (d)

Figure 3: Scatter plots showing the mean action cost and node expansions for the Lazy-Refineahead and IPyHOPPER algorithms,
in the Rescue and Robosub domains. For the metrics shown, points below the dashed line represent IPyHOPPER
performing better than Lazy-Refineahead.

iterations. Figure 4 shows the spread for IPyHOPPER is no
larger than SHOPFIXER and, for the larger problems, is sig-
nificantly smaller in iteration count and CPU time. This
comes from the increased stability of the new algorithm.
There is a notable decrease in the medians of the itera-
tion count and CPU time distributions when looking across
all problems. However, this varies across problems. Action
counts are essentially identical between the algorithms.

Rovers IPyHOPPER produces more varied plan costs but
does so with lower CPU time and fewer iterations. Figure
5 shows a large improvement in iteration count and CPU
time for most problems, especially for the largest problems.
There is still a reduction in spread for iteration count and
CPU time. There is definitely some distribution shift in the
action count, but appears to highly dependent on problem.

Satellites IPyHOPPER produces results similar to Rovers
with sometimes large improvements in action count using

reduced iteration count or CPU time. Figure 6 shows less
of a shift in the action count distributions. Both the rovers
and satellites domain involve multiple heterogeneous agents
with occasionally redundant capabilities fulfilling goals with
essentially no ordering constraint. This sort of problem is
amenable to the IPyHOPPER because repairs of a single sub-
task are localized in the solution tree.

Summary In Table 1 we summarize the performance
gains of IPyHOPPER over Lazy-Refineahead in the SHOP-
FIXER domains. We find that for all three domains there is
a significant improvement in both CPU time and iteration
count.

5 Conclusions and Future Work
IPyHOPPER offers substantial improvement in iteration
count and computation time across all 5 tested domains.
Given the diverse nature of these domains, we speculate that

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

15

Figure 4: Key metric distributions for openstacks domain.

Figure 5: Key metric distributions for rovers domain.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

16

Figure 6: Key metric distributions for satellites domain.

this approach could yield similar benefits for many domains
of interest. However, this approach cannot work as-is for all
planning domains, because certain conditions regarding the
definition of actions, methods, and the nature of errors must
be met for plans to be guaranteed to be correct. These con-
ditions are not currently well defined and this could be a
subject of future work.

There seems to be a general increase in the relative ben-
efit of the new algorithm with problem size. However, this
needs to be investigated further because our suspicion is that
the tested domains may be relatively sparse in terms of how
subtasks are related. A better understanding of this quality
of separability may yield valuable insights into planning.
As the requirement for explicit preconditions and effects
is removed in IPyHOPPER, it may offer some transferable
lessons for refinement and hybrid plan repair.

Our experiments were in domains expressed in the well
known PDDL. This does not make use of the full expressi-
tivity possible with IPyHOPPER. Given IPyHOP should be
capable of planning in domains not well expressed in PDDL
form, we would like to measure potential gains in such do-
mains.

Acknowledgements
This work has been supported for UMD in part by ONR
grant N000142012257 and AFRL contract FA8750-23-C-
0515. MR thanks ONR and NRL for funding this research.
The views expressed are those of the authors and do not re-
flect the official policy or position of the funders.

References
Ayan, N.; Kuter, U.; Yaman, F.; and Goldman, R. 2007.
HOTRiDE: Hierarchical ordered task replanning in dynamic

environments.
Bansod, Y.; Patra, S.; Nau, D.; and Roberts, M. 2022. HTN
Replanning from the Middle. The International FLAIRS
Conference Proceedings, 35.
Currie, K.; and Tate, A. 1991. O-Plan: The Open Planning
Architecture. Artificial Intelligence, 52(1): 49–86.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A Sound
and Complete Procedure for Hierarchical Task-Network
Planning. In AIPS, 249–254.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: replanning versus plan repair. In Proceedings of the
Sixteenth International Conference on International Con-
ference on Automated Planning and Scheduling, 212–221.
AAAI Press. ISBN 978-1-57735-270-9.
Goldman, R. P.; and Kuter, U. 2019. Hierarchical Task Net-
work Planning in Common Lisp: the case of SHOP3. In
Neuss, N., ed., Proceedings of the 12th European Lisp Sym-
posium (ELS 2019), Genova, Italy, April 1-2, 2019, 73–80.
ELSAA. ISBN 978-2-9557474-3-8.
Goldman, R. P.; Kuter, U.; and Freedman, R. G. 2020. Sta-
ble Plan Repair for State-Space HTN Planning. In ICAPS
Workshop on Hierarchical Planning (HPlan).
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Plan Repair via Model Transformation. In KI 2020:
Advances in Artificial Intelligence: 43rd German Confer-
ence on AI, Bamberg, Germany, September 21–25, 2020,
Proceedings, 88–101. Berlin, Heidelberg: Springer-Verlag.
ISBN 978-3-030-58284-5.
Kambhampati, S.; and Hendler, J. A. 1992. A Validation-
Structure-Based Theory of Plan Modification and Reuse. Ar-
tificial Intelligence, 55: 193–258.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

17

Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple Hierarchical Ordered Planner. In IJCAI,
968–973.
Nau, D. S.; Muñoz-Avila, H.; Cao, Y.; Lotem, A.; and
Mitchell, S. 2001. Total-Order Planning with Partially Or-
dered Subtasks. In IJCAI, 425–430. Seattle.
Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. 2013.
The GoDeL Planning System: A More Perfect Union of
Domain-Independent and Hierarchical Planning. In IJCAI,
2380–2386.
Shivashankar, V.; Kuter, U.; Nau, D. S.; and Alford, R. 2012.
A Hierarchical Goal-Based Formalism and Algorithm for
Single-Agent Planning. In AAMAS, 981–988.
Soemers, D. J. N. J.; and Winands, M. H. M. 2016. Hierar-
chical Task Network Plan Reuse for video games. In 2016
IEEE Conference on Computational Intelligence and Games
(CIG), 1–8.
Warfield, I.; Hogg, C.; Lee-Urban, S.; and Muñoz-Avila, H.
2007. Adaptation of Hierarchical Task Network Plans. In
Wilson, D.; and Sutcliffe, G., eds., Proceedings of the Twen-
tieth International Florida Artificial Intelligence Research
Society Conference, May 7-9, 2007, Key West, Florida, USA,
429–434. AAAI Press.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

18

Integrating Deep Learning Techniques into Hierarchical Task Planning for Effect
and Heuristic Predictions in 2D Domains

Michael Staud
Ulm University, Institute of Artifical Intelligence, D-89069 Ulm, Germany

michael.staud@uni-ulm.de

Abstract

In this paper, we present a novel approach that combines
Hierarchical Task Planning (HTN) with deep learning tech-
niques to address the challenges of scalability and efficiency
in large-scale planning problems. Building upon the Hierar-
chical World State Planning (HWSP) algorithm, our method
utilizes a multi-layered world state representation, which al-
lows for planning at abstract levels without the need to con-
sider lower-level details. We propose a deep learning method
for predicting the effects of abstract tasks, which opens the
door to enhancements in both planning performance and plan
quality. Additionally, we employ the same approach to cre-
ate a domain-dependent planning heuristic. Our contributions
demonstrate the potential of integrating HTN planning with
deep learning techniques, paving the way for future research
in various application domains such as robotics, logistics, and
urban planning. The proposed approach employs standard
deep learning techniques, ensuring adaptability as the state
of the art advances.

1 Introduction
Automatic planning is a fundamental problem in artificial
intelligence with numerous practical applications, such as
robotics and logistics. One approach to tackling complex
problems is total-order Hierarchical Task Planning (HTN),
which involves devising an abstract plan and gradually
decomposing it into a concrete plan (Ghallab, Nau, and
Traverso 2004, 238). However, existing planning methods
often struggle with scalability and efficiency, particularly for
large, complex problems. In this paper, we propose a novel
approach that combines HTN planning with deep learning
techniques to overcome these limitations.

Recent progress in deep reinforcement learning (Arulku-
maran et al. 2017) has demonstrated the efficiency of this ap-
proach, with the hierarchical policies improving reinforce-
ment agent performance and expediting the learning process
(Vezhnevets et al. 2017; Huang 2020). By combining clas-
sical planning with reinforcement learning (Rivlin, Hazan,
and Karpas 2020), it is possible to efficiently solve signif-
icantly larger planning instances. While not directly com-
parable, since these results involve policy generation, they
offer insight into the potential benefits of deep learning for
hierarchical planning problems. Additionally, reinforcement
learning has been utilized in HTN planning to improve plan

quality (Hogg, Kuter, and Munoz-Avila 2010). The Refine-
ment Acting Engine (RAE), which also uses a hierarchical
task structure like HTN planning but is an online algorithm,
can also be successfully combined with a learning algorithm
(Patra et al. 2020).

And in classical planning, deep learning has been used
to learn planning heuristics. For instance, ASNets (Toyer
et al. 2020) employ a clever approach to create domain-
dependent heuristics by encoding action schemas in a neural
network, allowing weight sharing across different problems.
These can also be combined with Monte-Carlo Tree Search
(Shen et al. 2019). However, this method requires problem
grounding, which is inefficient for large problems like urban
simulation (Staud 2022). Alternatively, domain-independent
heuristics can be generated by providing a fixed set of fea-
tures to a neural network (Gomoluch et al. 2017; Trunda and
Barták 2020), or through the use of hypergraph networks
(Shen, Trevizan, and Thiébaux 2020). In contrast, we aim
to develop a domain-dependent heuristic designed to exploit
the unique features and structure of a domain.

Symbolic Networks (Garg, Bajpai et al. 2020) achieve
state-of-the-art performance on some planning benchmarks
but are less relevant to our approach due to their focus on
relational MDPs rather than HTN planning.

In this paper, we build upon the Hierarchical World State
Planning (HWSP) algorithm (Staud 2022). This algorithm
enhances total-ordered HTN planning by using a multi-
layered world state representation, where the higher layers
offer a more abstract perspective on the world state than
the lower layers. By planning at a higher layer, there is no
need to consider the details of the lower layers. The domain
designer defines the effects of so-called separable abstract
tasks, which can be applied directly without decomposition
on the higher layers.

Our proposed deep learning method for predicting the ef-
fects of separable abstract tasks within the HWSP algorithm
not only has the potential to improve planning performance
but also to enhance plan quality, enabling more effective so-
lutions for large-scale planning problems. We employ stan-
dard deep learning techniques (Géron 2022), allowing for
easy adaptation as the state of the art changes. The use of
specialized DNNs, such as ASNets, would anchor us to a
specific architecture, limiting this flexibility. Similarly, our
decision to convert the state into a 2D representation, in-

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

19

stead of directly feeding the state into the DNNs, stems from
our goal of retaining compatibility with planning algorithms
that use state representations beyond a set of atoms. This ap-
proach also facilitates the use of diverse DNN architectures,
further broadening the applicability of our work. Further-
more, we utilize the same approach to estimate the number
of steps to the goal, thereby creating a domain-dependent
heuristic.
Our contributions are:
• A deep learning method for predicting the effects of ab-

stract tasks within the Hierarchical World State Planning
algorithm (Staud 2022).

• A deep learning method capable of heuristic learning.
The heuristic can then be used by the HTN planning al-
gorithm (Höller et al. 2019).

In the subsequent sections, we will first provide an overview
of the Hierarchical World State Planning algorithm. Next,
we will explain the process of inputting the world state into
a neural network. We will then discuss the prediction mech-
anism and elaborate on the neural network architectures em-
ployed in our study. Lastly, we will present and analyze the
results obtained from our experiments.

2 Hierarchical World State Planning
This section describes the Hierarchical World State Planning
(HWSP) (Staud 2022) algorithm, which extends the hierar-
chical task network (HTN) planning paradigm. It introduces
an innovative type of abstract tasks, referred to as separable
abstract tasks, devised to enhance planning performance.
This enhancement is achieved by partitioning the planning
process into smaller, manageable sub-processes functioning
across multiple layers of abstraction.

The set of all constants, variables, and atoms are desig-
nated as C, V , and A, respectively. A literal is an atom or its
negation, while an atom is a predicate applied to a tuple of
terms. Here, a term could be a constant or a variable. Every
predicate p belongs to the set P .

2.1 Hierarchical Task Planning Domain
A hierarchical task planning domain is denoted as D =
(Ta, Tp,M), comprising three finite sets. Here, Ta is the set
of abstract tasks, Tp represents primitive tasks, and M con-
sists of methods. Both primitive and abstract tasks are tuples
in the form t(τ) = 〈prect(τ), eff t(τ)〉. Each task is charac-
terized by a precondition prect(τ), an effect eff t(τ), and a
set of parameters τ . The effects can modify atoms and flu-
ents in the world state, while the precondition can examine
if a particular atom is present in the world state or if a nu-
merical equation is fulfilled.

A method is a tuple m = 〈ta(τm), Pm〉, where ta(τm) is
the abstract task it can decompose, and Pm is a set of plan
steps, with τm as the parameters of the method. An abstract
task can be decomposed via methods into other tasks, where
the plan steps Pm of method m replace the original abstract
task in the plan.

A plan is a total ordered sequence of tasks. A problem
is defined as a tuple P = 〈initP , goalP ,PSP 〉, consisting
of the initial plan PSP , the initial state initP , and the goal

state goalP . A solution is a plan where each task is an ac-
tion (primitive task), satisfying its precondition at each step,
thereby transforming the initial state into the goal state. A
world state w ∈ W is a set of atoms and a finite number of
numerical fluents.

2.2 Multi-Layered World State
The HWSP algorithm divides the world state into n layers.
The layer n encapsulates the actual world state containing
factual information, whereas layer l < n is more abstract
than layer l + 1. Each predicate p and task t is associated
with a specific layer l̂(p) = l, and can only exist on that
layer. The layer function is formulated as l̂ : Ta ∪Tp ∪P →
N. Predicates at layer l < n are derived predicates (Staud
2022; Edelkamp and Hoffmann 2004), while those at layer
n are non-derived predicates. Derived predicates can only
rely on predicates of layer l+1, facilitating information flow
between layers. Consequently, the planning domain is then
expressed as a tuple D = (Ta, Tp,M, l̂).

2.3 Task Representation
Each task t is confined to having predicates in its effects
that operate only on the same layer l̂(t) = l. However, its
preconditions can contain predicates p from layer l̂(p) < l.
Standard abstract tasks can only decompose into tasks on
the same layer and lack effects. In contrast, separable ab-
stract tasks must have effects, which must be defined by the
domain designers. These effects should approximate the in-
direct influence the separable task have on the derived pred-
icates at its layer.

Distinct from traditional abstract tasks that are instanta-
neously decomposed into a method, separable abstract tasks
function as markers that signal the requirement for decom-
position in a separate planning process (see section 2.6) that
operates on layer l+1. These tasks are subsequently decom-
posed by a method akin to a standard abstract task in the new
planning process.

It is important to note that unlike derived predicates in
PDDL (Edelkamp and Hoffmann 2004), derived predicates
can appear in effects within this planning algorithm. This is
possible because they are treated as non-derived predicates
in the child planning process.

2.4 Fluents and Functions
In contrast to the planning algorithm outlined by Staud
(2022), our approach incorporates the support for numeri-
cal fluents as described by (Fox and Long 2003). These flu-
ents are managed identically to predicates, and we make use
of derived functions to handle these numerical fluents sim-
ilarly to the way derived predicates are treated (Edelkamp
and Hoffmann 2004).

The derived functions utilize numerical formulas rather
than logical ones. These formulas support basic arithmetic
operations such as addition, subtraction, multiplication, and
division. Further, these derived functions provide the capa-
bility to aggregate the values of a set of numerical fluents
using the sum operation.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

20

The set over which the aggregation takes place is deter-
mined by a PDDL goal description (Kovacs 2011), in a man-
ner akin to the forall operator used in PDDL. This implies
that a derived function can apply a mathematical operation
on a subset of numerical fluents defined by a PDDL goal
description .

Notably, the derived functions can be modified via effects
and can be involved in the preconditions of tasks in a child
planning process. We also extend the capability to include
operations that count the number of elements that fulfill a
goal description. This allows for calculations such as aver-
aging, which requires the count of the relevant fluents.

This makes derived functions a flexible and powerful tool
in managing numerical fluents, expanding the range of pos-
sible planning tasks and scenarios that can be modeled.

2.5 Main Planning Algorithm
The main planning algorithm maintains a stack of planning
processes, where only the top-most process is active. The
algorithm comprises a main plan, which contains the final
resultant plan, and the current world state, which is modified
when a new primitive task is appended to the main plan (see
figure 1). Each planning process is distinct, possessing its
own unique plan and set of goals.

The initial planning process, which always operates on
layer 1, uses the most abstract layer of the world state, the
original problem goal, and the initial plan derived from the
problem. The goal is restricted to predicates of layer 1. How-
ever, as these are derived predicates and depend recursively
on predicates of layer n, any goal can be transformed into
a form supported by the planner through the introduction of
derived predicates.

The system is designed to support full backtracking, al-
lowing it to continue across planning process boundaries
(Russell et al. 2010). This feature ensures the completeness
of the planning algorithm (Staud 2022).

2.6 Child Planning Algorithm
In each iteration, the main planning algorithm triggers the
child planning algorithm within the top-most planning pro-
cess on the stack. This process functions on a distinct layer
l. The child planning algorithm subsequently returns a new
task, which can either be a primitive task or a separable ab-
stract task. If it is a primitive task, it is incorporated into
the main plan, and the current world state is updated by ap-
plying the task’s resultant effects. If the task’s preconditions
are unfulfilled or if no task is returned, the system reverts
via backtracking. If the returned task is a separable abstract
task, a novel planning process is set up to realize its effects,
operating on layer l+1. A planning process functions in the
following manner:
Planning Process Initialization: The initiating plan of a

process is comprised of tasks present in the method that
was used to decompose the separable abstract task that
created it. The goal of the planning process aligns with
the effects of the task (Staud 2022).

Method Selection and Decomposition: The child plan-
ning process uses the Monte Carlo Tree Search (MCTS)
algorithm (Kocsis and Szepesvári 2006), complemented

by forward decomposition, to generate plans (with the
H0 heuristic (Ghallab, Nau, and Traverso 2004)). In-
stead of producing a complete plan as might be expected,
the child planning process returns a single task that has
a high likelihood of guiding the main planning pro-
cess towards the goal. The child planning process treats
tasks differently: separable abstract tasks are treated as
primitive tasks, with no need for further decomposition,
whereas derived predicates are handled as non-derived
predicates. However, standard abstract tasks are still de-
composed through methods, as their decomposition is
strictly restricted to tasks within the same layer.
This unique approach enables the child planning algo-
rithm to formulate plans on the abstract layer as though
dealing with a non-hierarchical planning problem. A sig-
nificant reduction in the world state is achieved by exclu-
sively utilizing the horizon (see section 2.7, thereby en-
hancing performance. It is crucial for the declared effects
of the separable abstract tasks, as defined by the domain
designer, to closely align with their actual effects when
fully executed in the main planner. To increase precision,
we employ neural networks in the method proposed in
this paper. This approach leads to a decrease in the re-
quired amount of backtracking and an overall enhance-
ment of plan quality

Planning Process Termination: Upon accomplishing its
goal in the world state of the main planning process, a
child planning process is discarded from the stack.

2.7 Horizon and Planning in the Planning Process
The horizon, composed of a set of atoms and fluents, plays
a pivotal role in the child planning algorithm. It encapsu-
lates only the portion of the world state pertinent to the child
planning process. All atoms and fluents present within the
task decomposition graph of the separable abstract graph, as
outlined by (Bercher, Keen, and Biundo 2014), are included
in this set. Importantly, the horizon is not a static construct,
it is dynamically reconstructed from the world state of the
main planning algorithm every time a new task is added the
main plan (Staud 2022).

2.8 Completion of Planning
Planning processes are tasked with identifying subsequent
actions for integration into the main plan. Upon the success-
ful fulfillment of the original planning problem’s goal, the
main planning process is finished. Then, the main plan con-
tains the result. If no plan could be found the algorithm re-
turns an empty plan.

2.9 Illustrative Example
The concepts discussed in this paper can be best understood
through an example scenario: a robot navigation challenge
in a grid environment populated with obstacles. The robot’s
task is to navigate from its starting position to a designated
goal location while circumventing these obstacles.

Layered Representation The world state can be repre-
sented in multiple layers:

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

21

Algorithm 1: The Main Planning Algorithm of the Hier-
archical World State Planning (HWSP) (Staud 2022) algo-
rithm.
1 Function MainPlanningProcess:
2 while not stack.isEmpty():
3 cp = stack.top
4 new_task = cp.getNextTask()
5 if (cp.finished())
6 stack.remove(cp)
7 if new_task is Primitive_Task:
8 add_to_plan(new_task)
9 update_world_state(new_task)

10 elif new_task is
Separable_Abstract_Task:

11 newp = new PlanningProcess(new_task)
12 stack.push(newp)
13 else:
14 backtrack()
15 if goal_achieved():
16 return plan
17 return None

• Layer n: This represents the actual grid, complete with
the robot’s current location, the goal location, and the ob-
stacles.

• Layer l < n: This is a simplified rendition of the grid,
with regions consolidated into higher-layer zones (e.g.,
rooms within a building).

Planning Process The primary planning algorithm begins
with the most abstract layer, where the objective is to maneu-
ver the robot from one high-layer zone to another. As the al-
gorithm advances, it may encounter separable abstract tasks,
such as transitioning from one room to another. In such an
instance, a fresh planning process will be established to op-
erate on the subsequent layer (l+1), offering a more detailed
view of the environment.

Task 1

Main Plan

Task 2 Task 3 Task 4 Task 5

Planning Processes

Task 1 Task 2 Task 3 Task 4 Task 5

Sep. Task 3

Task 6

Sep. Task 4 Sep. Task 5

Sep. Task 1 Sep. Task 2Layer 1

Layer 2

Layer 3

Current World State

<Set of atoms and fluents>

Figure 1: Adapted from the paper by Staud (2022), this fig-
ure provides an example of what the state of the main plan-
ning algorithm might look like in a domain with 3 layers.
Completed processes are marked in grey. The current state
of the stack would be: Sep. Task 1, Sep. Task 5.

3 Representation of the World State
Deep Learning usually takes a fixed-size representation as
input (Géron 2022). To generate it out of the world state
and enable predictions, a 2D representation is chosen due to
its suitability for planning domains that are fundamentally
two-dimensional, such as ware transport and robot steering.
For domains with different dimensionalities, 1D or 3D rep-
resentations can be used, which makes the algorithm, with
modifications, also usable in this case. The usage of a 2D
input image to guide planning is well explored in reinforce-
ment learning (Mnih et al. 2013) or algorithm selection for
planning (Sigurdson et al. 2019; Kaduri, Boyarski, and Stern
2020) and has been shown to be effective. Note that we will
only project one layer of the multi-layer world state as the
planning processes also have only access to one layer of the
world state.

A 2D domain is a domain for which a projection fp :
W → I of its world state w into a 2D space I exists that has
the following properties:
• i ∈ I is a RGB pixels image. This means it is a matrix

with dimensions M ×N × 3.
• fp is consistent: let w1 ∈ W and w2 ∈ W be two world

states. When they are equivalent in regarding planning,
then it holds fp(w1) = fp(w2). When w1 and w2 are not
equivalent it holds fp(w1) 6= fp(w2).

• fp is reversible: for all 2D images i ∈ I that were gener-
ated by fp we can construct a world state w ∈ W such
that f(w) = i. And this world state is equivalent to the
original world state in terms of planning.

• The encoding of fp should be in a way that allow a deep
learning algorithm to recognize and learn patterns. So the
spacial organization of the image is meaningful and in-
formative.

The last property isn’t fully formalized due to ongoing
research about what specific neural networks can detect. Im-
portant is that the spatial locality is preserved and that the
complexity in the output image is minimized while still pre-
serving the information.

We propose a series of annotations to create the re-
quired domain-specific projection function. These annota-
tions, added to a PDDL domain or problem file (Fox and
Long 2003), can be used to automatically render a world
state to an image. The annotation system allows the user to
define position and shape information for every atom, ob-
ject, predicate or function. Annotations are inspired by Java
annotations (Gosling et al. 2005), and multiple annotations
are possible.
• ;@position(vec2(x,y)): Defines the position of

an object, with x and y as floats in image coordinates.
• ;@position(arg): Sets the position of an atom or

fluent equal to the object of the given argument. It is used
as a shift in combination with ;@propagate.

• ;@appearance(shape, size, zlayer,
{<paint attributes>}): Defines the appearance
of an object, with the shape as either a box, ellipse,
PNG, or a line; the size as a vec2; and the zlayer
as the draw order. The paint attributes contain pen and
brush style, with colors specified directly or derived
from a fluent. Each object also has an internal instance

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

22

ID, which is automatically encoded via hashing into the
final color of the object to differentiate between multiple
instances in the final image.

• ;@propagate(source, target): Can only be
applied to an atom. Propagates the position of the object
in the source argument to the object in the target argu-
ment.

The line shape can only be applied to an atom or fluent and
takes the position of two objects in the arguments to deter-
mine the orientation of the line. The objects on the same z-
layer are not rendered on top of each other even if they have
the same position. Instead, they will be arranged determin-
istically by a layouting algorithm to ensure that every atom,
object, or fluent is visible. We support other features like, for
example, a slot mechanism to give the user more control but
we will only present the basic features in this paper.

The annotations are placed in the comments so that if a
PDDL planner does not support them, they can be ignored.
The resulting projection function can be used not only for
rendering the world state but also for rendering the goal
state.

3.1 Algorithm
The algorithm accepts as input a world state, consisting of
a set of atoms and a finite number of numerical fluents. It
comprises two integral functions:

The draw function initiates a set for object positions, de-
fined directly via annotations in the problem file, and com-
putes the appearance and rectangle information for each
object. This function then proceeds to call the propagate
function iteratively until no further propagation transpires.
Post initial propagation, the function processes any resid-
ual objects that have not been assigned positions, bestow-
ing default positions and appearance information. Another
round of propagation is undertaken to update the positions
of these newly handled objects, continuing until no addi-
tional propagation occurs. The draw function concludes by
sorting objects according to their z-layer, thereby ensuring
objects with lower z-layer values are rendered first. The ob-
ject’s attributes such as shape, size, z-layer, position, and
paint are taken into consideration during this drawing phase.
The function adeptly handles a variety of shapes, including
boxes, ellipses and lines, adjusting the pen and brush styles
and colors as required.

The propagate function accepts a set of determined object
positions, the world state, and a map describing child-parent
relationships as defined by the annotation. It traverses the
atoms contained within the world state and applies propaga-
tion rules specified by the annotations to compute new object
positions. If an object has a valid position, it propagates this
position to its child objects. If the space of a child object is
already occupied by another object on the same layer, thus
violating the properties of the projection function, the child
object will be displaced until a free space in the same z-layer
is located. A straightforward rule is employed for this, shift-
ing any object along the x-axis to the right until a free space
is found in the same z-layer or until the right image border
is reached.

Thus, objects are arranged in a deterministic manner.
Note, it is quite straightforward for a PDDL domain designer
to design an annotation that breaches the conditions of the
projection function, such as insufficient space in the image,
child-parent relationships not being visible in the image due
to excessive object displacement, or predefined object po-
sitions overlapping. Under such circumstances, the system
responds by returning an error message to the user.

3.2 Example
The proposed annotation system’s utility is demonstrated via
an example from the airport domain (Anders 2015). This do-
main encompasses three types of objects: airports, planes,
and cargos, with the objective being to transport cargo from
one airport to another utilizing planes.

Here is a simplified annotated PDDL domain for this
problem:
1 (define (domain airport)
2 (:types
3 gobject - object
4 ;@appearance(box, vec2(4,4), 0, {

color = white})
5 airport - gobject
6 ;@appearance(box, vec2(2,2), 1, {

color = magenta})
7 cargotype - gobject
8 ;@appearance(ellipse, vec2(3,3), 1,

{color = red})
9 planetype - gobject

10)
11 (:predicates
12 ;@propagate(?obj2, ?obj1) ;@position

(vec2(2,2))
13 (in ?obj1 - gobject ?obj2 - gobject)
14 ;@propagate(?airport, ?obj1) ;

@position(vec2(-2,2))
15 (at ?obj1 - gobject ?airport -

airport)
16 (cargo ?obj1 - gobject)
17 (plane ?obj1 - gobject)
18 (airport ?obj1 - gobject)
19)
20 ... ; Rest of the domain
21)

In the provided PDDL file, different object types’ appear-
ances are defined using ;@appearance annotations. For
instance, an airport is denoted by a 4x4 pixel white box as
specified by the ;@appearance(box, vec2(4,4),
0, color = white) annotation.

The ;@position and ;@propagate annotations de-
termine how object positions are established. For in-
stance, the ;@propagate(?obj2, ?obj1) annota-
tion associated with the “in” predicate suggests that the
position of ?obj1 mirrors that of ?obj2, and the
;@position(vec2(2,2)) annotation stipulates that
?obj1 is displaced by vec2(2,2) from the position of
?obj2. In the PDDL problem file, the specific positions of
the airports are established.

This annotated PDDL domain can now be leveraged by
the planning algorithm to generate a two-dimensional pro-
jection of the world state, which can serve as an input to a

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

23

deep learning algorithm.

4 Prediction for Planning
In this section, we discuss how we employ neural networks
to predict various important aspects of planning, including
the effects of separable abstract tasks and the number of ac-
tions required to reach a goal.

4.1 Effects of Abstract Tasks
We aim to predict two key factors for separable abstract
tasks: simple effects and fluent effects.

Simple Effects Simple Effects (McDermott et al. 1998)
add or remove atoms. Our goal is to predict whether these
effects will be fulfilled when a separable abstract task is ex-
ecuted. We use a neural network that returns a probability
corresponding to the likelihood that the effect will be ap-
plied. To train the network we are using the binary cross-
entropy loss functions (Good 1952).

Fluent Effects Fluent effects (Fox and Long 2003) change
fluents, which are numerical values. In this case, we do not
predict a probability; instead, we directly predict the delta
value (residual learning) of the fluent using a neural net-
work. To train the network we are using mean absolute error
(MAE) (Bishop 2006) as loss function. The network per-
forms deep regression which is competitive to problem spe-
cific estimators (Lathuilière et al. 2019).

Input To predict these effects, we first encode both the
current world state and the world state after the separable
abstract task was applied with the default effects defined by
the domain designer (Staud 2022). This process results in a
rough approximation of the new world state. However, this
approximation is sufficient for the neural network to identify
which separable abstract task was applied. Note that when
the prediction of the effects is not correct only the perfor-
mance of the algorithm will decrease, it will not affect com-
pleteness (Staud 2022).

Both world states are then converted into two separate 2D
representations, which are subsequently provided as input
along with their delta to the neural network. In addition, we
also provide the current values of the fluents to assist the
neural network in predicting the delta changes of the fluents.

4.2 Heuristic Learning
Deep learning can be used to create planning heuristics,
which estimate the number of planning steps required to
reach a goal (Shen et al. 2019; Gomoluch et al. 2017; Shen,
Trevizan, and Thiébaux 2020). We train a neural network
using a 2D representation of the current world state and the
goal state. The training data is generated from example do-
mains and includes the states, and the actual number of steps
required to reach the goal. We determine the number of steps
using a planning system, which supports PDDL 2.1 (Fox and
Long 2003) and can return the minimal amount of actions to
reach a goal. As loss function we use MSE (Bishop 2006).
The network performs deep regression which is competitive
to problem specific estimator (Lathuilière et al. 2019).

It is not easy to generate the (full) goal state out of the ini-
tial state and the goals in the problem. In our tests, we deter-
mined the set of predicates which were stationary and sim-
ply combined them with the goal from the problem. This is
mostly sufficient. If not the domain designer has to provide
additional annotations so that the (full) goal state is gener-
ated correctly.

It’s important to note that the resulting heuristic is likely
to be non-admissible (Ghallab, Nau, and Traverso 2004), as
we’re approximating the number of steps. This heuristic can
then be used in an HTN planner (Höller et al. 2019).

Figure 2: The images displayed, arranged from left to right
and top to bottom, represent the following domains: City1,
City2, Airport, Blocksworld, and Transport. These graphical
outputs were generated by applying the projection functions,
as defined by the annotation process detailed in section 3.
They provide a visual representation of each domain’s state.

4.3 Architecture of the Neural Network
We employ three distinct types of neural networks to evalu-
ate our approach:
• Conv: This network consists of three convolution layers

(LeCun et al. 1998) without max pooling, followed by a
fully connected dense layer. Batch normalization (Ioffe
and Szegedy 2015) is applied after each layer:
– Conv2D(16, kernelsize=1), ReLU
– Conv2D(32, kernelsize=3), ReLU
– Conv2D(64, kernelsize=3), ReLU
– Flatten()
– Dense(n, activation=<see text>)
The network has 115940 weights. It uses the convolution
layers to first determine complex features in the input and
then uses a highly connected dense layer for regression.

• Conv Max: Like Conv, but this network includes max
pooling (2, 2) after the convolutional layers (not includ-
ing the first one). The network has 26340 weights, and
this kind of architecture is usually used for image clas-
sification tasks (LeCun et al. 1998). Additionally, it can
also be used for the analysis of non-visual 2D data, like
a spectrogram of a word (Warden and Situnayake 2019).

• ResNet: This network is a truncated version of ResNet-
34, which is used for image classification and showed

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

24

Domain Conv Conv Max ResNet
Variable Fluents Integer Atoms Fluents Integer Atoms Fluents Integer Atoms
City1 All 0.3523 0.3732 0.1295 0.3885 0.3756 0.2830 0.0075 0.0087 0.088
City1 Industrial 0.2547 0.2674 0.0299 0.2765 0.2832 0.2181 0.0177 0.0204 0.0109
City1 Residential 0.2531 0.2575 0.0324 0.2805 0.2932 0.2243 0.0199 0.0256 0.0021
City1 Commercial 0.2488 0.2763 0.0415 0.2751 0.2812 0.2256 0.0178 0.0254 0.0166
City2 All 0.1271 0.1343 0.2456 0.2812 0.3012 0.3042 0.0090 0.0120 0.0186
City2 Industrial 0.3083 0.3123 0.1087 0.2726 0.2823 0.2304 0.01328 0.0170 0.0162
City2 Residential 0.3158 0.3323 0.1021 0.2675 0.2742 0.2202 0.0204 0.0232 0.01256
City2 Commercial 0.3212 0.3202 0.1081 0.2695 0.2743 0.2248 0.0191 0.0205 0.0202
City2 Mine 0.2834 0.3004 0.0907 0.2434 0.2404 0.2193 0.0235 0.0223 0.0158

Table 1: Prediction of separable abstract task effects using three neural networks (Conv, Conv Max, and ResNet) across different
city domains. The table shows the mean absolute error (MAE) (Bishop 2006) on normalized data and the binary cross-entropy
loss for atoms. The networks were trained on 200 epochs, although fewer epochs may suffice for less stringent accuracy
requirements. The dataset size was 16384, with 20% of the data used for validation (Bishop 2006). The size of each 2D
representation was 16× 16.

Domain Conv Conv ResNet ResNet
Max +H0

Airport 1.4943 0.8883 0.8272 0.2899
Blocksworld 4.345 1.5293 1.5322 1.995

Transport 3.423 1.5075 1.6820 0.5117

Table 2: Heuristic learning results for various domains using
Conv, Conv Max, and ResNet neural networks. Displayed is
the unnormalized loss when predicting the number of stes to
the goal. The input data size is larger (64×64), requiring two
additional residual or convolutional units. ResNet+H0 repre-
sents a combination of the traditional H0 planning heuristic
with a neural network, where the neural network outputs a
delta value that is added to the H0 heuristic. It shows the best
results.

Probability City1 City2
0.01 6.2480 6.4520

0.1000 9.1330 12.8180
0.2000 15.2060 34.3300
0.3000 29.6240 100.1370
0.4000 59.2270 402.3630
0.5000 134.0850 2066.6430

Table 3: The table demonstrates the influence of prediction
quality on the average number of planning processes gener-
ated by the primary planning algorithm. The “Probability”
column indicates the frequency at which an atomic effect
is inaccurately predicted. Such mispredictions necessitate
backtracking in the overall system, which consequently in-
creases the number of planning processes. A higher volume
of planning processes typically leads to a decrease in overall
system performance. Hence, the improvement of prediction
quality can significantly enhance the planning algorithm’s
efficiency by reducing the need for backtracking and sub-
sequently minimizing the number of planning process pro-
cesses required.

very high performance in this task (He et al. 2016):
– Conv2D(64, kernelsize=7, stride=2), BatchNormaliza-

tion, Relu, MaxPooling2D((3, 3), stride=2)
– ResidualUnit(64, stride=1) ×3
– ResidualUnit(128, stride=2)
– ResidualUnit(128, stride=1) ×3
– GlobalAvgPool2D(), Flatten()
– Dense(n, activation=<see text>)
The network has 1367524 weights. The ResidualUnit is
composed of two convolution layers with ReLU activa-
tion and batch normalization, in addition to a skip con-
nection (He et al. 2016).

In each neural network, the dense layer employs linear acti-
vation (Géron 2022) for predicting fluents and sigmoid ac-
tivation (Rumelhart, Hinton, and Williams 1986) for atoms.
To enable efficient training, we implement data normaliza-
tion (Bishop 2006).

5 Results
In this section, we first present results from training the neu-
ral network. The domains were manually annotated domains
in order to create a 2D representation of the world state.
• Prediction of Abstract Task Effects (see Table 1): We

implemented a city domain like to the one used in the pa-
per (Staud 2022) to test the prediction of abstract task ef-
fects which we will call City1. We also created a more so-
phisticated urban domain called City2, which will addi-
tionally simulate effects like an electric power grid, crim-
inality, and fires. In these domains, we consider several
separable abstract tasks (industrial, residential, commer-
cial, mine). The training data set is created via planning
and simulation of the effects of the abstract tasks.
We used one neural network to predict the effects of all
abstract task. Additionally we also measured what hap-
pens when we use a seperate neural network for each ab-
stract task.

• Heuristic Learning (see Table 2): We test the heuristic
learning approach on the airport domain (Anders 2015),
as well as the blocksworld and transport domains, which

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

25

were presented as challenges in the International Plan-
ning Competition and are available on GitHub (Seipp,
Torralba, and Hoffmann 2022).

The data presented in the tables 1 and 2 indicates that the
impact of an abstract task and the number of steps to the
goal can be approximated with a high degree of accuracy us-
ing neural networks. As anticipated, the ResNet variant out-
performed the other two networks. Intriguingly, the general
ResNet variant, which approximates all abstract tasks simul-
taneously, yielded better results than training separate neural
networks for each abstract task. Conversely, the Convolution
variants exhibited improved performance when individual
networks were trained. The performance of the Conv Max
network equals or surpasses that of the standard Conv net-
work when predicting fluents; however, this superiority is
not observed in the prediction of atoms. This suggests that
the Max Pooling operation may inadvertently discard crucial
information necessary for accurate atom prediction. On the
other hand, Conv might perform poorly on large representa-
tions due to the dense network.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 200 300 400 500 600 700 800 900

Q
u
a
lit

y
 R

a
ti
o

Effect SD

Plan Quality Depending on the Fluent Prediction Quality.

Task SD 300
Task SD 600
Task SD 900

Task SD 1200

Figure 3: The graph illustrates how the quality of numer-
ical fluent effect predictions impacts plan quality within a
simplified ’City1’ domain. This domain has steady income-
building tasks (which make buildings) without secondary ef-
fects like crime or fire. The main plan quality metric is the
five-year city treasury income. Ideally, the planner would se-
lect the highest income-generating building at each step, but
prediction errors skew this process. The ’quality ratio’ (y-
axis) is the actual gain to maximum possible gain. We as-
sumed a Gaussian prediction error distribution with a mean
of 0, and the standard deviation denoted by ’Effect SD’ (x-
axis). The curves show the influence of different numerical
fluent effect distribution in the tasks. Notably, diverse origi-
nal numerical effects lessen the error’s impact on plan qual-
ity, while similar fluent effects heighten the influence of pre-
diction errors, decreasing plan quality.

It is also noteworthy that the measurements can be divided
into two categories: those that predict the data with high ac-
curacy and those that have a relatively low accuracy. This
observation suggests that when the accuracy is low, the neu-
ral network might not have successfully fully generalized
the underlying structure of the problem. In our experiments,
we always employed separate networks to predict atoms and

fluents because we saw a performance drop when using a
single network for both tasks.

We conducted an evaluation to measure the influence of
our method on planning performance and the quality of the
plan produced. Table 3 provides a comparative analysis of
the number of planning processes generated, depending on
the probability of an incorrect prediction of an atom’s effect.
An erroneous prediction triggers backtracking. For this spe-
cific analysis, the planner employs the City1 domain (Staud
2022). The City2 domain will create more planning pro-
cesses as its tasks have more effects and backtracking is nec-
essary when a single one fails.

Furthermore, we evaluated the impact of inaccurately pre-
dicted numerical fluents on the quality of the plan. The ob-
jective within the City1 domain is to optimize the quantity
of money generated by the city. Graph 3 depicts the ratio of
actual money generated to the optimal possible generation
of money.

Upon reviewing the results, it appears that the most ef-
fective course of action for automatic planning is to utilize
a ResNet, as this network consistently delivers the best out-
comes. The primary drawback, however, is the substantial
amount of data that must be processed each time the net-
work is evaluated. As such, it would be prudent to primarily
adopt this approach in complex domains like City1 or City2
where a traditional general heuristic would take too much
time to evaluate.

6 Conclusions
In this paper, we have presented a practical and simple
method for leveraging deep learning to improve the per-
formance of automatic planning. Our approach requires
no complex data structures and can be easily integrated
into existing planners. Notably, the ResNet+H0 combination
demonstrates a significant improvement over other tested
networks. This finding hints at the potential of combin-
ing traditional planning heuristics with neural networks to
achieve superior performance.

Looking forward, we plan to extend our approach to au-
tomatically generate abstraction hierarchies for hierarchi-
cal world state planners. This will allow us to transform
non-hierarchical domains into hierarchical ones and enjoy
the performance benefits which come with the hierarchical
world state (Staud 2022). Overall, we believe that our re-
search provides a promising direction for integrating deep
learning with automated planning systems to achieve better
performance and scalability.

References
Anders, A. 2015. Planning Exercises. Https://github.com/-
arii/planning exercises, Accessed: 20.3.2023.
Arulkumaran, K.; Deisenroth, M. P.; Brundage, M.; and
Bharath, A. A. 2017. Deep Reinforcement Learning: A Brief
Survey. IEEE Signal Processing Magazine, 34(6): 26–38.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid Planning
Heuristics Based on Task Decomposition Graphs. In SoCS
2014, 35–43. AAAI Press.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

26

Bishop, C. M. 2006. Pattern Recognition and Machine
Learning. Berlin, Heidelberg: Springer-Verlag.
Edelkamp, S.; and Hoffmann, J. 2004. PDDL 2.2: The Lan-
guage for the Classical Part of IPC-4. In Int. Planning Com-
petition.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research.
Garg, S.; Bajpai, A.; et al. 2020. Symbolic Network: Gener-
alized Neural Policies for Relational MDPs. In International
Conference on Machine Learning, 3397–3407.
Géron, A. 2022. Hands-On Machine Learning With Scikit-
Learn, Keras, and TensorFlow. O’Reilly Media, Inc.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Elsevier.
Gomoluch, P.; Alrajeh, D.; Russo, A.; and Bucchiarone,
A. 2017. Towards Learning Domain-Independent Planning
Heuristics. CoRR.
Good, I. J. 1952. Rational Decisions. Journal of the Royal
Statistical Society: Series B (Methodological), 14(1): 107–
114.
Gosling, J.; Joy, B.; Steele, G.; and Bracha, G. 2005. Java
(TM) Language Specification (The 3rd Edition).
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
770–778.
Hogg, C.; Kuter, U.; and Munoz-Avila, H. 2010. Learning
Methods to Generate Good Plans: Integrating HTN Learning
and Reinforcement Learning. In Proceedings of the AAAI
Conference on AI, volume 24, 1530–1535.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019. On
Guiding Search in HTN Planning with Classical Planning
Heuristics. In IJCAI, 6171–6175.
Huang, Y. 2020. Hierarchical Reinforcement Learning,
317–333. Singapore: Springer Singapore.
Ioffe, S.; and Szegedy, C. 2015. Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In International Conference on Machine
Learning, 448–456. Proceedings of Machine Learning Re-
search.
Kaduri, O.; Boyarski, E.; and Stern, R. 2020. Algorithm
Selection for Optimal Multi-Agent Pathfinding. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling, volume 30, 161–165.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In ECML, 282–293. Springer.
Kovacs, D. 2011. BNF Definition of PDDL3.1: Completely
Corrected, Without Comments. Unpublished Manuscript
from the International Planning Competition Website.
Lathuilière, S.; Mesejo, P.; Alameda-Pineda, X.; and Ho-
raud, R. 2019. A Comprehensive Analysis of Deep Regres-
sion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 42(9): 2065–2081.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-Based Learning Applied to Document Recogni-
tion. Proceedings of the IEEE, 86(11): 2278–2324.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - The
Planning Domain Definition Language. AIPS-98.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing Atari with Deep Reinforcement Learning.
Patra, S.; Mason, J.; Kumar, A.; Ghallab, M.; Traverso, P.;
and Nau, D. 2020. Integrating Acting, Planning, and Learn-
ing in Hierarchical Operational Models. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 30, 478–487.
Rivlin, O.; Hazan, T.; and Karpas, E. 2020. Generalized
Planning With Deep Reinforcement Learning. CoRR.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986.
Learning Representations by Back-Propagating Errors. Na-
ture, 323(6088): 533–536.
Russell, S. J.; Norvig, P.; Canny, J. F.; Malik, J. M.; and Ed-
wards, D. D. 2010. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall Upper Saddle River, 3 edition.
Seipp, J.; Torralba, Á.; and Hoffmann, J. 2022. PDDL Gen-
erators. . Https://github.com/AI-Planning/pddl-generators,
Accessed: 20.3.2023.
Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning
Domain-Independent Planning Heuristics with Hypergraph
Networks. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, 574–
584.
Shen, W.; Trevizan, F.; Toyer, S.; Thiébaux, S.; and Xie, L.
2019. Guiding Search with Generalized Policies for Proba-
bilistic Planning. In Proceedings of the International Sym-
posium on Combinatorial Search, volume 10, 97–105.
Sigurdson, D.; Bulitko, V.; Koenig, S.; Hernandez, C.; and
Yeoh, W. 2019. Automatic Algorithm Selection in Multi-
Agent Pathfinding. CoRR.
Staud, M. 2022. Urban Modeling via Hierarchical Task Net-
work Planning. HPlan 2022, 73.
Toyer, S.; Thiébaux, S.; Trevizan, F.; and Xie, L. 2020. AS-
Nets: Deep Learning for Generalised Planning. Journal of
Artificial Intelligence Research, 68: 1–68.
Trunda, O.; and Barták, R. 2020. Deep Learning of Heuris-
tics for Domain-independent Planning. In ICAART, 79–88.
Vezhnevets, A. S.; Osindero, S.; Schaul, T.; Heess, N.; Jader-
berg, M.; Silver, D.; and Kavukcuoglu, K. 2017. Feudal
Networks for Hierarchical Reinforcement Learning. In In-
ternational Conference on Machine Learning, 3540–3549.
Proceedings of Machine Learning Research.
Warden, P.; and Situnayake, D. 2019. TinyML: Machine
Learning with TensorFlow Lite on Arduino and Ultra-Low-
Power Microcontrollers. O’Reilly Media.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

27

On Guiding Search in HTN Temporal Planning with non Temporal Heuristics

Nicolas Cavrel, Damien Pellier, Humbert Fiorino
Univ. Grenoble Alpes - LIG

Grenoble, France
{nicolas.cavrel, damien.pellier, humber.fiorino}@univ-grenoble-alpes.fr

Abstract

The Hierarchical Task Network (HTN) formalism is used to
express a wide variety of planning problems as task decom-
positions, and many techniques have been proposed to solve
them. However, few works have been done on temporal HTN.
This is partly due to the lack of a formal and consensual defi-
nition of what a temporal hierarchical planning problem is as
well as the difficulty to develop heuristics in this context. In
response to these inconveniences, we propose in this paper a
new general POCL (Partial Order Causal Link) approach to
represent and solve a temporal HTN problem by using exist-
ing heuristics developed to solve non temporal problems. We
show experimentally that this approach is performant and can
outperform the existing ones.

Introduction
Among planning formalisms, Hierarchical Task Network
(HTN) planning is one of the most expressive. In addition
to classical STRIPS actions, HTN allows to express com-
plex abstract tasks in the form of decompositions into sub-
tasks and their ordering constraints. HTN has been used in a
wide variety of applications (Barreiro et al. 2012; Lallement,
de Silva, and Alami 2018; Milot et al. 2021). However, de-
spite the pioneering work of (Lemai 2004; Au et al. 2003;
Goldman 2006), few approaches have been proposed to deal
with time in HTN planning.

Temporal HTN approaches can be classified according to
the expressiveness of the solution plans they can generate
in the sense of Cushing’s classification of temporal prob-
lems (Cushing 2007). This classification defines three cat-
egories of temporal planning problems. The first category
contains the temporal problems whose solutions are solely
sequential solution plans (non-concurrent solution plans).
The second one contains the temporal problems whose so-
lution plans can possibly be concurrent, but for which there
exists a sequential solution plan (possibly concurrent solu-
tion). Finally, the third one includes the temporal problems
for which the only existing solution plans are necessarily
concurrent (necessary concurrent solution).

Most of the approaches are able to solve only temporal
problems of the first two Cushing’s categories. Among these
approaches, we distinguish state-space approaches (Au et al.
2003; Asuncion et al. 2005). These approaches deal with
temporal actions as classical ones by either preprocessing

the temporal actions into a sequence of classical tasks (Au
et al. 2003), or by compiling temporal actions into classical
actions. The latter approach is also widely used in STRIPS
planning (Fox and Long 2003; Celorrio, Jonsson, and Pala-
cios 2015). Approaches converting temporal problems into
classical ones can benefit from the classical search heuris-
tics and algorithms. At the same time, several plan-space ap-
proaches have been proposed (Younes and Simmons 2003;
Bechon et al. 2014; Bit-Monnot et al. 2020). They aim at
refining an initial HTN into a solution by refining tasks and
building causal relations between them, and use STN (Sim-
ple Temporal Networks) (Dechter, Meiri, and Pearl 1991) to
deal with temporal constraints. These approaches are rela-
tively efficient but suffer from their lack of flexibility, es-
pecially when dealing with real problems, where tasks are
necessarily concurrent.

To our best knowledge, the only approach capable of pro-
ducing expressive plans of the third Cushing’s category is
an algorithm in plan-spaces that handles constraints using
Chronicles (Bit-Monnot et al. 2020). Chronicle approaches
keep tracks of the value of each proposition with regards to
time into a timeline, then try to find non conflicting timelines
for every proposition. These approaches are very expressive
but suffer from their lack of efficiency due to the lack of
informative heuristics.

In this paper, we propose a new planning approach for
hierarchical temporal planning able to solve planning prob-
lems for the two first Cushing’s categories, called HTEP
(Hierarchical Temporal Event Planner). HTEP is based on
POCL (Partial Ordered Causal Link) (Bercher, Keen, and
Biundo 2014). The particularity of our approach is to be both
flexible (HTP produces partial temporal solution plans) and
to be able to exploit the heuristics developed for non tem-
poral HTN planning for plan and flaw selection. To do so,
HTEP starts by compiling a temporal problem into a non
temporal one by refining abstract tasks and durative tasks
into instantaneous non temporal actions. Then, it tries to
find a solution plan by relaxing the duration constraints on
tasks and by checking only their consistency. The relaxed
non-temporal problem is expressed as a partial plan in the
POCL semantics. Hence classical POCL search algorithms
and heuristics can be used to solve it. Finally, if a solution to
the relaxed problem is found, HTEP tries to find timestamp
assignments matching the temporal constraints by using a

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

28

simple CSP solver.
The paper is organized as follows. Section 1 introduces

the temporal planning formalism. In the second section we
present our planner, from the relaxed problem to the search
algorithm solving it, with the heuristic used to guide it. Fi-
nally, the third section shows the performance results of
HTEP.

Problem Statement
In this section we propose a formalization of a temporal
HTN planning problem and its solution. The notations are
based on (Höller et al. 2020) and (Abdulaziz and Koller
2022) to deal with time.

Action, Methods, Tasks and Plan
A key concept in HTN planning and a fortiori in temporal
HTN planning is the concept of task. Each task is given by
a name and a list of parameters. We distinguish three kinds
of tasks: the snap actions, the durative actions and the ab-
stract tasks. Unlike snap actions that do change the state of
the world, durative tasks and abstract tasks do not. They
are names referring to other tasks (either snap, durative or
abstract) that must be achieved with respect to some con-
straints. We consider every task has a start and an end time
point. We refer to the start and the end time points of a task
t with temporal variables denoted respectively vst and vet .
Since a snap action t is instantaneous, vst = vet , thus we will
simply refer to the time point of the snap action t as vt.

The durative actions and the abstract tasks can be refined
respectively by applying snap actions and methods defined
below.

A snap action a is nearly an action in the sense of classi-
cal planning, i.e., a tuple (name(a), precond(a), effect(a)).
name(a) is the name of a. The preconditions precond(a)
and effects effect(a) are sets of ground predicates. Let va
be the time point at which a is supposed to be executed.
a is executable if precond(a) hold strictly before va. As in
classical planning, the execution of a produces the effects
effect(a) such that effect(a) = effect+(a) ∪ effect−(a) and
effect+(a)∩effect−(a) = ∅where effect+(a) and effect−(a)
are conjunctions of predicates, respectively true and false af-
ter the execution of a. Finally, we say that a snap action a
refines a task t if t = name(a).

A durative action a is a tuple (name(a), start(a), end(a),
inv(a), d): name(a) is the name of a, start(a) and end(a) are
snap actions ; inv(a) is a set of ground predicates that must
hold after the execution of start(a) and until the beginning
of end(a), i.e., on the interval]vsa, v

e
a[and d = vea−vsa is the

duration of a. We assume as PDDL 2.1 (Fox and Long 2003)
that vsa < vea is true. Therefore the duration of a is a strictly
positive number. Similarly to a snap action, a durative action
refines a task t if t = name(a).

An abstract task must be decomposed into durative ac-
tions in order to be performed. The several ways of decom-
posing an abstract task are described through methods. Even
though we cannot set a duration for an abstract task in the
general case, the start and end point of an abstract can still
be subject to temporal constraints.

A method m is a tuple
(name(m), task(m), subtasks(m), α, constraints(m)),
where name(m) is the name of the method, task(m) is
the task refined by the method, subtasks(m) the set of
tasks symbols (possibly empty) which refines task(m),
α : subtasks(m) 7→ T maps the task symbols to a set
of task names and constraints(m) is a set of temporal
ordering constraints over subtasks(m). Temporal ordering
constraints are defined over the time variable start or the end
of the subtasks subtasks(m) of m. The possible qualitative
temporal ordering constraints are those from the classical
point algebra (Broxvall and Jonsson 2003): <, ≤, >, ≥,
= and ̸=. For instance, the temporal ordering constraint
vst1 < vet2 expresses that the start of the task t1 must occur
strictly before the end of t2. A method m refines a task t
if t = task(m). Note, that consistency checking of such a
set of constraints C can be refined by computing strongly
connected components of the constraint graph associated in
polynomial time O(|C|).

A partial temporal plan π is a tuple (T, α, C,L) where:
• T is a set of task symbols.
• α : T 7→ T a mapping from task symbols to task names.
• C is a set temporal ordering constraints over the tasks

symbols in T . The constraints are like those used in meth-
ods.

• L is a set of causal links of the form ⟨ti p→ tj⟩ with
ti and tj two snap actions in T such as (ti < tj) ∈ C
and p ∈ effect(α(ti)) and p ∈ precond(α(tj)) (classical
causal link definition in POCL).

A snap task tk in a partial temporal plan π is a threat on
a causal link ⟨ti p→ tj⟩ if and only if (1) tk has an effect ¬p
and (2) the ordering constraints (ti < tk) and (tk < tj) are
consistent with C if ti < tj .

A flaw in a partial temporal plan π = (T , C,L) is either
(1) an open precondition, i.e., a precondition or a postcon-
dition of task t ∈ T not supported by a causal link or (2) a
threat, i.e., a task that may interfere with a causal link or (3)
a task t ∈ T that is not a snap task.

Temporal HTN Planning Problem and Solution
A temporal HTN planning problem P is a tuple
(L, T ,A,M, s0, π0, g), where L is a finite set of logical
propositions, T is a set of tasks, A is a set of durative ac-
tions andM is the set of methods, s0 ⊆ L is the initial state
in the set of states S, π0 is the initial partial temporal plan,
and g ⊆ L is a of ground predicates describing the goal.

The solution of a temporal HTN planning problem is a
partial temporal plan π obtained by refining an initial par-
tial plan π0 as in POCL planning built into snap tasks by
applying methods and durative actions. Formally, a partial
temporal plan π is solution of a planning problem P =
(L, T ,A,M, s0, π0, g) if and only if:
1. π is a refinement of the initial partial temporal plan π0:
π0 contains two special snap task: t0 with no precondi-
tion but with s0 as effects and t∞ with the goal g as pre-
condition but no effects and vet0 < vst∞ in C.

2. π needs to be executable in the initial state s0. Thus,

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

29

(a) all tasks in π are snap tasks,
(b) π has no flaws, i.e., no open precondition and no causal

threats,
(c) for all t in π, vt is assigned and satisfies the temporal

constraints of π.

It remains to define how to refine a partial temporal plan
into a plan containing only snap actions by using methods
and durative actions.

First, consider the case of the method refinement. Let
m = (name(m), task(m), subtasks(m), α, constraints(m))
be a method that refines a task t and plan π1 =
(T1, α1, C1,L1) a plan such that t ∈ T1. Then, m refines
π1 into a plan π2 = (T2, α2, C2,L2) and

T2 = (T1 − {t}) ∪ subtasks(m)

α2 ={(t′, α1(t
′))| t′ ∈ T1\{t}} ∪ α

C2 = C1 ∪ constraints(m)

∪ {c | ∀u ∈ subtasks(m) vst ≤ vsu}
∪ {c | ∀u ∈ subtasks(m) vet ≥ veu}
∪ {vst ≤ vet }

L2 =L1

Consider now the case of the durative action refine-
ment. Let a = (name(a), start(a), end(a), inv(a), d) a du-
rative action. To realize this refinement it is first neces-
sary to slightly modify the definition of the two snap ac-
tions start(a) and end(a) to translate the invariant properties
inv(a) into the POCL logic. This modification consists in
adding inv(a) to the effects of start(a) and to the precondi-
tions of start(a) and end(a) (see Figure 1). It is now possi-
ble to express the invariant properties of a durative task by
classical causal links between the effects of start(a) and the
preconditions of end(a) in accordance with PDDL 2.1 se-
mantics that constrains inv(a) to be checked on the interval
]start(a), end(a)[. More formally, suppose a refines a task t
of a plan π1 = (T1, α1, C1,L1) such that t ∈ T1. Then, a
refines π1 into a plan π2 = (T2, α2, C2,L2) and

T2 = (T1 − {t}) ∪ {vst , vet }
α2 =α1 ∪ {(vst , start(a)); (vet , end(a))}
C2 = C1 ∪ {vst < vet , v

e
t − vst = d}

L2 =L1 ∪ {l | ∀p ∈ inv(a) l = ⟨start(a)
p→ end(a)⟩}

Hierarchical Temporal Planning Event
The particularity of our approach is that it works by inter-
leaving two steps to take advantage of the heuristics devel-
oped for non-temporal hierarchical planning. The first step
is to compile a temporal problem in a non temporal one. To
that end, we refine abstract tasks and durative actions into
instantaneous non temporal actions called snap actions, and
we search for a solution plan by guiding this search with
non temporal POCL HTN heuristics, and by checking con-
straint consistency. The second step is to find time assign-
ments matching the temporal constraints by using a simple
CSP solver.

Figure 1: Our compilation of durative actions into snap ac-
tions. The invariant conditions inv(a) are added to the pre-
conditions of start(a) and end(a) and a causal link pro-
tecting inv(a) (represented as a red dashed line) is added
between the two snap actions.

Algorithm 1: HTEP(S, T ,A,M, s0, π0, g)

1 open← {π0}
2 while open ̸= ∅ do
3 π ← non-deterministically select plan in open
4 flaws← the set of flaws of π
5 if flaws = ∅ then
6 V ← search of time variable assignment of π
7 if V ̸= ∅ then return π and V
8 ϕ← deterministically select a flaw in flaws
9 open← open ∪ solveF law(ω, ϕ)

10 return Failure;

In this section, we present the search procedure imple-
mented in our approach, called HTEP (Hierarchical Tempo-
ral Event Planner). We first give an overview of its search
procedure based on hybrid planning (Bercher, Keen, and Bi-
undo 2014), then we detail the particular way of handling
specific temporal flaws of our approach, and we terminate
by presenting the implemented heuristics.

Search Procedure

The HTEP search procedure is given in Algorithm 1. It takes
as input a hierarchical temporal planning problem and re-
turns a temporal partial plan. The procedure starts by com-
piling the tasks of the initial plan π0 into snap actions (line
1). Recall that π0 contains two special snap actions: t0 with
no precondition but with s0 as effects and t∞ with the goal g
as precondition but no effects and vet0 < vst∞ in C. Then, π0
is added to the pending list of partial plans to explore open
(line 2) and the main loop starts (line 3). At each iteration
a plan π is non-deterministically selected in open (line 4).
Then, the flaws of π are computed (line 5). If the plan has
no flaws (line 6), HTEP searches an assignment of the time
variables of π by using a CSP that matches its constraints.
If such assignment exists (line 8), π is solution. Otherwise,
one flaw is deterministically selected (line 9). Solving this
flaw, generates a new set of partial temporal plans, which
are added to the open list (line 10).

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

30

(a) A Precondition flaw is solved by adding a causal link from a
provider event and the needer event.

(b) A Causal Threat flaw is solved by ordering the threatening event
either before or after the causally linked events.

(c) Decomposition flaws are solved by applying a method, temporal
constraints are applied over start and end point of tasks.

(d) Durative flaws are solved by compiling a durative task into snap
actions.

Figure 2: The four types of flaws encountered by our planner and how to solve them. On every figure, black arrows represent
ordering constraints and red dashed arrows the causal links.

Temporal Flaws

In addition to the classic flaws in POCL (precondition and
causal threat flaws), HTEP requires the management of two
specific types of flaws: the decomposition flaws that are re-
paired by applying a method and by decomposing an ab-
stract temporal task in primitive temporal tasks, and the du-
rative flaws that can be repaired by decomposing a durative
action into snap actions. We detail each flaw encountered in
the following:

• Precondition flaw: This flaw occurs for each precondi-
tion introduced in the partial plan. It is resolved by adding
a causal link between a preceding snap action having as
effect the required precondition. We denote a causal link
c by : t1

p−→ t2. The resolution of this flaw is represented
on Figure 2a.

• Causal threat flaw: There is a causal threat flaw for each
causal link c : t1

p−→ t2 and each snap action a (with
p ∈ del(a)) that is neither ordered before t1 nor ordered
after t2. A causal threat is resolved either by adding a
constraint: a < t1 or t2 < a as represented on Figure 2b.

• Decomposition flaw: As in hybrid planning, decompo-
sition flaw occurs for each abstract task still in the partial
plan. They are solved by decomposing the abstract task
with a method. Note that the decomposed tasks are still
considered as durative and still need to be compiled into
snap actions. This flaw is represented on Figure 2c.

• Durative flaw: A durative flaw occurs for each dura-
tive action still in the plan. In order to solve this flaw,
the durative action is decomposed into two snap actions
representing the start and the end points of the task. Fi-
nally, a causal link protecting the invariant preconditions
is added between the two snap actions. These invariant
preconditions are then added as preconditions of the start
snap action.

Partial Order Planning heuristics
The HTEP search procedure relies on two selection func-
tions. The first one performs a non deterministic choice over
the set of partial temporal plans in the open list, and decides
which partial plan to explore first (line 4). This function is
called plan selection heuristic and greatly impact both the
search performances (e.g. the time required to find a solu-
tion plan) but also the quality of the returned plan (e.g. the
cost of the plan according to some optimization function).
The second selection function, called flaw selection heuris-
tic, selects (line 9) the flaw to be solved in the current partial
plan to explore. Note that every flaw in the partial plan will
eventually have to be solved in order to find a solution net-
work. Hence, the admissibility of a POCL procedure only
depends on the plan selection heuristic. However, the order
in which the flaws are resolved, defined by the flaw selec-
tion heuristic, greatly impacts the search performances of
the procedure. In the following we will present the plan se-
lection and flaw heuristics implemented in HTEP.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

31

Plan selection heuristics In the literature, there are two
main categories of plan selection heuristics. The first type
of heuristics has a POCL related approach which analyzes
the flaws of a partial plan to infer a heuristic value. A well-
known heuristics has been proposed in (Nguyen and Kamb-
hampati 2001) and simply counts the number of open con-
ditions to satisfy in the partial plan. This idea has been fur-
ther refined in PANDA (Bercher, Keen, and Biundo 2014)
where the use of TDG (Task Decomposition Graphs) allows
to also estimate the number of open conditions that will be
introduced by refining the plan. This led to two plan selec-
tion heuristics. The first one denoted hTC computes the car-
dinality of the mandatory tasks that will appear in the partial
plan decomposition. It is usually summed with the number
of flaws remaining in the plan forming a heuristics denoted
hF + TC. The second TDG heuristic is denoted hMME and es-
timates the number of modifications required to refine the
partial plan into a solution one. The hMME has been further
refined to take into account the number of causal links al-
ready introduced into the plan by a heuristic denoted hTDGm.
Finally, FAPE (Bit-Monnot et al. 2020) has proposed a plan
selection heuristics in their chronicle planner. This heuristics
is also an estimation of the remaining effort required to ob-
tain a solution from a partial plan. In the following we will
denote this heuristic hFAPE.

The second type of heuristics adapt heuristics from non
hierarchical planning. The two most notable approaches
have been proposed in (Nguyen and Kambhampati 2001)
where an adaptation of the Fast Forward heuristic (Hoff-
mann and Nebel 2011) has been proposed. In addition, the
ADD heuristics (Baier, Bacchus, and Mcilraith 2009) has
been adapted in the VHPOP planner (Younes and Sim-
mons 2003). These heuristics are very well suited for non-
hierachical POCL planning with task insertion, which is not
considered here.

In that regard, we decided to use the two TDG plan se-
lection heuristics hF + TC and hTDGm used in PANDA and the
plan selection heuristic presented in FAPE for our experi-
mentation.

Flaw selection heuristics When it comes to flaw selection
heuristics, the known strategies aim at reducing the branch-
ing factor of the search space by resolving the flaws with the
fewest number of resolvers first. It is usually expressed as a
priority list to follow. To our knowledge, there is no recent
comparison between the current flaw selection heuristics. In
that regard, we have chosen to implement in HTEP the flaw
selection heuristics of PANDA (Bercher, Keen, and Biundo
2014) (which is the LCFR heuristics presented in (Joslin and
Pollack 1994)) and the priority list presented in FAPE (Bit-
Monnot et al. 2020). Note that the heuristic used in FAPE is
a refinement of the LCFR heuristic: while LCFR prioritizes
the flaws with the fewest resolvers, the FAPE flaw selection
heuristics also prioritizes unrefined tasks and preconditions
first.

Experimentation
In this section, we will compare our Temporal Event ap-
proach with a Chronicle approach. Both approaches have

been been coded and tested on the same device. We have
used as reference the chronicle planner described in (Bit-
Monnot et al. 2020) as it is the current state-of-the-art of hi-
erarchical temporal planning. As both algorithms use a CSP
solver in their procedures, we will use the same CSP solver
as well. All the benchmarks and code used to produce these
results will be freely available for result reproduction.

Experimental Setup
We will compare the results on three indicators:

• Solving time: it represents the time spent to solve the
problem (from instantiation to solution)

• Makespan of the solution: it represents the overall
length of the plan, meaning the time between the initial
state and the final task end point.

The results will be presented by scoring these two indica-
tors with the IPC scoring metric.

In this paper we consider four configurations, which are
presented below:

• HTEP+hTDGm: in this first configuration, HTEP is used
with the hTDGm heuristics described in (Bercher et al.
2017) adapted to our temporal event representation.

• HTEP + hF + PC: in this configuration, the Temporal
Event Planner is used with the first TDG heuristics pro-
posed in (Bercher, Keen, and Biundo 2014) associated
with hF + PC heuristics.

• TE + hFAPE: in this configuration, HTEP is used with
the plan selection heuristics used by the FAPE planner
(Bit-Monnot et al. 2020).

• Chr + hFAPE: this is the chronicle planner encoded to
mimic the behavior of FAPE (Bit-Monnot et al. 2020). It
uses both the plan selection and flaw selection heuristics
described in (Bit-Monnot et al. 2020) and uses a chroni-
cle representation.

Note that all configurations use the same Flaw Selection
heuristics described in (Bit-Monnot et al. 2020).

We chose four temporal planning domains for our tests.
These domains require different levels of concurrency to
be solved. We categorized these problems according to the
three Cushing concurrency categories (Cushing 2007):

• Gripper: this domain is a sequential one, it is the sim-
plest domain with no temporal concurrency required.
These problems are members of the first Cushing (Cush-
ing 2007) category where all solutions are sequential.

• Satellite: this domain is also a sequential one but opti-
mization over the makespan of the solution is possible
(e.g. there are several sequential plans possible with dif-
ferent makespans). These problems are also members of
the first Cushing category.

• Rover: in this domain, concurrency is possible although
not required. The planner can either choose to find a sim-
ple non concurrent plan or a more efficient concurrent
one. These problems are members of the second Cush-
ing category where solutions can either be sequential or
concurrent.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

32

Figure 3: Results for the five configurations, with the IPC metric. Each diagram represents the results on one domain.

• Area scan: this domain models a set of heterogeneous
devices aiming at cooperating in order to scan areas. The
devices can either cooperate to reach their destination
faster or act by their own, resulting in less effective plans.
It presents both sequential and concurrent solution plans,
with numerous makespan optimization possible.

We expressed all domains and problems in HDDL 2.1 lan-
guage proposed by (D. Pellier and Bailon-Ruiz. 2023). All
experiments were run on a single core of a Intel Core i7-
9850H CPU, with a limit of 8GB of RAM over 600 seconds.
The code and benchmarks will be made available if this pa-
per is accepted.

Results
The results are presented on Figure 3.

We can see that there are some tendencies over all do-
mains. On all domains and for both heuristics, the Tempo-
ral Event planner outperforms its chronicle counterpart with
regards to the Solving time metric. HTEP handles non tem-
poral constraints and flaws which leads to simpler plan re-
finements and flaws compared to a Chronicle planner. In our
opinion, this is what explains the discrepancies between the
HTEP + hFAPE and Chr + hFAPE configurations. In addi-
tion, the HTEP approach benefits from the use of classical
HTN heuristics: the HTEP +hTDGm and HTEP +hF + PC
configurations are the best performing ones on all domains.
We can notice that the hF + PC seems to be the best perform-
ing one on the Rover domain while hTDGm is more efficient
on the other domains. As explained in (Bercher, Keen, and
Biundo 2014), the performance of each heuristics depends
on the domain definition of the problem and a heuristics
can be more or less informative depending on the domain.
As a Chronicle approach should handles a larger set of con-
straints it should be able to eliminate partially refined plan

sooner in the refinement process than HTEP. However this
case does not happen often as many HTN domains describe
the necessary temporal ordering through methods and task
decomposition. The main sources of partial plan elimination
are unsolvable non temporal flaws. Overall, it seems that the
HTEP+hTDGm configuration is the most efficient one when
it comes to the Solving Time metric.

Concerning the Makespan, we can see that the Chr +
hFAPE configuration is the most efficient one. As this con-
figuration handles the full temporal constraints, it can pri-
oritize the best one in terms of makespan when two have
equal heuristic value. This leads to higher quality plans in
most domains. On the other hands, the HTEP configurations
remain competitive with the Chronicle approach. The ex-
ception to this is displayed on the Rover domain where the
HTEP + hTDGm configuration is the lowest one makespan
wise. This heuristics aims at finding the solution with the
fewest number of refinement required, regardless of the so-
lution plan makespan. Note that if hTDG is the best perform-
ing one on the Area Scan domain is due to the fact that some
instances have not been solved by others configurations, thus
increasing its score.

Overall, the configuration combining HTEP and the clas-
sical HTN heuristics seems to outperform the Chronicle ap-
proaches. This formalism allows for simpler constraints rep-
resentation and managements. It also benefits from the hy-
brid planning heuristics and the HTN formalism which often
provides the necessary ordering constraints to the planner.

Discussion
All along this paper, we used a compilation of temporal ac-
tions into snap actions by representing the invariant condi-
tion of a temporal action through a POCL causal link. The
invariant are treated as precondition of the start snap action

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

33

and protected until the end snap task through this causal link
(see Figure 1). This compilation implies a that HTEP can not
solve temporal in the third Cushing’s category: in temporal
planning, invariant condition can not be seen as precondition
for the whole temporal action. Instead, they should be seen
as postconditions of the start snap action, meaning that in-
variant condition should be verified right after the execution
of the start. This subtlety actually adds a new layer of com-
plexity in planning as it allows to define necessary concur-
rent actions. This has been demonstrated and explained by
Cushing in his three temporal hierarchical problem classes
definition (Cushing 2007).

Conclusion
In this paper, we have presented an approach to repre-
sent and solve Temporal HTN problems by using Tempo-
ral Events. This approach relaxes the temporal problem in
a simpler one, which allows to apply classical HTN search
heuristics to it. We have compared this approach with the
Chronicle one, which is the current state of the art in hier-
archical temporal planning. We have shown that the Tempo-
ral Event approach outperforms it in terms of time spent to
find a solution and is comparable to it when it comes to the
quality of the solution plans. HTEP can still be improved by
applying other classical HTN search techniques. In addition,
we want to improve the compilation made in HTEP in order
to allow it to solve temporal problems in the third Cushing
category.

References
Abdulaziz, M.; and Koller, L. 2022. Formal Semantics and
Formally Verified Validation for Temporal Planning. In
AAAI Conference on Artificial Intelligence, 9635–9643.
Asuncion, M.; Castillo, L.; Fdez-Olivares, J.; Garcia-Perez,
O.; Gonzalez-Munoz, A.; and Palao, F. 2005. SIADEX: An
interactive knowledge-based planner for decision support in
forest fire fighting. AI Commun., 18: 257–268.
Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Nau,
D. S.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Plan-
ning System. J. of Artif. Intell. Res., 20: 379–404.
Baier, J.; Bacchus, F.; and Mcilraith, S. 2009. A Heuris-
tic Search Approach to Planning with Temporally Extended
Preferences. Artif. Intell., 173: 593–618.
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
et al. 2012. EUROPA: A platform for AI planning, schedul-
ing, constraint programming, and optimization. 4th Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling (ICKEPS).
Bechon, P.; Barbier, M.; Infantes, G.; Lesire, C.; and Vidal,
V. 2014. HiPOP: Hierarchical Partial-Order Planning. In
Starting AI Researchers’ Symposium.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017. An
Admissible HTN Planning Heuristic. In IJCAI, 480–488.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid Plan-
ning Heuristics Based on Task Decomposition Graphs. Pro-

ceedings of the International Symposium on Combinatorial
Search.
Bit-Monnot, A.; Ghallab, M.; Ingrand, F.; and Smith, D. E.
2020. FAPE: a Constraint-based Planner for Generative and
Hierarchical Temporal Planning. CoRR, 2010.13121.
Broxvall, M.; and Jonsson, P. 2003. Point algebras for tem-
poral reasoning: Algorithms and complexity. Artif. Intell.,
149(2): 179–220.
Celorrio, S. J.; Jonsson, A.; and Palacios, H. 2015. Tem-
poral Planning With Required Concurrency Using Classical
Planning. In ICAPS, 129–137.
Cushing, W. 2007. Evaluating Temporal Planning Domains.
ICAPS, 105–112.
D. Pellier, H. F., A. Albore; and Bailon-Ruiz., R. 2023.
HDDL 2.1: Towards Defining an HTN Formalism with
Time. In 6th ICAPS Workshop on Hierarchical Planning
(HPlan 2023).
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artif. Intell., 49(1-3): 61–95.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. of
Artif. Intell. Res., 20: 61–124.
Goldman, R. 2006. Durative Planning in HTNs. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling, 382–385.
Hoffmann, J.; and Nebel, B. 2011. The FF Planning System:
Fast Plan Generation Through Heuristic Search. J. of Artif.
Intell. Res., 14.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
AAAI Conference on Artificial Intelligence, 9883–9891.
Joslin, D.; and Pollack, M. E. 1994. Least-Cost Flaw Repair:
A Plan Refinement Strategy for Partial-Order Planning. In
Hayes-Roth, B.; and Korf, R. E., eds., NCAI, 1004–1009.
Lallement, R.; de Silva, L.; and Alami, R. 2018. HATP:
Hierarchical Agent-Based Task Planner. In AAMAS, 1823–
1825.
Lemai, S. 2004. IXTET-EXEC: planning, plan repair and
execution control with time and resource management.
Milot, A.; Chauveau, E.; Lacroix, S.; and Lesire, C. 2021.
Solving Hierarchical Auctions with HTN Planning. In
ICAPS workshop on Hierarchical Planning.
Nguyen, X.; and Kambhampati, S. 2001. Reviving Partial
Order Planning. In IJCAI, 459–464.
Younes, H. L. S.; and Simmons, R. G. 2003. VHPOP: Ver-
satile Heuristic Partial Order Planner. J. of Artif. Intell. Res.,
20: 405–430.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

34

On the Computational Complexity of Plan Verification, (Bounded)
Plan-Optimality Verification, and Bounded Plan Existence

Songtuan Lin1, Conny Olz2, Malte Helmert3, Pascal Bercher1

1 School of Computing, The Australian National University
2 Institute of Artificial Intelligence, Ulm University

3 Department of Mathematics and Computer Science, University of Basel
{songtuan.lin, pascal.bercher}@anu.edu.au, conny.olz@uni-ulm.de, malte.helmert@unibas.ch

Abstract

In this paper we study the computational complexity of sev-
eral reasoning tasks centered at the bounded plan existence
problem. We do this for standard classical planning and hi-
erarchical task network (HTN) planning and each for the
grounded and the lifted representation. Whereas bounded
plan existence complexity is known for classical planning, it
has not been studied yet for HTN planning. For plan verifi-
cation, results were available for both formalisms except the
lifted representation of HTN planning. We will thus present
the lower bound and the upper bound of the complexity of
plan verification in lifted HTN planning and provide novel
insights into its grounded counterpart, in which we show that
verification is not just NP-complete in the general case, but
already for a severely restricted special case. Finally, we show
the computational complexity concerning the optimality of a
given plan, i.e., answering the question whether such a plan
is optimal, and discuss its connection to the bounded plan ex-
istence problem.

Introduction
Automated planning is the task of finding a course of actions
called a plan which achieves a certain goal. An immense ef-
fort has been devoted to studying the computational com-
plexity of the plan existence problem in the context of both
non-hierarchical (classical) planning (Erol, Nau, and Sub-
rahmanian 1991; Bylander 1994; Helmert 2006; Bäckström
and Jonsson 2011) and hierarchical planning (Erol, Hendler,
and Nau 1996; Geier and Bercher 2011; Alford et al. 2014;
Alford, Bercher, and Aha 2015) which is to decide whether
a planning problem has a solution. In contrast, the number
of research endeavors on the complexity of finding an opti-
mal plan is relatively small. Despite that many approaches
for finding optimal plans have been developed for both clas-
sical planning (Karpas and Domshlak 2009; Pommerening
et al. 2014) and hierarchical planning (Bercher et al. 2017;
Behnke, Höller, and Biundo 2019; Behnke and Speck 2021),
the complexity results only exist in the classical setting but
not in the hierarchical one.

We will discuss the complexity of several problems cen-
tered at the bounded plan existence problem (which is a
standard way of framing the problem of finding an optimal
solution as a decision problem). Our discussion starts with
the plan verification problem, which serves as the basis for

the investigation of the bounded plan existence problem, and
ends up with the plan optimality verification problem and its
extension, the bounded plan optimality verification problem.
Plan optimality verification is to verify whether a plan is an
optimal solution to a planning problem, and its bounded ver-
sion is to check whether the length of a given plan is not far
away from the length of an optimal one by some bound.

We will investigate some general properties of these prob-
lems and discuss their complexity results in the specific con-
text of classical planning (Ghallab, Nau, and Traverso 2004)
and Hierarchical Task Network (HTN) planning (Bercher,
Alford, and Höller 2019), which is the most commonly used
hierarchical planning (Ghallab, Nau, and Traverso 2004;
Bercher, Alford, and Höller 2019) formalism. One impor-
tant reason for discussing all these results, which are sum-
marized in Tab. 1, is that they can serve as a reference for
future research endeavors in related disciplines.

Concretely, for plan verification, although the complexity
is well-developed for classical planning and grounded HTN
planning (Behnke, Höller, and Biundo 2015), no investiga-
tions have been done for lifted HTN planning. Here, we will
present the lower bound and the upper bound of the com-
plexity of lifted HTN plan verification, which turns out to be
significantly harder compared to its grounded counterpart.

For the bounded plan existence problem, we will discuss
its complexity in terms of both the encoding size and the
magnitude of the bound. For this, we follow the methodol-
ogy by Bäckström and Jonsson (2011) which encodes the
bound in binary and in unary, respectively. Lastly, we will
discuss the connection between the bounded plan existence
problem and the plan optimality verification problem and
present the complexity results for the latter.

Background
We start by presenting the notations that will be used
throughout the paper together with the planning formalisms
on which the complexity results are developed.

Size of Objects Given an arbitrary object x, e.g., x can be
a number, a problem instance, etc., we say that the size of x,
written ∥x∥, is the length of a binary string which encodes
the object x. When studying the complexity of a problem,
accounting for the size of the problem is crucial because the
runtime of a certain algorithm (operation) for the problem

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

35

Plan Verification k-length Plan Existence Plan Optimality Verification Bounded Plan Optimality Verification
k in binary k in unary plan given only plan length given

C
la

ss
ic

al

gr
ou

nd In P PSPACE-complete NP-complete coNP-complete coNP-complete PSPACE-complete
(Bylander 1994) (Bäckström and Jonsson 2011) Prop. 3 Prop. 4 Prop. 5

lif
te

d In P NEXPTIME-complete NP-complete coNP-complete coNP-complete coNEXPTIME-complete
(Erol, Nau, and Subrahmanian 1991) Thm. 4 Prop. 3 Prop. 4 Prop. 5

H
ie

ra
rc

hi
ca

l

gr
ou

nd NP-complete NEXPTIME-complete NP-complete coNP-complete coNP-complete coNEXPTIME-complete
Prop. 2 Thm. 3 Thm. 5 Prop. 3 Prop. 4 Prop. 5

lif
te

d

PSPACE-hard PSPACE-hard PSPACE-hard PSPACE-hard
Thm. 1, Cor. 1 NEXPTIME-complete Thm. 6 Prop. 3 Prop. 4 coNEXPTIME-complete

In NEXPTIME Thm. 3 In NEXPTIME In coNEXPTIME In coNEXPTIME Prop. 5
Thm. 2 Thm. 6 Prop. 3 Prop. 4

Table 1: Summary of the complexity results and the respective theorems. Note that we demand here that a solution to an HTN planning
problem is an action sequence, which is different from the standard definition of solutions where a solution is a primitive task network. The
plan optimality verification problem and the bounded plan optimality verification problem with the plan given explicitly are semantically
equivalent, and they are the complement of the bounded plan existence problem with the bound given in unary. The bounded plan optimality
verification problem with only the plan length given is the complement of the bounded plan existence problem. As a special case, plan
optimality verification with only the length of a plan being given is equivalent to setting the bound to zero in the bounded plan optimality
verification (where the plan is also not given explicitly), and hence it is also the complement of the bounded plan existence problem (cf.
Prop. 6). NP-completeness of plan verification in grounded HTN planning was proved (Behnke, Höller, and Biundo 2015). We show that it
holds even in a severely restricted case.

is measured with respect to the problem size. Notably, the
size of an object varies in how it is encoded, e.g., a number
can be encoded either in binary or in unary, which can affect
the complexity of the problem. As an example, the unary
encoding of 5 is “11111”, and its binary encoding is “101”.

Grounded Classical Planning A grounded classical plan-
ning problem is a tuple Π = (D, sI , g) whereD = (F,A, α)
is called the domain of Π. F is a (finite) set of propositions,
A is a (finite) set of action names (or actions for short), and
α : A → 2F × 2F × 2F is a function mapping each action
a ∈ A to its precondition, add list, and delete list, written
α(a) = (prec(a), add(a), del(a)). sI ∈ 2F is the initial
state of Π and g ⊆ F the goal description.

Generally speaking, the objective of (grounded) classical
planning is to find an action sequence which turns the ini-
tial state into another state where the goal description is sat-
isfied. Formally, a state s in classical planning is a set of
propositions, i.e., s ∈ 2F . Applying an action a ∈ A in a
state s will result in a new state s′ with s′ = (s \ del(a)) ∪
add(a). An action a is applicable in a state s if prec(a) ⊆ s.
In other words, the precondition of a is satisfied in s. For
convenience, we write s →a s

′ to indicate that the action a
is applicable in the state s, and the state s′ is obtained by ap-
plying a in s. Further, given a state s and an action sequence
π = ⟨a1 · · · an⟩ (n ∈ N), we write s→∗

π s
′ for some state s′

to indicate that s′ is obtained by applying π in s, that is, there
exists a state sequence ⟨s0 · · · sn⟩ such that s0 = s, sn = s′,
and for each 1 ≤ i ≤ n, si−1 →ai

si. Consequently, a solu-
tion to a (grounded) classical planning problem is an action
sequence π such that sI →∗

π s
′ for some state s′ and g ⊆ s′.

Lifted Classical Planning The lifted classical planning
formalism is an extension of the grounded one and is defined
on the alphabet of a first-order language Σ = (V,O,R)
where V is a set of variables, O a set of objects, and R
a set of predicates. A predicate p ∈ R is of the form
p = P (v1, · · · , vn) for some n ∈ N where P is called
the predicate’s name, and vi ∈ V for each 1 ≤ i ≤ n.

Substituting every variable in a predicate with an object is
called grounding the predicate, and it is characterized by a
variable substitution function ϱ : V → O. More concretely,
given a variable substitution function ϱ, grounding the predi-
cate p according to ϱ results in the grounded predicate, writ-
ten pJϱK, with pJϱK = P (ϱ(v1), · · · , ϱ(vn)). In particular,
a grounded predicated is equivalent to a proposition in the
grounded classical planning formalism.

A lifted planning problem is again a tuple Π = (D, sI , g)
with D = (Σ,A, α) being its domain. In the lifted setting,
A is a set of action schemas. An action schema, a ∈ A, also
consists of an action name and a tuple of variables, writ-
ten A(v1, · · · , vn) (n ∈ N) with A being the action name.
α maps an action schema to its precondition, add list, and
delete list, written α(a) = (prec(a), add(a), del(a)), each
of which is a set of predicates P (vi1 , · · · , vij) such that
vir ∈ {v1, · · · , vn} for each r ∈ {1, · · · , j}.

An action schema a can also be grounded into an action
a in the grounded setting by a variable substitution func-
tion ϱ, written a = aJϱK. Notably, when grounding an ac-
tion schema, all predicates in its precondition, add list, and
delete list are grounded simultaneously by the same variable
substitution function.

Lastly, sI and g are two sets of grounded predicates (i.e.,
propositions) which are the initial state and the goal descrip-
tion of Π, respectively. A solution to Π is an action se-
quence π = ⟨a1 · · · an⟩ such that sI →∗

π s
′ for some state s′

with g ⊆ s′, and for each ai with 1 ≤ i ≤ n, there exist an
action schema a ∈ A and a variable substitution function ϱ
such that ai = aJϱK.

Notably, one can obtain a grounded planning problem Π
from a lifted one Π by grounding every predicate and action
schema with all possible variable substitution functions, and
the problem Π produced in such a way has the same solution
set as Π. One important remark is that ∥Π∥ is exponential in
∥Π∥, that is, ∥Π∥ = O(2∥Π∥q

) for some constant q ∈ N.

Grounded HTN Planning We now reproduce the for-
malism of the grounded Hierarchical Task Network (HTN)

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

36

planning (Bercher, Alford, and Höller 2019). A grounded
HTN planning problem Π is a tuple (D, sI , tnI , g) with
D = (F,A, C,M, α) being its domain. A grounded HTN
planning problem is an extension of a grounded classical one
in the sense that F , A, α, sI , and g are defined in the same
way as their counterparts in the classical setting. An action
a ∈ A in HTN planning is also called a primitive task. Two
components, C and M, which are not in the classical for-
malism, are the set of compound tasks and of methods, re-
spectively. A method (c, tn) ∈M decomposes a compound
task c ∈ C into a so-called task network tn, which is es-
sentially a partial order multiset of primitive and compound
tasks. Formally, a task network tn is a triple (T,≺, γ) where
T is a set of identifiers, ≺ ⊆ T × T is a partial order de-
fined over T , and γ : T → A ∪ C is a function that maps
each identifier to a task. Two task networks, tn = (T,≺, γ)
and tn′ = (T ′,≺′, γ′), are said to be isomorphic, written
tn ∼= tn′, if there exists a bijective mapping φ : T → T ′

such that γ(t) = γ′(φ(t)) for any t ∈ T , and for any
t, t′ ∈ T , (t, t′) ∈ ≺ iff (φ(t), φ(t′)) ∈ ≺′. The last compo-
nent tnI in Π is the initial task network.

The notion of decomposing a compound task can also
be extended to decomposing a task network. A task net-
work tn = (T,≺, γ) is decomposed into another one
tn′ = (T ′,≺′, γ′) by some method m = (c, tn†), writ-
ten tn ⇒m tn′, if there exists an identifier t ∈ T and a
task network tn∗ = (T ∗,≺∗, γ∗) with tn∗ ∼= tn† such that
1) T ∗ ∩ T = ∅, 2) γ(t) = c, 3) T ′ = (T \ {t}) ∪ T ∗,
4) γ′ = (γ \ {(t, c)})∪γ∗, and 5)≺′ = (≺\≺t)∪≺∗ ∪≺δ

with≺t = {(t′, t) | (t′, t) ∈ ≺}∪{(t, t′) | (t, t′) ∈ ≺}, i.e.,
≺t is the set of all ordering constraints in tn that are asso-
ciated with t, and ≺δ = {(t1, t2) | t2 ∈ T ∗, (t1, t) ∈ ≺} ∪
{(t2, t1) | t2 ∈ T ∗, (t, t1) ∈ ≺}, i.e., ≺δ specifies the posi-
tion of tn∗ in tn′ with respect to the task t replaced by it.
Further, let tn and tn′ be two task networks and m a se-
quence of methods. We use tn ⇒∗

m tn′ to indicate that tn′

is obtained from tn by applying m.
Like classical planning, (grounded) HTN planning is also

to find an action sequence (i.e., a plan) which turns sI into
a state satisfying g. However, in HTN planning, such a plan
must be obtained from the initial task network by decompo-
sitions. Concretely, a plan π is a solution to an HTN planning
problem Π if sI ⇒∗

π s with g ⊆ s for some state s, and there
exists a task network tn = (T,≺, γ) such that tnI ⇒∗

m tn
for some method sequence m, and tn has a linearization tn
that forms π. A linearization tn = ⟨t1 · · · t|T |⟩ of tn is a to-
tal order of T which respects ≺, and by tn forming π, we
mean that π = ⟨γ(t1) · · · γ(t|T |)⟩. For convenience, we use
γ(tn) to denote the task sequence formed by tn. Please note
that there is a minor difference compared to standard HTN
literature (Bercher, Alford, and Höller 2019; Erol, Hendler,
and Nau 1996) in our solution definition. In our definition,
a solution is an action sequence, which we argue makes the
most sense. In standard literature, a solution is a primitive
task network having an executable linearization.

Lifted HTN Planning A lifted HTN planning problem is
a tuple Π = (D, sI , tnI , g) with D = (Σ,A, C,M, α) be-
ing its domain where Σ = (V,O,R), A, and α are de-

fined in the same way as that in lifted classical planning.
Every action schema is also called a primitive task schema.
C is now a set of compound task schemas and M a set of
method schemas. A compound task schema c ∈ C is simply
a compound task name together with a tuple of variables. A
method schema m is a tuple (c, tn) where c is a compound
task schema and tn a task network schema. A task network
schema is again a tuple (T,≺, γ) where T and ≺ are iden-
tical to those in a grounded task network, and γ maps each
identifier to a task schema.

A task, task network, or method schema x can again be
grounded by some variable substitution function ϱ : V → O,
written xJϱK. When grounding a task network schema tn
with a substitution function ϱ, all task schemas in tn are
grounded simultaneously by ϱ, and for any method schema
m = (c, tn) with mJϱK = (cJϱK, tnJϱK). A grounded task
schema and a grounded method schema are equivalent to a
task and a method in the grounded setting, respectively.
sI and g are again the initial state and the goal descrip-

tion consisting of propositions, and tnI is the grounded ini-
tial task network. An action sequence π is a solution to a
lifted HTN planning problem if sI →∗

π s for some state s
with g ⊆ s, and there exists a grounded method sequence
m = ⟨m1 · · ·mn⟩, n ∈ N, such that for each 1 ≤ i ≤ n,
there exists a method schema m ∈ M with mJϱK = mi for
some ϱ, and tnI ⇒∗

m tn for some primitive grounded task
network tn which possesses a linearization forming π.

Similar to lifted classical planning, one could also ground
a lifted HTN planning problem without changing its solution
set, and the size of the grounded problem is again exponen-
tial in that of the lifted one.

Proposition 1. Let Π be a lifted (classical or hierarchical)
planning problem and Π its grounded counterpart. Then it
holds that ∥Π∥ = O(2∥Π∥q

) for some constant q ∈ N.

Plan Verification
Having presented all planning formalisms involved in this
paper, we move on to discuss the complexity results for the
plan verification problem, which is to decide, given a plan-
ning problem and a plan, whether the plan is a solution to
the planning problem.

The complexity results for classical planning are obvi-
ous. In the grounded setting, a plan can clearly be validated
in polynomial time by checking whether it is executable
and satisfies all goals. This is well-known and exploited by
verifiers like VAL (Howey, Long, and Fox 2004). Given a
ground plan but a lifted problem description, the problem
gets slightly more complicated because for each action in the
plan we need to check whether it can be created by ground-
ing some lifted action schema. This can easily be checked
in polynomial time (just match constants to the respective
variables). As a result, the plan verification problem for both
grounded and lifted classical planning is in P.

In contrast, the plan verification problem in HTN planning
is more computationally expensive. Previous works have al-
ready shown that it is already NP-complete in the grounded
setting (Behnke, Höller, and Biundo 2015; Bercher, Lin, and
Alford 2022). Those investigations rely on the standard def-

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

37

inition of solutions being task networks that possess some
executable linearization, whereas we define such a lineariza-
tion as the solution itself. In fact, even with our solution cri-
teria, HTN plan verification is still NP-complete in grounded
HTN planning (Behnke, Höller, and Biundo 2015, Thm. 2).

The existing hardness proof (Behnke, Höller, and Biundo
2015) for the verification problem (in the context of our defi-
nition of solutions) relies on finding a decomposition hierar-
chy, i.e., hardness of the problem adheres to decomposition
that results in the given plan. We can further improve this re-
sult by showing that NP-hardness already holds even if the
initial task network is primitive. This follows trivially from
the fact that it is NP-complete to decide whether an action
sequence is a linearization of a partial order task network
(Lin and Bercher 2023).
Proposition 2. The grounded HTN plan verification prob-
lem is NP-complete. This holds even in the special case
where the initial task network of the given planning prob-
lem is primitive.

Notably, as a special case, the plan verification problem
in the context of total order (TO) HTN planning is poly-
time decidable (Behnke, Höller, and Biundo 2015). A TO-
HTN planning problem is such that the initial task network
is totally ordered, and every method decomposes a com-
pound task into a total order task network as well. Solving a
TOHTN planning problem is computationally cheaper than
solving a partial order one, and many theoretical investiga-
tions into properties of TOHTN planning have been made
which have great potential to be utilized to solve TO prob-
lems more efficiently (Olz, Biundo, and Bercher 2021). The
poly-time decidability of TOHTN plan verification holds be-
cause a (grounded) TOHTN planning problem is essentially
equivalent to a context-free grammar (CFG) (Höller et al.
2014), and hence, the plan verification problem is equivalent
to the parsing problem in TOHTN planning. Bearing this
connection, many efficient TOHTN plan verifiers (Barták
et al. 2021; Lin et al. 2023) have been developed by exploit-
ing CFG parsers.

Now we extend our investigation from the grounded set-
ting to the lifted one. Note that in the lifted setting, the plan
to be verified is still grounded, but the planning problem is
represented in the lifted way. Unlike the case in classical
planning, hardness of the plan verification problem increases
dramatically in lifted HTN planning. Concretely, we will
show that plan verification is already PSPACE-hard even
for lifted TOHTN planning.
Theorem 1. The plan verification problem in lifted TOHTN
planning is PSPACE-hard.

Proof. We reduce from the plan existence problem in
grounded classical planning. Suppose Π = (D, sI , g) with
D = (F,A, α) is a grounded classical planning problem.
For convenience, we assume that, without loss of generality,
F = {p1, · · · , pn} with n ∈ N and g =

{
pi1 , · · · , pij

}
.

The lifted HTN planning problem we are to construct has
only two objects, namely, 0 and 1. At the central of the re-
duction is the compound task schema c which is of the form

c = State(x1, · · · , xn, v0, v1)

with n = |F |. Each xi with 1 ≤ i ≤ n represents the cor-
responding pi ∈ F . Thus, a grounded version of the schema
c encodes a state. Our construction will ensure that v0 is
always grounded to 0 and v1 to 1 in decomposition, which
is useful for simulating state transitions (and which can be
done by the construction of the initial task network). More
concretely, we will construct method schemas that decom-
pose c to encode actions (in the given classical problem).
For each action a ∈ A, we construct a method schema ma

which decomposes the task schema

State(x′1, · · · , x′n, v0, v1)
into another one State(x∗1, · · · , x∗n, v0, v1) such that for
all 1 ≤ i ≤ n, x′i = v1 if pi ∈ prec(a), x∗i = v0 if pi ∈
del(a), x∗i = v1 if pi ∈ add(a), and x′i = x∗i if none of
the previous holds. Intuitively, all x′i’s with x′i = v1 together
enforce that the precondition of a must hold (because we
will ensure that v1 can only be grounded to 1), and similarly,
those x∗i ’s with x∗i = v1 (resp. x∗i = v0) enforce that the
respective propositions should be added (resp. deleted).

As an example for the construction, consider a grounded
classical problem which has three propositions {p1, p2, p3}
and three actions {a1, a2, a3}. The precondition and effects
of each action are depicted in the most left column of Fig. 1
(inside the box labeled with construction). Those on the left
side of an action are preconditions, and those on the right
are effects. Each effect with a negation symbol in front of
it (e.g., ¬p1 in the action a1) is in the delete list of the re-
spective action, otherwise it is in the add list. On the right
side of each action is the corresponding method schema that
encodes it. For instance, the method schema with respect to
a1 decomposes the task schema

State(v1, x2, x3, v0, v1)

into State(v0, x2, v1, v0, v1). The first v1 in the decom-
posed task schema is changed to v0 because the proposition
p1 is in the delete list of a1, and x3 becomes v1 because p3
is in the add list. x2 is unchanged because the execution of
a2 will not affect p2.

Having simulated each action, we now encode the initial
state sI of the classical problem and enforce that the param-
eters v0 and v1 of c can only be grounded to 0 and 1 in
decomposition, respectively. This is done by the construc-
tion of the initial task network of the HTN problem, which
consists solely of one grounded compound task:

State(y1, · · · , yn, 0, 1)
where for each i with 1 ≤ i ≤ n, yi = 1 if the respective pi
is in sI , otherwise, yi = 0. By letting v0 = 0 and v1 = 1 in
the initial task, we enforce that the values of those two vari-
ables cannot be changed in decomposition, because in each
method schema we construct, the variables v0 and v1 are
always inherited down from the task schema to be decom-
posed to the subtask schema. Hence, the correctness of our
construction for simulating executions of actions follows.

Recall the classical problem presented in Fig. 1, the right
side of the figure illustrates how the decomposition hierar-
chy simulates the actions’ executions, using our construction
of method schemas. Concretely, assume that the initial state

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

38

State(1, 0, 0, 0, 1)sI = {p1}

State(v0, x2, v1, v0, v1)

State(v1, x2, x3, v0, v1)
ma1

v0 7→ 0, v1 7→ 1
x2 7→ 0, x3 7→ 0

State(0, 0, 1, 0, 1)

State(v1, x2, v1, v0, v1)

State(v1, v1, v1, v0, v1)

ma2
State(x1, x2, v1, v0, v1)

State(v1, x2, v1, v0, v1)

ma3

v0 7→ 0, v1 7→ ×
x1 7→ 1, x2 7→ 0

v0 7→ 0, v1 7→ ×
x2 7→ 0

· · · · · ·

a1
p1

p3

¬p1 State(v0, x2, v1, v0, v1)

State(v1, x2, x3, v0, v1)
ma1

a2
p1

p3

p2
State(v1, v1, v1, v0, v1)

State(v1, x2, v1, v0, v1)
ma2

a3
p3 p1

State(v1, x2, v1, v0, v1)

State(x1, x2, v1, v0, v1)
ma3

Construction

Figure 1: An example of using a decomposition hierarchy to simulate actions’ executions in a classical planning problem. The
left side shows how each action is encoded by a method schema, and the right side shows the decomposition.

of the classical problem is {p1}. This results in the grounded
initial compound task:

State(1, 0, 0, 0, 1)

because only p1 is true in the state. a1 is the only action
that is applicable in the initial state. As a consequence, only
the method schema ma1 has a corresponding grounded ver-
sion that can decompose the initial compound task. Specif-
ically, for the action a2, since it requires p3 which is not
in the initial state, it leads to a contradiction that v1 should
be grounded to both 0 and 1 simultaneously. The sim-
ilar situation also happens to a3. The decomposition of
the initial compound task results in a new compound task
State(0, 0, 1, 0, 1) which encodes the state obtained by ap-
plying a1 in the initial state.

Lastly, we will encode the goal description and the crite-
rion that the goal must be satisfied. To this end, we first con-
struct a method schema which decomposes the task schema
State(x1, · · · , xn, v0, v1) into a sequence ⟨c′1 · · · c′n⟩ of
compound task schemas with

c′i = Pi(xi)

for each 1 ≤ i ≤ n. The compound task schema Pi(x) can
either be decomposed into an action schema

ai = ValuePi(x)

or into an empty task network. The precondition, positive
effects, and negative effects of ai are all empty. We can view
a grounded version of ai as an assertion of the value of the
proposition pi in a state. If ai is grounded by letting x = 1,
it means that pi holds in the respective state, and vice versa.

The plan to be verified should be ⟨ai1 , · · · , aij ⟩ where
aik = ValuePik(1) for each 1 ≤ k ≤ j (recall that
each pik is a proposition in the goal). This is to say that for
each proposition in the goal, its truth value must be asserted.
Since each task schema Pi(x) can be decomposed into an
empty task network no matter what object the variable x is
grounded to, we can ensure that any action that is not in the

constructed plan can be easily eliminated. Thus, the classi-
cal planning problem has a solution iff the constructed plan
is a solution to the HTN planning problem.

A by product of the presented proof is that it shows the ex-
pressive power of a decomposition hierarchy, i.e., a decom-
position hierarchy can carry out certain semantics. For in-
stance, Fig. 1 shows how the semantics of actions is encoded
by a decomposition hierarchy. Thus, we also believe that the
proof here can serve as a counter-argument for the incorrect
commonsense that decomposition hierarchies in hierarchical
planning can only serve as a guidance for finding plans but
do not carry any information (semantics).

As a simple corollary of Thm. 1, PSPACE-hardness holds
as well in general lifted HTN planning.

Corollary 1. The plan verification problem in lifted HTN
planning is PSPACE-hard.

For membership, one can observe that the lifted HTN plan
verification problem is in NEXPTIME. This is because for
any lifted HTN planning problem Π and a plan π, we can
first ground Π into a grounded one Π in exponential time
according to Prop. 1. Since the grounded HTN plan verifica-
tion problem is in NP, we can non-deterministically verify
whether π is a solution to Π in polynomial time with respect
to ∥Π∥ and ∥π∥. It thus follows that whether π is a solution
to Π can be checked non-deterministically in exponential
time with respect to ∥Π∥.
Theorem 2. The plan verification problem in lifted HTN
planning is PSPACE-hard and is in NEXPTIME.

In fact, one can recognize that plan verification for lifted
TOHTN planning is actually in EXPTIME. This is because
the grounded TOHTN plan verification problem is in P, and
hence, after grounding a lifted problem Π into a grounded
one Π, we can verify deterministically whether a given plan
is a solution in polynomial time with respect to ∥Π∥, which
is exponential time with respect to ∥Π∥, e.g., by using the
CYK algorithm for TOHTN problems (Lin et al. 2023).

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

39

Bounded Plan Existence
We now move on to discuss the complexity of the bounded
(k-length) plan existence problem, which is to decide, given
a planning problem and a k ∈ N, whether there is a solu-
tion plan π to the problem of length up to k. We start with
some general properties of this problem and then discuss its
complexity in specific planning formalisms.

One insight into this problem is that it can always be de-
cided non-deterministically by a two-steps procedure inde-
pendent of any planning formalism, namely, we can first
guess a plan of length up to the bound k and then verify
whether this plan is a solution to the given planning problem.
Further, notice that since the bound k is normally encoded in
binary, guessing a plan that is bounded in length by k would
thus require exponential time complexity. On top of this ob-
servation, we can obtain two properties which assert NEXP-
TIME-membership of the bounded plan existence problem
for a planning formalism if these two properties hold in that
formalism. Concretely, the two properties are as follows:
1) An action can be encoded in polynomial bits with respect

to the size of the planning problem. This thus implies that
guessing a plan of length up to the bound k can be done
in time O(2∥k∥

q

) for some constant q ∈ N.
2) Verifying whether a plan is a solution to the planning

problem can be done non-deterministically in exponen-
tial time with respect to the encoding size of the plan-
ning problem and of the plan, i.e., the plan verification
problem is in NEXPTIME.

These two properties together ensure that guessing and ver-
ifying a plan can be done in exponential time.

As a result, the bounded plan existence problem in both
classical and HTN planning, including both the grounded
and the lifted setting, is in NEXPTIME. The problem is
actually PSPACE-complete (Erol, Nau, and Subrahmanian
1991; Bylander 1994) in grounded classical planning (note
that this is not a contradiction because PSPACE is a subset
of NEXPTIME), making it as hard as its unbounded version
(Bylander 1994). NEXPTIME-completeness of the prob-
lem in lifted classical planning has also been proved by Erol,
Nau, and Subrahmanian (1991), and its unbounded counter-
part in the lifted setting is EXPSPACE-complete. For HTN
planning, we will show that NEXPTIME-hardness holds as
well in both the grounded and lifted HTN planning.
Theorem 3. The k-length (bounded) plan existence problem
for both grounded and lifted HTN planning is NEXPTIME-
complete.

Proof. Membership follows from Prop. 2 and Thm. 2. For
hardness, we first show that the problem is NEXPTIME-
hard in the grounded setting. We reduce from the grounded
acyclic HTN plan existence problem. The basis for such a
reduction is the fact shown by Behnke et al. (2016) that for
any acyclic HTN planning problem, the length of a solution
is bounded by an exponential number k∗ with

k∗ =

(
max

(c,(T,≺,γ))∈M
|T |
)|A|

Hence, by letting k = k∗, deciding whether an acyclic HTN
planning has a solution is equivalent to deciding whether that

acyclic HTN problem has a solution bounded in size by k.
NEXPTIME-hardness of the bounded plan existence prob-
lem in grounded HTN planning follows immediately. Since
a grounded HTN problem can be viewed as a special case of
a lifted one, it follows that NEXPTIME-hardness holds as
well in lifted HTN planning.

Encoding the Bound in Unary Our discussion about the
k-length plan existence problem so far is restricted to the
case where the bound k is given in binary. That is, the encod-
ing size of k is growing exponentially while its magnitude
is growing polynomially. This however might contradict the
intention of giving such a bound. More concretely, in prac-
tice, when a user uses a planner to find a plan of length up
to a certain bound, the user is actually concerned with the
magnitude of this bound but not the encoding size.

Bearing this scenario, Bäckström and Jonsson (2011) in-
vestigated the k-length plan existence problem from a dif-
ferent aspect where they developed its complexity with re-
spect to the magnitude of the bound. This is done by assum-
ing that the bound is encoded in unary. The authors studied
this for finite functional planning (FFP) and proved its NP-
completeness. They further justified that a grounded classi-
cal planning problem can be reduced to an FFP problem in
poly-time (Bäckström and Jonsson 2011, Prop. 1) (note that
this does not hold for the lifted formalism), and hence, NP-
completeness also holds in grounded classical planning.

We now extend the result by Bäckström and Jonsson to
lifted classical planning and HTN planning. Notice first that
when k is given in unary, we can again identify two proper-
ties of a planning formalism which assert NP-membership
and which are similar to the previous two that assert NEX-
PTIME-membership. Concretely, for any planning formal-
ism, its k-length plan existence problem with k given in
unary is in NP if the formalism holds the following two
properties: 1) a plan step can be encoded in polynomial bits,
and 2) the plan verification problem for the formalism is
in NP. This is because the first property now implies that
guessing a plan of length up to the bound k can be done
in polynomial time with respect to the size of the planning
problem and k, due to the unary encoding of k. Conse-
quently, the time complexity of the entire guess-and-verify
procedure can be done in polynomial time.

Hence, NP-membership in lifted classical planning and
grounded HTN planning follows immediately because these
formalisms preserve the two properties. In particular, NP-
hardness in lifted classical planning holds as well due to NP-
hardness in the grounded setting.

Theorem 4. The k-length plan existence problem for lifted
classical planning is NP-complete if k is encoded in unary.

Next we will prove NP-hardness for grounded HTN plan-
ning (and hence NP-completeness). Our proof relies on
the reduction proposed by Erol, Hendler, and Nau (Erol,
Hendler, and Nau 1996) from a grounded classical planning
problem to a regular TOHTN problem1 (which thus shows

1A regular HTN problem is such that a compound task can only
occur at the last place in a method, i.e., all other tasks are ordered
before it.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

40

c

a c a

Figure 2: Simulating a grounded classical planning problem.

that total order regular HTN problems are PSPACE-hard).
Theorem 5. The k-length plan existence problem for
grounded HTN planning is NP-complete, if k is encoded in
unary.

Proof. Membership for both the grounded and lifted for-
malisms has been obtained. We will first show NP-hardness
for the grounded setting, which thus implies NP-hardness
for the lifted one.

We reduce from the k-length plan existence problem for
grounded classical planning with k given in unary. Given a
grounded classical planning problem Π = (D, sI , g) with
D = (F,A, α) and a k ∈ N in unary, we first simulate the
classical problem by an HTN problem, using the construc-
tion proposed by Erol, Hendler, and Nau (Erol, Hendler, and
Nau 1996). The HTN planning problem has the same ac-
tion set as the classical one and solely one compound task
c (which thus also serves as the initial task network). For
each a ∈ A, we construct two methods m1 and m2 with
m1 = (c, ({t} , ∅, {(t, a)})) and

m2 = (c, ({t1, t2} , {(t1, t2)} , {(t1, a) , (t2, c)}))
An illustration of this construction is shown in Fig. 2. It sim-
ulates selections of actions in finding a solution to the clas-
sical planning problem. The initial state and the goal of the
HTN problem are also identical to the classical one. The re-
duction can then be done by copying k (in unary).

Unfortunately, NP-membership does not hold in lifted
HTN planning because the plan verification problem in
lifted HTN planning is PSPACE-hard.
Theorem 6. The k-length plan existence problem in lifted
HTN planning with k given in unary is PSPACE-hard and is
in NEXPTIME.

Proof. Membership: Membership can be obtained by first
guessing a plan of length up to k in poly-time (because k is
encoded in unary) and then verifying non-deterministically
whether it is a solution to a lifted HTN problem in exponen-
tial time (cf. Thm. 2).

Hardness: We again reduce from the grounded classical
plan existence problem. The construction of the lifted HTN
planning problem is identical to the one presented in the
proof for Thm. 1 except few changes. More specifically,
for each action schema ValuePi(x), we construct a pred-
icate Propi(x) as its positive effect, and the goal of the
lifted HTN problem is

{
Propij (1) | pij ∈ g

}
where g is the

goal description of the grounded classical planning problem.
These modifications thus encode the solution criteria for the

grounded classical planning problem and can replace the
constructed plan that is to be verified in the proof for Thm. 1.
Lastly, notice that any solution plan to the constructed lifted
HTN planning problem is of length at most |F | (where F is
the proposition set of the given grounded classical planning
problem). We can simply let k = |F |, and hence, by con-
struction, the classical planning problem has a solution iff
the constructed lifted HTN planning problem has one which
is of length smaller or equal to k.

Verification of Plan Optimality
Lastly, we discuss the problem of plan optimality verifica-
tion, which is to decide, given a planning problem and a
plan, whether there exist no other solution plans of length
smaller than that of the given one. Many tasks of great im-
portance are centered on plan optimality verification, for in-
stance, the task of model reconciliation and of plan post-
optimization. The former one is to change a planning prob-
lem’s domain with the least number of changes so as to turn
a plan into an optimal solution, and this task is Σp

2-complete
(Sreedharan, Bercher, and Kambhampati 2022). The latter
one is concerned with whether a plan can be further op-
timized by removing some redundant actions in it, and it
is NP-complete in both classical planning (Fink and Yang
1992) and POCL planning (Olz and Bercher 2019).

Despite that the complexity results for those related prob-
lems are well-developed, the problem of plan optimality ver-
ification itself has not yet received particular attention. One
remark of great importance is that the plan optimality ver-
ification problem can be viewed as a complement of the
bounded plan existence problem with the bound given in
unary. The reason is that each action in the plan π provided
in the plan optimality verification problem does not matter.
What we are really concerned with is the length |π| of that
plan. Thus, asking whether the plan π is an optimal one is
identical to asking whether there exist no solution plans of
length smaller or equal to |π| − 1 with |π| − 1 encoded in
unary, which is a complement of the bounded plan existence
problem with the bound given in unary.

As a result, the complexity of the plan optimality verifica-
tion problem for a specific planning formalism is naturally
the complement of that of the bounded plan existence prob-
lem with the bound given in unary for that formalism.

Proposition 3. The plan optimality verification problem for
classical planning, including both the grounded and lifted
representations, and grounded HTN planning is in coNP-
complete, and it is in coNEXPTIME and is PSPACE-hard
for lifted HTN planning.

PSPACE-hardness in lifted HTN planning is due to the
fact that PSPACE = coPSPACE (Arora and Barak 2009).

Since optimality is often diametral to efficiency, and find-
ing a strict optimal solution is time-consuming in practice,
it is quite often the case that a solution whose length lies in
an acceptable range of the length of an optimal solution is
practically more desirable.

Bearing this scenario, we thus formulate the problem of
bounded optimality verification, which is to decide, given a

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

41

planning problem Π, a solution plan π to Π, and a bound
k, whether the length |π∗| of an optimal solution π∗ to Π
satisfies |π| < |π∗| + k. In other words, we want to verify
whether the length of π is not larger than the length of an
optimal solution by the bound k. (Note that both |π∗| and π∗

are not given as input.)
In spite of the fact that the bounded optimality verifica-

tion problem describes a scenario different from the one de-
scribed by the plan optimality verification problem, these
two problems are actually equivalent from the theoretical
point of view. This is because the bounded optimality ver-
ification problem is identical to asking whether there exist
no solution plans π′ to Π such that |π| − k > |π′|. For
if such a π′ exists, we have |π∗| ≤ |π′| because π∗ is an
optimal solution, and hence, |π| > |π′| + k ≥ |π∗| + k,
which is a contradiction. Consequently, for any planning for-
malism, the bounded optimality verification problem with π
and k being the given plan and bound, respectively, is again
the complement of the bounded plan existence problem in
which the bound is |π| − k and is encoded in unary.
Proposition 4. The bounded plan optimality verification
problem (with the bound given in binary) has the same com-
plexity as the plan optimality verification problem, indepen-
dent of planning formalisms.

We have already mentioned earlier that in the (bounded)
plan optimality verification problem, what really matters is
the length of the given plan. As a consequence, we can fur-
ther generalize those problems by replacing the given plan
with the length of the plan. That is, given a planning problem
Π, and two numbers kπ and k where kπ is the length of some
solution, we want to decide whether there exist no solution
plans π′ to Π of length k′ such that kπ − k′ > k. We argue
that this generalized version is useful in the scenario of mod-
eling assistance where a (planning) domain modeler would
like to know whether a domain is correctly modeled (Mc-
Cluskey, Vaquero, and Vallati 2017; Lin and Bercher 2021,
2023; Lin, Grastien, and Bercher 2023). One way to do so is
by validating whether certain properties hold in the domain.
In our case, one could ask whether there exists an optimal
solution within a range of k, provided a claim that there is
a solution π with |π| steps (in some domains, the modeler
might be aware that the solution π exists, but doesn’t want
to write it down for the purpose of asking this question).

For this generalized version of the bounded plan optimal-
ity verification problem, since we replace the given plan with
a number, one could recognize that its complexity is the
complement of the bounded plan existence problem with-
out encoding the bound in unary, independent of planning
formalisms.
Proposition 5. The complexity of the bounded plan opti-
mality verification problem (with the bound given in binary)
where the plan is not explicitly given is the complement of
the bounded plan existence problem, independent of plan-
ning formalisms.

As a special case, when the bound is zero, the bounded
plan optimality verification problem boils down to the plan
optimality verification problem where a plan is replaced by
its length.

Proposition 6. The complexity of plan optimality verifica-
tion where only the length of a plan is given is the comple-
ment of the bounded plan existence problem (with the bound
given in binary).

Conclusion and Extension
We studied the computational complexity of several ques-
tions centered at the bounded plan existence problem. Our
results show that in classical planning and grounded HTN
planning, the computational complexity of plan verification
lies in the range of P to NP-complete, whereas it increases
dramatically in lifted HTN planning. For the bounded plan
existence problem, its complexity ranges from PSPACE-
complete to NEXPTIME-complete depending on planning
formalisms, and the complexity decreases when the bound is
encoded in unary. The problem of (bounded) plan optimal-
ity verification is the complement of bounded plan existence
with the bound given in unary if the plan to be verified is ex-
plicitly given, and it is the complement of the bounded plan
existence problem with the bound given in binary if only the
length of the plan is given.

Extension In practice, an optimal solution usually refers
to a plan of a minimal cost. That is, each action (in a plan-
ning problem) has a certain cost, and we want to find a solu-
tion plan which has an optimal cost (the cost of a plan is the
sum of the cost of each action in it). The bounded plan exis-
tence problem studied in the paper can be viewed as a special
case of this task where each action has cost one. Thus, the
complexity results presented here naturally serve as a lower
bound. In fact, the same upper bound also holds because for
finding a cost optimal plan, we can again guess a plan up to
a certain cost and then verify whether the guessed plan is a
solution.

References
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight Bounds
for HTN Planning. In Proceedings of the 25th International
Conference on Automated Planning and Scheduling, ICAPS
2015, 7–15. AAAI.
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2014.
On the Feasibility of Planning Graph Style Heuristics for
HTN Planning. In Proceedings of the 24th International
Conference on Automated Planning and Scheduling, ICAPS
2014, 2–10. AAAI.
Arora, S.; and Barak, B. 2009. Computational Complexity –
A Modern Approach. Cambridge University Press.
Bäckström, C.; and Jonsson, P. 2011. All PSPACE-
Complete Planning Problems Are Equal but Some Are More
Equal than Others. In Proceedings of the 4th Annual Sympo-
sium on Combinatorial Search, SoCS 2011, 10 – 17. AAAI.
Barták, R.; Ondrcková, S.; Behnke, G.; and Bercher, P.
2021. On the Verification of Totally-Ordered HTN Plans.
In Proceedings of the 33rd IEEE International Conference
on Tools with Artificial Intelligence, ICTAI 2021, 263–267.
IEEE.
Behnke, G.; Höller, D.; Bercher, P.; and Biundo, S. 2016.
Change the Plan - How Hard Can That Be? In Proceedings

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

42

of the 26th International Conference on Automated Planning
and Scheduling, ICAPS 2016, 38–46. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the Com-
plexity of HTN Plan Verification and its Implications for
Plan Recognition. In Proceedings of the 25th International
Conference on Automated Planning and Scheduling, ICAPS
2015, 25–33. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2019. Finding Op-
timal Solutions in HTN Planning - A SAT-based Approach.
In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, IJCAI 2019, 5500–5508. IJCAI.
Behnke, G.; and Speck, D. 2021. Symbolic Search for Op-
timal Total-Order HTN Planning. In Proceedings of the
35th AAAI Conference on Artificial Intelligence, AAAI 2021,
11744–11754. AAAI.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning – One Abstract Idea, Many Concrete
Realizations. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI 2019, 6267–
6275. IJCAI.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An Admissible HTN Planning Heuristic. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, 480–488. IJCAI.
Bercher, P.; Lin, S.; and Alford, R. 2022. Tight Bounds
for Hybrid Planning. In Proceedings of the 31st Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2022, 4597–4605. IJCAI.
Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence,
94(1-2): 165–204.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity Results for HTN Planning. Annals of Mathematics and
Artificial Intelligence, 18(1): 69–93.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1991.
Complexity, Decidability and Undecidability Results for
Domain-Independent Planning: A Detailed Analysis. Tech-
nical Report CS-TR-2797, UMIACS-TR-91-154, SRC-TR-
91-96, University of Maryland, College Park, Maryland,
USA.
Fink, E.; and Yang, Q. 1992. Formalizing Plan Justifications.
In Proceedings of the 9th Conference of the Canadian Soci-
ety for Computational Studies of Intelligence, CSCSI 1992,
9–14. ACM.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, IJ-
CAI 2011, 1955–1961. IJCAI.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning – Theory and Practice. Elsevier.
Helmert, M. 2006. New Complexity Results for Classical
Planning Benchmarks. In Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2006, 52–62. AAAI.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language Classification of Hierarchical Planning Problems.

In Proceedings of the 21st European Conference on Artifi-
cial Intelligence, ECAI 2014, 447–452. IOS.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In Proceedings of the 16th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, IC-
TAI 2004, 294–301. IEEE.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Plan-
ning with Landmarks. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2009, 1728–1733. IJCAI.
Lin, S.; Behnke, G.; Ondrčková, S.; Barták, R.; and Bercher,
P. 2023. On Total-Order HTN Plan Verification with Method
Preconditions – An Extension of the CYK Parsing Algo-
rithm. In Proceedings of the 37th AAAI Conference on Arti-
ficial Intelligence, AAAI 2023. AAAI.
Lin, S.; and Bercher, P. 2021. Change the World - How
Hard Can that Be? On the Computational Complexity of
Fixing Planning Models. In Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2021, 4152–4159. IJCAI.
Lin, S.; and Bercher, P. 2023. Was Fixing this Really That
Hard? On the Complexity of Correcting HTN Domains. In
Proceedings of the 37th AAAI Conference on Artificial Intel-
ligence AAAI 2023. AAAI.
Lin, S.; Grastien, A.; and Bercher, P. 2023. Towards Auto-
mated Modeling Assistance: An Efficient Approach for Re-
pairing Flawed Planning Domains. In AAAI 2023. AAAI.
McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. En-
gineering Knowledge for Automated Planning: Towards a
Notion of Quality. In Proceedings of the 9th Knowledge
Capture Conference, K-CAP 2017, 1–8. ACM.
Olz, C.; and Bercher, P. 2019. Eliminating Redundant Ac-
tions in Partially Ordered Plans – A Complexity Analysis.
In Proceedings of the 28th International Conference on Au-
tomated Planning and Scheduling, ICAPS 2019, 310–319.
AAAI.
Olz, C.; Biundo, S.; and Bercher, P. 2021. Revealing Hid-
den Preconditions and Effects of Compound HTN Planning
Tasks - A Complexity Analysis. In Proceedings of the
35th AAAI Conference on Artificial Intelligence, AAAI 2021,
11903–11912. AAAI.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-Based Heuristics for Cost-Optimal Planning. In
Proceedings of the 24th International Conference on Au-
tomated Planning and Scheduling, ICAPS 2014, 226–234.
AAAI.
Sreedharan, S.; Bercher, P.; and Kambhampati, S. 2022. On
the Computational Complexity of Model Reconciliations. In
Proceedings of the 31st International Joint Conference on
Artificial Intelligence, IJCAI 2022, 4657–4664. IJCAI.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

43

Can HTN Planning Make Flying Alone Safer?

Jane Jean Kiam, Prakash Jamakatel
University of the Bundeswehr Munich, Neubiberg, Germany

{jane.kiam, prakash.jamakatel}@unibw.de

Abstract

Safety aspects in general aviation can be a limiting factor to
gear toward introducing more single-pilot operations (SPOs),
which are currently commonly practised by private pilots of
ultralight aircraft, but are also a key to future developments
in urban air mobility. The risks of SPOs are mainly due to the
lack of redundancy, especially in case of emergeny; the devel-
opment of reliable onboard companion technology is there-
fore deemed beneficial. This paper investigates how Hierar-
chical Task Networks (HTN), and more specifically the Hier-
archical Domain Definition Language (HDDL), can be used
to encode private pilots’ maneuvers. Additionally, challenges
are underlined on onboard companion technologies for SPOs,
alongside with some features to be derived from hierarchical
planning techniques to overcome these challenges.

Introduction
Human factors have been identified as a critical aspect in
aviation safety risks, and are considered as part of the Eu-
ropean Plan for Aviation Safety - EPAS (European Union
Aviation Safety Agency (EASA) 2021). Statistical evidence
on fatal accidents in the operations of ultralight aviation re-
flect that a lack of redundancy in single-pilot (SP) cockpits
will accentuate the criticality of human factors in causing
fatal accidents. According to accident analyses for ultralight
aviation (De Voogt et al. 2018; BFU 2022), two main con-
tributing human factors to be accounted for are: i) lack of
knowledge or experience leading to skill-based and decision
errors, as well as ii) excessive mental workload leading to
perception and decision-based errors. Both factors affect the
pilot’s decision-making capability even more substantially
in emergency situations.

Meanwhile, (Biundo et al. 2016) analysed how the cross-
disciplinary field of “companion technology” leverages sen-
sor data fusion, planning and learning, as well as human-
machine interaction to achieve artificially intelligent com-
panion to human users, which can also assist human users
in accomplishing complex tasks. Recent advancements have
integrated AI planning techniques into companion technolo-
gies. For example, ROBERT in (Behnke et al. 2020) exploits
Hierarchical Task Network (HTN) planning for instructing
novices in operating complex hand tools, while CHAP-E
in (Benton et al. 2018) also leverage hierarchical planning
to guide pilots through a safety-checklist in view of more

reliable operation of modern aircraft. However, the potential
extension of the work on CHAP-E by the bigger commu-
nity is unclear, since i) CHAP-E uses PLEXIL (Verma et al.
2005) for modelling the tasks, and ii) the task models are not
available. Besides hierarchical planning, the use of a hybrid
(PDDL+ compatible) planner (Scala et al. 2016) was also
demonstrated in (León, Kiam, and Schulte 2021) to plan for
emergency landing trajectories, so that the onboard autopilot
can take over, should the (single) pilot be incapacitated.

Although planning techniques have been investigated for
use as onboard companion technology of an aircraft, some
shortcomings are still prominent. While (León, Kiam, and
Schulte 2021) only considers the low-level trajectory plan-
ning, (Benton et al. 2018) focuses mainly on guiding the
pilot to execute plans according to standard operating pro-
cedures, without explaining how the companion technol-
ogy knows if the guidance is appropriate at the moment.
In this paper, we explore the use of hierarchical planning
techniques as part of the onboard companion technology in
aviation, and more specifically in an SP ultralight-cockpit,
as the resolution of this problem paves way to future Ur-
ban Air Mobility (UAM). To this end, we illustrate how Hi-
erarchical Domain Description Language (HDDL) (Höller
et al. 2020a) can be used to model pilot tasks defined in
structured manuals (for private pilots)1. Subsequently, crit-
ical features of an onboard companion technology are an-
alyzed alongside insights of how HTN-planning can con-
tribute. Finally, usability of the features with respect to their
reliability and performance are discussed. Note that we keep
to the term “onboard companion technology” in the paper,
which is the equivalent of “cockpit assistance system” in
many engineering-related fields.

Modelling Private Pilot’s Tasks in HDDL

Enabling SPOs is essential to scale up fleet size in general
aviation for future UAM (European Union Aviation Safety
Agengy - EASA 2021). To pave the way for acceptable and
safe UAM, advancements in companion technology for SP-
cockpits are necessary. While the definition of pilots’ roles

1Detailed domain modelled in HDDL is available here:
https://github.com/UniBwM-IFS-AILab/ValidationTests

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

44

Figure 1: HTN model of pilot’s initial task network to react to engine failure. Tasks that are encircled by boxes with black edges
are known as actions (or primitive tasks) that do not further decompose. Compound tasks are decomposed into subtasks.

in UAM is still in its infancy2, private pilots trained to fly
ultralight aircraft (Pooley 2003; SHARK 2017) in a SP-
cockpit provide a solid basis to study onboard companion
technologies for SPOs, while also benefiting directly from
the advancements too, as ultralight aircraft to date is gener-
ally not equipped with computed-aided intelligence.

First and foremost, knowledge on the standard operating
procedures must be possessed by the onboard companion
technology in order to provide meaningful assistance. To
this end, we model the private pilots’ tasks as totally or
partially ordered tasks using HDDL, a task modelling lan-
guage for hierarchical planning that was formally defined
in (Höller et al. 2020a) and used in the previous IPC on Hier-
archical Planning3. Furthermore, PANDA, a framework de-
veloped for hierarchical planning with HDDL as the native
modelling language, is to date the only one with an inte-
grated Plan and Goal Recognition (PGR) method4, which is
an essential feature of the onboard companion technology.

In the following two tasks are depicted, namely to react to
an engine failure during flight and to react to the engine on
fire during flight. We illustrate the similarity of both tasks,
as well as the different actions required from the pilot.

Engine Failure
Without immediate and appropriate countermeasures from
the pilot, engine failure can lead to fatal accident. How-
ever, given the frequency of occurrence, as well as the train-
ing program that does not prescribe obligatory refreshment
course, private pilots are not necessarily fit to react to these
events, causing either the undertaking of wrong decisions or
mental overload that leads to delayed reactions.

Encoding the HTN models of the pilot’s tasks in
HDDL enables the possession of standard knowl-
edge by the onboard companion technology. Fig-
ure 1 represents the decomposition graphically of
the compound task react to engine failure
using different methods, depending on the flight

2Training programs for pilots of future UAM are being concep-
tualised as a substantial surge of demand in pilots for air taxi is
predicted (CAE 2021).

3http://gki.informatik.uni-freiburg.de/competition/
4https://github.com/panda-planner-

dev/pandaPIpgrRepairVerify

(:method m_react_to_engine_failure_in_flight

:parameters (?airspeed120kmh - Airspeed

?pitchRate ?yawRate ?rollRate - AttitudeRate)

:task (react_to_engine_failure)

:precondition (and (p_engineFailure) (p_inFlight))

:subtasks (and

(task1 (adjust_airspeed ?airspeed120kmh))

(task2 (trim_airplane

?pitchRate ?yawRate ?rollRate))

(task3 (check_restart_engine))

(task4 (fly_after_restart_engine)))

:ordering(and

(< task1 task3) (< task2 task3) (< task3 task4)))

(:action restart_engine_inflight

:parameters ()

:precondition (and (p_engineFailure) (p_inFlight))

:effect (and (p_attemptedEngineRestart)))

Figure 2: HDDL-encoding of the method to decompose pi-
lot’s task once an in-flight engine failure is detected, and the
action to restart engine during flight.

Figure 3: HTN model of pilot’s task to fly after
an in-flight engine restart. For more concise repre-
sentation, the further decomposition of the compound
task prepare landing with engine failure is
not shown.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

45

phase (i.e. takeoff, in-flight, or landing). The method
m react to engine failure in flight encoded
in HDDL is shown in Figure 2. The decomposition of
the subtask fly after restart engine (in blue)
is depicted in Figure 3. However, since the decomposi-
tion depends on if the engine is restarted successfully
or not during flight (as an information gained from a
reactive observation of the system), the subtask is cur-
rently not encoded in HDDL as part of the method
m react to engine failure in flight.

Engine on Fire During Flight
Figure 4 depicts a method for decomposing the com-
pound task to react to the engine on fire during flight
(which is itself a different initial task network than
react to engine failure), alongside with its formu-
lation in HDDL in Figure 5. Although the emergency stems
from the engine, but due to a different root cause, i.e. a
fire instead of a mechanical failure, the pilot is required to
act differently, i.e. instead of trying to check all mechani-
cal parts and restart the engine, here, the pilot has to cut all
injections to the engine and perform an emergency landing
immediately to evacuate.

Figure 4: HTN model of pilot’s task to
evacuate if the engine has caught fire; for
a more concise representation, the method
m evacuate engine on fire during takeoff
and m evacuate engine on fire during landing
are replaced by m1 and m2 respectively.

Challenging Essential Features for the
Onboard Companion

While it is possible to model complex tasks extracted from
the pilot’s manual using HDDL, the exploitation of these in
an end-to-end onboard companion remains challenging. Be-
low are a few identified requirements, or rather challenges
(according to gaps identified by domain experts in avia-
tion (BFU 2022; SIAF 2009)) to be fulfilled in view of a
more meaningful exploitation of these HTN models.

Challenge 1: Dynamic guidance
Providing guidance using software-enabled companion
technology is a timelier mean than the current practice,
which consists of having the pilot to refer to the flight man-
ual in case of an unexpected emergency situation, for which
the pilot does have possess adequate knowledge to tackle.
Furthermore, it also avoids erroneous execution of tasks.

(:method m_evacuate_engine_fire_in_flight

:parameters (?mixtureControl - MixtureControl

?throttle - AircraftPart ?magnetos - Magnetos

?fuelGauge - FuelGauge ?heater - CabinHeater

?message - Message ?atc - ATC ?airfield - Location)

:task (evacuate_engine_fire ?message ?airfield)

:precondition (and (p_pilotInAirplane)

(p_inFlight) (p_engineOnFire)

(p_mixtureControlOn ?mixtureControl)

(p_open ?throttle) (p_magnetosOn ?magnetos)

(p_fuelGaugeOn ?fuelGauge)

(p_cabinHeaterOn ?heater))

:subtasks (and

(task1 (keep_engine_cut_off_mixture ?mixtureControl))

(task2 (close ?throttle))

(task3 (off ?magnetos))

(task4 (off ?fuelGauge))

(task5 (off ?heater))

(task6 (inform_ATC ?atc ?message)))

(task7 (perform_emergency_landing ?airfield))

:ordering (and (< task1 task2) (< task2 task3)

(< task3 task4) (< task4 task5)

(< task5 task6) (< task6 task7)))

Figure 5: HTN model in HDDL

While the task models encoded in HDDL enable
the use of HDDL-compatible planners to determine
plans (sequences of actions to be executed by the pi-
lot), the planners are meant mainly for offline planning,
i.e. information gained during the execution of the
plans cannot be considered automatically. For example,
the feasibility of the method in Figure 3 for decom-
posing fly after restart engine, which is a
compound task of react to engine failure,
depends on if the engine restarts after the action
restart engine inflight. However, in an of-
fline planning framework, the effect of the action
restart engine inflight does not contain this
information, but merely the fact that the attempt to restart
engine was completed.

Hierarchical Operational Models as described in (Patra
et al. 2020) can be useful to parameterize the method to be
undertaken for decomposing compound tasks of further fu-
ture, depending on the outcomes (i.e. effects detected dur-
ing execution) of previous actions. (Höller et al. 2020b) pro-
posed an HTN plan repair approach that does not involve
changing the planning engine. Instead, it suffices to generate
a problem file for re-planning by considering the executed
plan prefix. However, the approach requires first a complete
plan to be generated, with complete knowledge on effects of
all actions, which is in our case impossible since the decom-
position of fly after restart engine depends on if
the engine is restarted, and how the syntax of HDDL is de-
fined currently does not allow the effect of an action be mod-
eled in a way that information is proactively extracted from
the external environment.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

46

Challenge 2: Automated context-based guidance
Using HTN-planning to provide flight guidance proactively
can help i) to reduce reaction time to emergency, ii) to en-
sure that the pilot carries out the correct steps (and in some
cases, even in the right ordering), as well as iii) to enable the
pilot to maintain an acceptable mental workload, which is
essential in emergency situations (SIAF 2009).

However, any form of guidance is only meaningful, if the
context is known. For the onboard companion technology
to function in real time, information on the pilot’s intention
(i.e. the intended “goal”) must be tracked in real time, so
that the guidance, or rather the plan suggestion according
to the HTN models is appropriate. The intended “goal” can
either be communicated “on-demand” by the pilot, which
in an emergency situation may add on to the pilot’s mental
workload, or can be detected in an automated manner.

Höller et al. describe in (Höller et al. 2018) an auto-
mated plan and goal recognition method based on hierarchi-
cal planning using observed actions executed by the human
actor (i.e. “observations”). While this is a function to be inte-
grated into the onboard companion technology to recognise
the initial task network (as the pilot’s intention) in an auto-
mated manner and in real-time, for a more robust intention
recognition, some shortcomings of the work in (Höller et al.
2018) must be overcome:
• recognition of multiple plans/goals, as the pilot may be

multitasking;
• plans/goals recognition despite missing observations due

to non-critical actions missed by the pilot, and noisy ob-
servations due to the pilot being unclear about his/her ac-
tions in emergency situations (e.g. wrong button pressed,
undo wrong actions, etc.).

Challenge 3: Warning system with forward
prediction
Automatic alert has been used for many Advanced Driver
Assistance Systems (ADAS) to communicate warning sig-
nals in view of mitigating risks of fatal accidents (Ziebinski
et al. 2017). With the automated PGR integrated, the auto-
matic warning system with forward prediction can be de-
veloped for the onboard companion technology, i.e. a risk
prediction based on pilot’s current (recognised) plan/goal.
Using forward prediction, by extrapolating the effects of ac-
tions and cross-checking them with predicted (future) en-
vironment, risks encountered in near future, and therefore
also potential danger, can be estimated so that pilots can still
abort his/her current goal or correct his/her action.

Additionally, with the formally encoded HTN models in
HDDL, another advantage to derive from them is the capa-
bility to check and warn for missing or erroneous actions,
e.g. in case the pilot does not sink to a low enough altitude
while performing an emergency landing on a short runway.

Conclusion and Discussions on Usability and
Acceptability

In this paper, we describe the motivation of using hierarchi-
cal planning for onboard companion technology in single-
pilot cockpits. In addition to augmenting safety of ultralight

micro-aircraft, increased safety in single-pilot operations
will facilitate the development of future UAM. To this end,
we use HDDL, a very formally defined modelling language
for HTN, to model private pilots’ tasks. As HTN-planning
techniques compatible with HDDL are being further devel-
oped, the HTN-models encoded in HDDL will call for more
contributions among the hierarchical planning community.
Subsequently, we underline several challenges to overcome
in order to fully utilize these HTN-models in assisting pilots
in a timely and reliable manner.

While an onboard company technology for aircraft in
SPOs is beneficial, we highlight that the technology is only
acceptable and usable if the following criteria are met.

Real-time and realistic capability
As an onboard companion technology is intended also for
automated guidance and warning during flight, the real-time
capability is critical to ensure that assistance is provided
without delay, or in practice, with acceptable latency. For
this purpose, the performance in planning, as well as in PGR
must be tested and validated using realistic mission scenar-
ios and by basing on human-in-the-loop tests, as well as by
adapting to the dynamics of the platform (e.g. airspeed).

Replanning capability
In highly dynamic environment, during flight and more-
over in emergency situations, the pilot’s intended goal can
change. For example, the pilot decides to perform an emer-
gency landing after anomalies in the engine are detected, but
realizes that the targeted landing stripe is not free for land-
ing. In this case, the pilot can decide to continue flight while
scouting for the next landing stripe.

The PGR method as developed by (Höller et al. 2018)
uses a sequence of observations to predict the plan/goal cur-
rently intended by the human actor. However, as described
above, a pilot can change the course of action, resulting in
past actions being “invalid”. Without a reliable method to
filter past actions in a temporal manner (i.e. older actions
lose their validity), the PGR can be obscured. Whether or
not the approach for plan repair described in (Höller et al.
2020b) (that is independent of the planning engine used) can
be adapted for PGR, will be investigated.

Interpretability
For AI-techniques to be considered part of a mission-critical
system with human-AI interactions, system transparency is
essential (European Union Aviation Safety Agency (EASA)
2020), to ensure that the human actor can intervene when-
ever necessary, thanks to adequate plan explanation, and also
to ensure that complacency will not become an issue due to
over-reliance on AI. Metrics to measure interpretability must
be considered. While classical planning has advanced sub-
stantially in this regard (Sreedharan et al. 2021), little work
is done on this aspect for hierarchical planning.

Acknowledgments
This work is funded by the German Federal Ministry of Eco-
nomic Affairs and Climate Action (Project MOREALIS).

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

47

References
Behnke, G.; Bercher, P.; Kraus, M.; Schiller, M.; Mick-
eleit, K.; Häge, T.; Dorna, M.; Dambier, M.; Manstetten, D.;
Minker, W.; Glimm, B.; and Biundo, S. 2020. New Devel-
opments for Robert – Assisting Novice Users Even Better in
DIY Projects. Proceedings of the International Conference
on Automated Planning and Scheduling.
Benton, J.; Smith, D.; Kaneshige, J.; Keely, L.; and Stucky,
T. 2018. CHAP-E: A Plan Execution Assistant for Pilots.
Proceedings of the International Conference on Automated
Planning and Scheduling.
BFU. 2022. Studie zur Flugsicherheit von Luftsportgeräten
- Analyse von Unfällen und Störungen mit Luftsportgeräten
in Deutschland in den Jahren 2000-2019. Technical Report
BFU22-803.1, Bundesstelle für Flugunfalluntersuchung.
Biundo, S.; Höller, D.; Schattenberg, B.; and Bercher,
P. 2016. Companion-Technology: An Overview. KI -
Künstliche Intelligenz, 30(1): 11–20.
CAE. 2021. Pilot Training for Advanced Air Mobility.
De Voogt, A.; Chaves, F.; Harden, E.; Silvestre, M.; and
Gamboa, P. 2018. Ultralight Accidents in the US, UK, and
Portugal. Safety, 4(2): 23.
European Union Aviation Safety Agency (EASA). 2020. Ar-
tifial Intelligence Roadmap: A Human-Centric Approach to
AI in Aviation.
European Union Aviation Safety Agency (EASA). 2021.
The European Plan for Aviation Safety - EPAS 2022-2026.
European Union Aviation Safety Agengy - EASA. 2021.
Study on the Societal Acceptance of Urban Air Mobility in
Europe.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2018.
Plan and Goal Recognition as HTN Planning. In 2018 IEEE
30th International Conference on Tools with Artificial Intel-
ligence (ICTAI). IEEE.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020a. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI).
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020b.
HTN Plan Repair via Model Transformation. In Proceed-
ings of the 43th German Conference on Artificial Intelli-
gence (KI), 88–101. Springer.
León, B. S.; Kiam, J. J.; and Schulte, A. 2021. A Fault-
Tolerant Automated Flight Path Planning System for an Ul-
tralight Aircraft. In AIxIA 2020 – Advances in Artificial In-
telligence. Springer International Publishing.
Patra, S.; Mason, J.; Kumar, A.; Ghallab, M.; Traverso, P.;
and Nau, D. 2020. Integrating Acting, Planning, and Learn-
ing in Hierarchical Operational Models. In Proceedings of
the 30th ICAPS.
Pooley, D. 2003. POOLEYS Private Pilots Manual: JAR
Flying Training, Volume 1. Cranfield, UK: POOLEYS.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In
ECAI 2016.

SHARK. 2017. Flight Manual: UL airplane.
SHARK.AERO CZ s.r.o.
SIAF. 2009. Ultralight Aviation Safety and its Improvement
through Accident Investigation. Technical Report Safety
study S1/2009L, Onnettomuustutkintakeskus Centralen för
undersökning av olyckor - Accident Investigation Board of
Finland.
Sreedharan, S.; Kulkarni, A.; Smith, D.; and Kambhampati,
S. 2021. A Unifying Bayesian Formulation of Measures of
Interpretability in Human-AI Interaction. In Proceedings of
the Thirtieth International Joint Conference on Artificial In-
telligence. International Joint Conferences on Artificial In-
telligence Organization.
Verma, V.; Estlin, T.; Jonsson, A.; Pasareanu, C.; Simmons,
R.; and Tso, K. 2005. In International Symposium on
Artificial Intelligence, Robotics and Automation in Space
(iSAIRAS).
Ziebinski, A.; Cupek, R.; Grzechca, D.; and Chruszczyk,
L. 2017. Review of advanced driver assistance systems
(ADAS). In AIP Conference Proceedings.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

48

HDDL 2.1: Towards Defining a Formalism and a Semantics
for Temporal HTN Planning

Damien Pellier,1 Alexandre Albore,2 Humbert Fiorino,1 Rafael Bailon-Ruiz 2

1University of Grenoble Alpes, LIG, Grenoble, France
{damien.pellier, humbert.fiorno}@imag.fr

2ONERA/DTIS, University of Toulouse, France
{alexandre.albore, rafael.bailon ruiz}@onera.fr

Abstract

Real world applications as in industry and robotics need mod-
elling rich and diverse automated planning problems. Their
resolution usually requires coordinated and concurrent ac-
tion execution. In several cases, these problems are naturally
decomposed in a hierarchical way and expressed by a Hi-
erarchical Task Network (HTN) formalism. HDDL, a hier-
archical extension of the Planning Domain Definition Lan-
guage (PDDL), unlike PDDL 2.1 does not allow to represent
planning problems with numerical and temporal constraints,
which are essential for real world applications. We propose to
fill the gap between HDDL and these operational needs and to
extend HDDL by taking inspiration from PDDL 2.1 in order
to express numerical and temporal expressions. This paper
opens discussions on the semantics and the syntax needed for
a future HDDL 2.1 extension.

1 Introduction
Real world applications of Automated Planning, like in in-
dustry and robotics, require modelling rich and diverse sce-
narios. Such planning problems are often naturally decom-
posed in a hierarchical way, with compound tasks that refine
in different ways their execution model. These real world ap-
plications of planning use both numerical and temporal con-
straints to define the agents synchronisation on collabora-
tive tasks, and sub-task decomposition. In fact, concurrency
between actions, their duration, and agents coordination in
HTN problems are needed to find solutions for nontrivial
tasks in complex scenarios and require to make explicit the
representation of time (Ghallab, Nau, and Traverso 2016).

The Hierarchical Task Network (HTN) formalism (Erol,
Hendler, and Nau 1994) is used to express a wide variety
of planning problems in real-world applications, e.g., in task
allocation for robot fleets (Milot et al. 2021), video games
(Menif, Jacopin, and Cazenave 2014) or industrial contexts
such as software deployment (Georgievski et al. 2017). Over
the last years, much progress has been made in the field of
hierarchical planning (Bercher, Alford, and Höller 2019).
Novel systems based on the traditional, search-based tech-
niques have been introduced (Bit-Monnot, Smith, and Do
2016; Ramoul et al. 2017; Shivashankar, Alford, and Aha
2017; Bercher et al. 2017; Höller et al. 2019, 2020; Höller

and Bercher 2021), but also new techniques like the transla-
tion to STRIPS/ADL (Alford, Kuter, and Nau 2009; Alford
et al. 2016; Behnke et al. 2022), or revisited approaches like
the translation to propositional logic (Behnke, Höller, and
Biundo 2018, 2019; Schreiber et al. 2019; Schreiber 2021;
Behnke 2021). Despite these advances, not all planning sys-
tems use the same formalism to represent hierarchical task
decomposition, making it difficult to compare approaches
and promote HTN planning techniques.

An extension of PDDL (Planning Domain Description
Language) (Mcdermott et al. 1998), called HDDL (Hier-
archical Planning Domain Description Language) (Höller
et al. 2020), has been proposed to address this issue. HDDL
is based on PDDL 2.1 (Fox and Long 2003) and is the
result of several discussions within the planning commu-
nity (Behnke et al. 2019) to fill the need of a standard lan-
guage for the first Hierarchical Planning track of Interna-
tional Planning Competitions (IPC) in 2020. However, it was
decided that the first version of HDDL would not include
any of the temporal or numerical features of PDDL due to
efforts to develop the language and related tools. In this pa-
per, we illustrate the challenge of defining the semantics for
a temporal extension of HDDL to meet the needs of the plan-
ning community and planning applications.

Our motivation is grounded on the compelling need to
devise applications involving autonomous systems. We pro-
pose to extend HDDL, by including elements of PDDL 2.1
and ANML (Action Notation Modeling Language) (Smith,
Frank, and Cushing 2008), to express temporal and numeri-
cal constraints. This is intended to initiate discussions within
the HTN community on establishing a standard – HDDL
2.1 – aimed at filling the gaps between existing hierarchical-
temporal planning approaches. To that end, we make this
preliminary extension of HDDL an open source project with
a public repository, where we propose a full syntax as well as
a set of benchmarks based on this extension1 and a parser for
it, as part of the PDDL4J2 library (Pellier and Fiorino 2018).

The rest of the paper is organised as follows. In Section
2 we define the basic concepts of the proposed extension. In
Sections 3 and 4 we set down the semantics for Temporal

1https://github.com/pellierd/HDDL2.1
2https://github.com/pellierd/pddl4j

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

49

HTN planning. We conclude on the central aspects of this
planning paradigm, and on future work.

2 Lifted Temporal HTN planning
Throughout this section, we will use common notations from
first-order logic, which we assume to be known. In the lifted
formalism of HDDL 2.1, we assume for the sake of sim-
plicity that all logical formulas are over a function-free first-
order logic language L = (V,C, P). L consists of suffi-
ciently many constant c ∈ C representing the objects in the
real world, variables x ∈ V and predicates p ∈ P . Predi-
cates have parameters that are either variables or constants.
The predicate arity is the number of predicate parameters.
For instance, p(x, c) is a 2-arity predicate. We can now de-
fine formulas in a function-free first-order logic: (i) a pred-
icate is a formula ; (ii) if φ and ψ are formulas, then ¬φ,
φ∨ψ and φ∧ψ are formulas ; (iii) if φ is a formula and x is
a variable, then ∀xφ is a formula. We define ∃xφ as ¬∀x¬φ,
and φ → ψ as ¬φ ∨ ψ. ∀ and ∃ are respectively the uni-
versal and the existential quantifier. Conceptually, ground-
ing a formula consists in generating a set of variable-free
i.e. ground formulas (Helmert 2009) as follows: a variable
x in a quantifier-free formula φ is eliminated by replacing φ
with |C| copies, one for each c ∈ C, where x is substituted
with c in the respective copy. This substitution is denoted by
φ[x/c]. Regarding quantified formulas, ∀xφ is replaced by∧
c∈C φ[x/c] and ∃xφ by

∨
c∈C φ[x/c]. We refer the reader

to the work of by Behnke et al. (2020); Ramoul et al. (2017)
for further details on grounding implementation. Note that
it is always possible to transform a formula in function-free
first-order logic into a finite set of ground formulas in propo-
sitional logic.

A state s is a set of ground predicates. For the sake of con-
ciseness, we will also consider s as a Herbrand interpretation
that assigns true to all ground predicates in s, and false to
all ground predicates not in s. From this, a truth value can
be computed for every ground formula from L by using the
usual rules for logical composition. Without loss of general-
ity, a formula (not necessarily ground) φ is true in s if and
only if grounding φ generates at least one ground formula
true in s. We will use the notation s |= φ to mean that the
formula φ is true in s.

A key concept in HTN planning and a fortiori in temporal
HTN planning is the concept of task. Each task is given by
a name and a list of parameters. We distinguish two kinds
of tasks: the primitive tasks (also called actions), and the
abstract tasks (or compound tasks). Primitive tasks are car-
ried out by durative actions in the sense of classical temporal
planning (Fox and Long 2003), while abstract tasks can be
refined by applying methods that define the decomposition
of the task into subtasks. The purpose of abstract tasks is not
to induce a state transition. Instead, they refer to a predefined
mapping to one or more tasks that can refine the abstract
task. For instance, in the task of serving a dinner, deliver-
dinner(?food-style, ?place) is the compound task consist-
ing in performing first the task of serving the starters, then
the main course, etc. In that sense, deliver-dinner(?food-
style, ?place) can be refined in: 〈 serve-starters(?food-style,
?place), serve-main-course(?food-style, ?place), etc.〉 This

timeδ

pre eff

start(a)

pre eff

end(a)
inv(a)

Figure 1: Timeline of a durative action a application.

mapping between tasks is achieved by a set of decomposi-
tion methods, namely the methods (Def. 5) and the Temporal
Task Networks (Def. 6).

We first define the planning domain and problem for Tem-
poral HTN Planning.
Definition 1. A planning domain D is a tuple
(L, T ,J , α,A,M), where L is the first-order logic
language, T is the set of tasks, J is the set of task identi-
fiers3, α : J → T is the function that maps task identifiers
to tasks, A is a set of actions constituted by snap actions
(Def. 3) and durative actions (Def. 4), M is the set of
methods (Def. 5).

The domain implicitly defines the set of all states S de-
fined over all subsets of all ground predicates in L.
Definition 2. A planning problem P is a tuple
(D, s0, w0, g), where D is a planning domain, s0 ∈ S
is the initial state, w0 is the initial temporal task network
(not necessary ground), and g is a formula (not necessary
ground) describing the goal.

Let us start by defining the concepts of snap and durative
actions, which are the primitive tasks, based on the defini-
tions from Abdulaziz and Koller (2022). A snap action is an
action whose execution is instantaneous in the sense of clas-
sical planning, meaning that it has a null duration between
checking the preconditions and applying the effects.
Definition 3 (Snap Action). A snap action a is a tu-
ple
(
name(a), precond(a), effect(a)

)
, where name(a) is the

name of a, the precondition precond(a) is a first-order for-
mula, and the effects effect(a) = effect+(a) ∪ effect−(a)
(effect+(a)∩ effect−(a) = ∅), effect+(a) and effect−(a) are
conjunctions of predicates.
Definition 4 (Durative Action). A durative action a is a tuple(
name(a), start(a), end(a), inv(a), δ

)
: name(a) is the name

of a; start(a) and end(a) are snap actions; inv(a) is a first-
order formula that must hold in all the states after the exe-
cution of start(a) and until the execution of end(a), and δ
is the duration of a.

Actions do change the state of the world. Durative actions
also change the time of the model, shifting it by a quantity
δ, as shown in Figure 1. State transitions will be formally
defined in Section 3.

Unlike a primitive task, a compound task does not directly
change the world state. A compound task is identified by a
name and defines the way other –possibly ordered– tasks (ei-
ther primitive or compound) must be achieved with respect

3Task identifiers are arbitrary symbols, which serve as place
holders for the actual tasks they represent. Identifiers are needed
because tasks can occur multiple times within the same task net-
work, as we will see below.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

50

to some constraints in order to refine it. Like primitive tasks,
compound tasks have also a start event and an end event,
which will be associated to dates in Section 3. In this sense,
methods allow to refer tasks to temporal task networks.
Definition 5 (Method). A method m is a tuple(
name(m), task(m), tn(m)

)
, where name(m) is the name of

the method, task(m) is the task refined by the method, and
tn(m) is the temporal task network decomposing task(m).
Definition 6 (Temporal Task Network). A temporal task net-
work w = (I, C) is given by:
• I ⊆ J is a set (possibly empty) set of tasks identifiers;
• C is the set of constraints, with C =< Co, Cv, Cd, Ct >:

– Co is a set of temporal qualitative ordering constraints
over the start or the end events of the tasks in I.
The possible qualitative temporal ordering are those
from the classical point algebra (Broxvall and Jons-
son 2003): <, ≤, >, ≥, = and 6=;

– Cv is a set of parameter constraints. Each constraint
can bind two variables to be equal or non-equal, or
similarly bind a variable to a constant;

– Cd is a set of durative constraints over the duration of
the tasks in I;

– Ct is a set of temporal decomposition constraints of the
form (at e φ), expressing that some properties defined
by the formula φ must hold in the state at date e.

The temporal task network w implicitely defines a temporal
ordered multi-set of tasks T ′ = {α(i) | i ∈ I}.

A temporal task network explicits the decomposition of
abstract tasks into subtasks. Note that a temporal task net-
work is ground if all its variables are bound to constants,
and primitive if all its tasks T ′ are primitive.

3 Temporal HTN Planning Semantics
The solution of a temporal HTN planning problem is an ex-
ecutable temporal task network that is obtained from the
problem initial task network by applying method decompo-
sition and constraint satisfaction.

Lifted problems are just a compact representation of their
ground instances. Variable constraints are satisfied by the
grounding, so there is no need to use them with ground in-
stances. Therefore, for simplicity, this section defines the se-
mantics of a lifted problem in terms of its ground instances.
For details on the grounding process, the reader is referred
to (Behnke et al. 2020; Ramoul et al. 2017).

Let us start by defining a temporal sequence of tasks.
Definition 7 (Temporal Sequence of Tasks). A temporal se-
quence of tasks π over a planning domain D, is a sequence
of tuples 〈(t0, e0, δ0), . . . , (tn, en, δn)〉 where t0, . . . , tn are
ground tasks defined over T , and for 0 ≤ i ≤ n, the nat-
ural numbers4 ei ∈ N≥0 and δi ∈ N≥0 are the starting
date and the duration of the task ti, respectively. For a tem-
poral sequence of tasks π, the set of dates {e | (t, e, δ) ∈

4Rational numbers are used in the definition from Fox and Long
(2003). However, integers should be used for dates, because using
rationals without adding further conditions can yield to an unde-
cidable planning problem (Barringer, Kuiper, and Pnueli 1986).

π} ∪ {e + δ | (t, e, δ) ∈ π} induces a sorted sequence
< e0, . . . , en > of happening events of π. A temporal se-
quence of tasks π is primitive if and only if for every task
(t, e, δ) ∈ π, t is primitive, i.e. t is carried out by an action
(either snap or durative).

The duration of a task t is generally unbounded, as the
bound would be the sum of the durations of the tasks of
which t is compounded of. Only when a task t is primitive,
then duration(t) is given by the duration δ of the action that
achieves t.

In order to guarantee the exutability of concurrent plans,
in the sense of the “required concurrency” as described by
Cushing, Kambhampati, and Weld (2007), a central notion is
non-interference, i.e. when preconditions and effects of snap
actions do not overlap. We consider that two snap actions
a and b are not interfering if and only if (i) precond(a) ∩(
effect+(b)∪effect−(b)

)
= ∅, (ii) precond(b)∩

(
effect+(a)∪

effect−(a)
)

= ∅, (iii) effect+(a) ∩ effect−(b) = ∅ and
effect+(b) ∩ effect−(a) = ∅.

Two snap actions or more can be executed at the same
time if they are pairwise non-interfering. The execution se-
mantics of snap actions are similar to the semantics of ∀-step
parallel plans (Rintanen, Heljanko, and Niemelä 2006), and
used in PDDL 2.1 (Fox and Long 2003). With this notion in
mind, we define an executable temporal sequence of tasks.

Definition 8 (Executable Temporal Sequence of Tasks).
A temporal sequence of tasks π = 〈(t0, e0, δ0), . . . ,
(tn, en, δn)〉 is executable in a state s0 if and only if for
every (t, e, δ) ∈ π: (i) t is primitive; (ii) e is a hap-
pening event of π; (iii) state si at date ei transitions to
a new state si+1 s.t.: given the set Bei of snap actions
being executed at ei: Bei =

{
start(aj) | (aj , ej , δj) ∈

π and ej = ei} ∪ {end(ak)|(ak, ek, δk) ∈ π and
ei + δk = ek

}
and given the set Iei of the invari-

ants holding at ei: Iei =
{

inv(aj) | (aj , ej , δj) ∈ π ∧
ej < ei < ej + δj

}
the transition of si to si+1,

given that all the snap actions in Bei are pairwise non-
interfering, is defined as si |= precond(a) for every a ∈
Bei , si |= inv(a) for every inv(a) ∈ Iei and
si+1 =

(
si − ∪a∈Bei

effect−(a)
)⋃

a∈Bei
effect+(a).

Definition 8 can be extended to a temporal task network.

Definition 9 (Executable Temporal Task Network). A tem-
poral task network w = (I, <Co, Cv, Cd, Ct>) is executable
in a state s0 if and only if there exists an executable temporal
sequence of tasks π = 〈(α(i0), e0, δ0), . . . , (α(in), en, δn)〉
where i0, . . . , in are task identifiers in I that matches the
following conditions: (i) π matches the temporal constraints
Co, (ii) π matches the duration constraints Cd, and (iii) the
sequence of states and their associated dates 〈(s0, e0), . . . ,
(sn, en)〉 resulting from the execution of π matches the con-
straints Ct.

It remains to define how to transform a temporal task net-
work into another one by using method decomposition in
order to obtain an executable task network, and what repre-
sents a temporal task network solution.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

51

Definition 10 (Decomposition). A task network w1 =
(I1, C1) is decomposed into a new task network w2 =
(I2, C2) by refinement by a method m =

(
name(m),

task(m), (Im, Cm)
)

if and only if there exists i ∈ I1 such
that α(i) = task(m) and I2 = (I1 − {i}) ∪ Im, and

C2o = C1o ∪ Cmo
∪ {start(t) ≤ start(t′) | t = min

(
estart(α(i)), estart(α(j))

)
,

t′ = max
(
estart(α(i)), estart(α(j))

)
, j ∈ Im}

∪ {end(t) ≥ end(t′) | t = max
(
estart(α(i)), estart(α(j))

)
,

t′ = min
(
estart(α(i)), estart(α(j))

)
, j ∈ Im }

with estart(α(k)) the start date of α(k) for k ∈ I1 ∪ I2.
C2v = C1v ∪ Cmv , C2d = C1d ∪ Cmd , C2t = C1t ∪ Cmt

Definition 11 (Temporal Task Network Solution). Let
P = (D, s0, w0, g) be a planning problem with D =
(L, T ,A,M). A task network ws = (I, C) is solution to
a temporal HTN planning problem P if and only if:
• There exists a sequence of decompositions from wo to ws

resulting from the application of the methodsM of D;
• ws is executable and the temporal sequence of states re-

sulting from its execution starts with s0, and achieves a
state s |= g.

4 Decomposition Constraint Semantics
Decomposition constraints are conditions that must be satis-
fied by all the states visited while executing a solution task
network. They are expressed through temporal modal oper-
ators over first-order formulas involving state predicates, as
in PDDL. The semantics of the decomposition constraints
can be formally specified similarly to the approach taken
by Gerevini and Long (2005). Let w = (I, C) be a ground
task network, a state s0 and a primitive temporal sequence
of tasks π = 〈(t0, e0, δ0), . . . , (tn, en, δn)〉 with t0 =
α(i0), . . . , tn = α(in) resulting from the decomposition of
w. We denote by τ = 〈(s0, e0), . . . , (sn, en)〉 the tempo-
ral sequence of states produced by the execution of π in s0,
ordered according to its happening events, with i ≤ 0 ≤ n.
Decomposition w satisfies a constraint (at e φ) ∈ Ct iff
∃(sk, ek) ∈ τ such that sk |= φ. Note that it is required that
every temporal constraint of the form (at ei φ) ∈ Ct to be
defined for 0 ≤ i ≤ n so as to avoid defining constraints that
are out of the scope of the temporal task networkw. Each de-
composition constraint defined in HDDL 2.1 can be rewrit-
ten in terms of constraints of the form (at e φ). The proposed
HDDL extension distinguishes two types of decomposition
constraints: (1)the temporal decomposition constraints that
define the constraints that must hold at specific happen-
ing events whose semantics is based on the plan trajectory
constraints from PDDL 3.0 (Gerevini and Long 2005) and
(2) the classical decomposition constraints (before, after,
between) used in HTN planning (Erol, Hendler, and Nau
1994) to represent constraints between tasks.

For the temporal decomposition constraints, we sug-
gest to keep the same syntax and semantics as intro-
duced in PDDL 3.0 to mantain a language consistency be-

tween different versions. For classical decomposition con-
straints, it can be shown that they can be expressed in
terms of the former, as are method precondition semantics
(at start, at end, overall).

5 Discussion and Conclusion

We have introduced the main features of a HDDL version for
hierarchical temporal planning tasks. This aims at bridging
the gap between HTN planning and real world applications,
where temporal features like concurrent actions, coordina-
tion, and hierarchical distribution of tasks, are prominent.
In our view, the absence of a unified language for tempo-
ral and numerical constraints in PDDL’s evolution is an ob-
stacle that needs addressing. Although the community has
developed various approaches to model complex planning
problems, including temporal features and hierarchical task
decomposition, the variety of language solutions hinders the
development of common tools and solvers.

Action Notation Modeling Language (ANML) (Smith,
Frank, and Cushing 2008) has an expressivity close to what
we seek here. In ANML effects that happen at time intervals
during an action duration can be specified. This can also be
represented in HDDL 2.1 by using constraint semantics and
dividing actions with intermediate effects into separate du-
rative actions.

Some planners propose benchmarks where ordering con-
straints are delayed, e.g., FAPE (Dvorák et al. 2014). For
instance in ANML it is possible to specify that an action
must happen at least some amount of time after the end of
a previous action. With the proposed syntax and semantics,
such expressivity can be reached by using auxiliary tasks
that decompose in a durative primitive task (of the desired
duration) with no effects.

Time sampling represents another open question for this
extension of HDDL with time. Basically, two approaches
exist. Sampling can be either constant —when time is di-
vided into regular-spaced discrete steps— or with variable
time steps instantiated when effects and preconditions are
applied. The latter can benefit from the Simple Temporal
Problem formalism to model the temporal features of the
plan and to include timed initial effects, and Interval Tem-
poral Logic can be used to define truth of formulas relative to
time intervals, rather than time points (Bresolin et al. 2014).

In order to be fully compatible with PDDL 3.0 features,
the language HDDL 2.1 needs to include axioms and pref-
erences, besides the associated parsing and validation tools.
For this reason, the present work has to be seen as a base-
line for the planning community to build upon. In fact, many
applications require features that have been (on purpose)
omitted in this paper. Most importantly, we did not explic-
itly report a syntax, and we did not allow to define delays
with point algebra for ordering constraints. Other features
are simply not detailed here, e.g., continuous effects. Such
language elements are left as natural extension of this paper
for future work.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

52

References
Abdulaziz, M.; and Koller, L. 2022. Formal Semantics and
Formally Verified Validation for Temporal Planning. In
AAAI, 9635–9643.
Alford, R.; Kuter, U.; and Nau, D. 2009. Translating HTNs
to PDDL: A Small Amount of Domain Knowledge Can Go
a Long Way. In IJCAI, 1629–1634.
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. 2016.Hierarchical Planning: Relating Task and Goal
Decomposition with Task Sharing. In IJCAI, 3022–3029.
Barringer, H.; Kuiper, R.; and Pnueli, A. 1986. A really
abstract concurrent model and its temporal logic. In ACM
SIGACT-SIGPLAN symposium on Principles of program-
ming languages, 173–183.
Behnke, G. 2021. Block Compression and Invariant Pruning
for SAT-based Totally-Ordered HTN Planning. In ICAPS,
25–35.
Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.; Pellier, D.;
Fiorino, H.; and Alford, R. 2019. Hierarchical planning in
the IPC. In ICAPS Workshop on the International Planning
Competition.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT-
Totally-ordered hierarchical planning through SAT. In
AAAI, volume 32.
Behnke, G.; Höller, D.; and Biundo, S. 2019. Bringing order
to chaos–A compact representation of partial order in SAT-
based HTN planning. In AAAI, volume 33, 7520–7529.
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On Succinct Groundings of HTN Planning Prob-
lems. In AAAI, 9775–9784.
Behnke, G.; Pollitt, F.; Höller, D.; Bercher, P.; and Alford,
R. 2022. Making Translations to Classical Planning Com-
petitive with Other HTN Planners. In AAAI, 9687–9697.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning - One Abstract Idea, Many Concrete
Realizations. In IJCAI, 6267–6275.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017. An
Admissible HTN Planning Heuristic. In IJCAI, 480–488.
Bit-Monnot, A.; Smith, D.; and Do, M. 2016. Delete-Free
Reachability Analysis for Temporal and Hierarchical Plan-
ning. In ECAI, volume 285, 1698–1699.
Bresolin, D.; Della Monica, D.; Montanari, A.; Sala, P.; and
Sciavicco, G. 2014. Interval temporal logics over strongly
discrete linear orders: Expressiveness and complexity. The-
oretical Computer Science, 560: 269–291.
Broxvall, M.; and Jonsson, P. 2003. Point algebras for tem-
poral reasoning: Algorithms and complexity. Artif. Intell.,
149(2): 179–220.
Cushing, W.; Kambhampati, S.; and Weld, D. S. 2007. When
is temporal planning really temporal? In IJCAI, 1852–1859.
Dvorák, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014. Planning and Acting with Temporal and
Hierarchical Decomposition Models. In ICTAI, 115–121.
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN Planning:
Complexity and Expressivity. In AAAI, 1123–1128.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Int. J.
of Artif. Intell. Res., 20: 61–124.
Georgievski, I.; Nizamic, F.; Lazovik, A.; and Aiello, M.
2017. Cloud Ready Applications Composed via HTN Plan-
ning. In IEEE Conference on Service-Oriented Computing
and Applications, 81–89.
Gerevini, A.; and Long, D. 2005. Plan constraints and pref-
erences in PDDL3 - the language of the fifth International
Planning Competition. Technical Report 2005-08-07, De-
partment of Electronics for Automation (Imperial College).
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press. Chap. 4.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artif. Intell., 173(5-6): 503–535.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
AAAI, 9883–9891.
Höller, D.; and Bercher, P. 2021. Landmark Generation in
HTN Planning. In AAAI, 11826–11834.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019. On
Guiding Search in HTN Planning with Classical Planning
Heuristics. In IJCAI, 6171–6175.
Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. Technical re-
port, CVC TR-98-003/DCS TR-1165, Yale Center for Com-
putational Vision and Control.
Menif, A.; Jacopin, E.; and Cazenave, T. 2014. SHPE:
HTN Planning for Video Games. In Workshop on Computer
Games, 119–132.
Milot, A.; Chauveau, E.; Lacroix, S.; and Lesire, C. 2021.
Solving Hierarchical Auctions with HTN Planning. In
ICAPS Workshop on Hierarchical Planning.
Pellier, D.; and Fiorino, H. 2018. PDDL4J: a planning do-
main description library for Java. J. Exp. Theor. Artif. Intell.,
30(1): 143–176.
Ramoul, A.; Pellier, D.; Fiorino, H.; and Pesty, S. 2017.
Grounding of HTN Planning Domain. Int. J. of Artif. Intell.
Tools, 26(5).
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artif. Intell., 170(12-13): 1031–1080.
Schreiber, D. 2021. Lilotane: A Lifted SAT-based Approach
to Hierarchical Planning. J. of Artif. Intell. Res., 70: 1117–
1181.
Schreiber, D.; Pellier, D.; Fiorino, H.; and Balyo, T. 2019.
Tree-REX: SAT-Based Tree Exploration for Efficient and
High-Quality HTN Planning. In ICAPS, 382–390.
Shivashankar, V.; Alford, R.; and Aha, D. 2017. Incorporat-
ing Domain-Independent Planning Heuristics in Hierarchi-
cal Planning. In AAAI, 3658–3664.
Smith, D.; Frank, J.; and Cushing, W. 2008. The ANML
Language. In ICAPS Workshop on Knowledge Engineering
for Planning and Scheduling.

Proceedings of the 6th ICAPS Workshop on Hierarchical Planning

53

	Title Page
	Committees
	Preface
	Invited Talk
	List of Papers
	Extracting Hierarchical Task Networks Parameters from Demonstrations
	Implicit Dependency Detection for HTN Plan Repair
	Integrating Deep Learning Techniques into Hierarchical Task Planning for Effect and Heuristic Predictions in 2D Domains
	On Guiding Search in HTN Temporal Planning with non Temporal Heuristics
	On the Computational Complexity of Plan Verification, (Bounded) Plan-Optimality Verification, and Bounded Plan Existence
	Can HTN Planning Make Flying Alone Safer?
	HDDL 2.1: Towards Defining a Formalism and a Semantics for Temporal HTN Planning

