
33rd International Conference on
Automated Planning and Scheduling

July 9 - 10, 2023, Prague, Czech Republic

FinPlan 2023
Preprints of the 4th Workshop on

Planning and Scheduling for
Financial Services (FinPlan)

Edited by:

Parisa Zehtabi, Alberto Pozanco, William Yeoh, Biplav Srivastava

Organization

Parisa Zehtabi
J.P. Morgan AI Research, UK

Alberto Pozanco
J.P. Morgan AI Research, Spain

William Yeoh
Washington University in St. Louis, USA

Biplav Srivastava
University of South Carolina, USA

Program Committee

Daniel Borrajo (J.P. Morgan AI Research, Spain)
Michael Cashmore (J.P. Morgan AI Research, UK)
Giuseppe Canonaco (J.P. Morgan AI Research, Spain)
Mark Feblowitz (IBM, USA)
Fernando Fernández (Universidad Carlos III de Madrid, Spain)
Andrew Murray (University of Strathclyde, UK)
Alberto Pozanco (J.P. Morgan AI Research, Spain)
Rui Silva (J.P. Morgan AI Research, UK)
Shirin Sohrabi (IBM, USA)
Biplav Srivastava (University of South Carolina, USA)
William Yeoh (Washington University in St. Louis, USA)
Parisa Zehtabi (J.P. Morgan AI Research, UK)

ii

Foreword

Planning and scheduling are mature fields in terms of base techniques and algorithms to solve goal-oriented tasks. Planning
approaches have been successfully applied to many domains including classical domains (e.g., logistics and Mars rovers) and,
more recently, in oil and gas as well as mining industries. Similarly, scheduling approaches have also been applied to many
industrial applications. However, very little work has been done in relation to the problems in the finance industry, which
spans a diverse range of activities in financial markets, corporate finance, insurance, banking, and accounting. Recently, some
large financial corporations have started AI research labs and researchers at those teams have found that there are plenty of
open planning and scheduling problems to be tackled by the ICAPS community. For example, these include trading markets,
workflow learning, generation and execution, transactions flow understanding, fraud detection, and customer journeys. In
addition, planning problems tackled in other settings like dialog management and network penetration; and richer problem
formations involving planning along with learning and scheduling.

FinPlan’23 is the fourth workshop on Planning and Scheduling for Financial Services held in conjunction with ICAPS,
whose aim is to bring together researchers and practitioners to discuss challenges for Planning and Scheduling in Financial
Services, and the opportunities such challenges represent to the planning research community.

Parisa Zehtabi, Alberto Pozanco, William Yeoh, Biplav Srivastava, July 2023

iii

Contents

Predicting Customer Goals in Financial Institution Services: A Data-Driven LSTM Approach
Andrew Estornell, Stylianos Loukas Vasileiou, William Yeoh, Daniel Borrajo, Rui Silva 1

Value Detection Rate: A Performance Metric for Payments Fraud Detection
Danial Dervovic, Saeid Amiri, Michael Cashmore 7

Accelerating Benders Decomposition via RL Surrogate Models
Kyle Mana, Stephen Mak, Parisa Zehtabi, Michael Cashmore, Daniele Magazzeni, Manuela Veloso 12

Deep Reinforcement Learning for Optimal Portfolio Allocation: A Comparative Study with Mean-Variance Opti-
mization
Srijan Sood, Kassiani Papasotiriou, Marius Vaiciulis, Tucker Balch 21

Surrogate Assisted Monte Carlo Tree Search in Combinatorial Optimization
Saeid Amiri, Parisa Zehtabi, Danial Dervovic, Michael Cashmore 31

FinRDDL: Can AI Planning be used for Quantitative Finance Problems?
Sunandita Patra, Mahmoud Mahfouz, Sriram Gopalakrishnan, Daniele Magazzeni, Manuela Veloso 36

Can LLMs be Good Financial Advisors?: An Initial Study in Personal Decision Making for Optimized Outcomes
Kausik Lakkaraju, Sai Krishna Revanth Vuruma, Vishal Pallagani, Bharath Muppasani, Biplav Srivastava 51

iv

Predicting Customer Goals in Financial Institution Services:
A Data-Driven LSTM Approach

Andrew Estornell∗,1 Stylianos Loukas Vasileiou*,1 William Yeoh,1 Daniel Borrajo,2 Rui Silva2

1 Washington University in St. Louis
{aestornell,vstylianos, wyeoh}@wustl.edu

2 J.P. Morgan AI Research
{daniel.borrajo,rui.silva}@jpmchase.com

Abstract

In today’s competitive financial landscape, understanding and
anticipating customer goals is crucial for institutions to de-
liver a personalized and optimized user experience. This has
given rise to the problem of accurately predicting customer
goals and actions. Focusing on that problem, we use historical
customer traces generated by a realistic simulator and present
two simple models for predicting customer goals and future
actions – an LSTM model and an LSTM model enhanced
with state-space graph embeddings. Our results demonstrate
the effectiveness of these models when it comes to predicting
customer goals and actions.

Introduction
The financial industry has experienced significant transfor-
mation in recent years, driven by rapid technological ad-
vancements, evolving customer expectations, and increased
competition. As customers demand more personalized and
convenient services, financial institutions are under pressure
to develop a deeper understanding of their clients’ needs and
preferences. This has led to a growing interest in leveraging
data-driven approaches to gain insights into customer be-
havior and predict future actions. Accurate goal prediction
can help financial institutions provide targeted incentives,
improve customer satisfaction, and ultimately foster loyalty
and retention in an increasingly competitive landscape.

Planning-based approaches have been widely used for
goal prediction, as they focus on modeling an agent’s
decision-making process and finding optimal sequences of
actions to achieve specific objectives (Ramı́rez and Geffner
2010; Sohrabi, Riabov, and Udrea 2016; Keren, Gal, and
Karpas 2019; Wayllace et al. 2016; Vered and Kaminka
2017). For example, Ramı́rez and Geffner (2010) propose a
probabilistic plan recognition approach that utilizes classical
planners to predict goals based on observed actions. Keren,
Gal, and Karpas (2019) introduced the concept of goal
recognition design, which aims to optimize the planning do-
main to facilitate the goal prediction process.

In this context, the work of Borrajo and Veloso (2020)
presents an approach to address the challenges associated
with predicting goals in complex real-world domains. In par-
ticular, they introduced a domain-independent simulator for

*Equal contribution.

generating synthetic customer behavior datasets, which can
be used to model and analyze customer interactions with
a financial institution, such as ATM or mobile app usage.
By leveraging this simulator, they are able to create datasets
that accurately represent the intricacies and dynamics of cus-
tomer traces in a banking environment, providing a valuable
foundation for the development and evaluation of goal pre-
diction models.

Inspired by the work of Borrajo and Veloso (2020), we
build upon their domain-independent simulator to generate
synthetic customer behavior datasets. We then use this data
to train two models – an LSTM model and an LSTM model
enhanced with state-space graph embeddings. The LSTM-
based models capitalize on the sequential nature of customer
traces, capturing the intricate patterns present in customer
interactions over time. By incorporating state-space graph
embeddings into the LSTM model, we further enrich the
model’s understanding of the relationships and dependen-
cies among various features within the dataset, which may
lead to improved performance. This combination of LSTM
models and state graph embeddings offers a more scalable
and efficient solution in predicting customer goals and ac-
tions, while maintaining a high level of accuracy and ro-
bustness in the face of real-world complexities. Our results
demonstrate the effectiveness of LSTM models and state
graph embeddings in addressing the challenges faced by fi-
nancial institutions when it comes to predicting customer
goals and actions.

Related Work
Goal prediction (known as goal recognition in the planning
literature) refers to the process of identifying an agent’s ob-
jective among several possibilities, based on the agent’s be-
havior, a model of the environment, and a sequence of ob-
servations. The first approach that explicitly addresses goal
prediction is that of Baker, Saxe, and Tenenbaum (2009),
who framed the problem as “inverse” planning. Ramı́rez and
Geffner (2010) followed up on the work by proposing a gen-
erative approach that uses classical planning algorithms for
inferring probability distributions over a set of possible goals
given some observations. Recent research has extended the
original problem formulation of recognizing plans in var-
ious domain models, such as continuous domain models
and epistemic planning problems (Vered and Kaminka 2017;

1

Sohrabi, Riabov, and Udrea 2016; Kaminka, Vered, and Ag-
mon 2018; Shvo et al. 2020). In similar spirit, Keren, Gal,
and Karpas (2019) provided an alternate view of goal recog-
nition that focuses on modifying the domain model such that
the goal recognition can be achieved with as few observa-
tions as possible. Extensions of the goal recognition design
problem have been developed over various types of domain
models and settings (Shvo and McIlraith 2020; Wayllace
et al. 2016, 2020; Wayllace and Yeoh 2022).

However, planning-based approaches often struggle to
scale with the size and complexity of real-world domains,
due to factors such as large state spaces, partial observability,
and dynamic environments. In contrast, learning-based ap-
proaches may perform better under these circumstances, es-
pecially when real-time or near-real-time predictions are re-
quired. Most notably, Borrajo, Gopalakrishnan, and Potluru
(2020) illustrated the trade-offs between planning-based and
learning-based approaches for goal recognition in different
(planning) domains. Their results highlight that planning-
based approaches perform better when there is a partial or-
der of actions in plans, whereas learning techniques, such as
LSTMs, can better capture the relationship between actions
and goals if there is a relation not directly associated with
goal achievement. While in this paper we also use a learning-
based approach (e.g., LSTMs) for goal prediction, note that
we focus on the specific task of predicting customer goals
and actions in the context of financial institutions. Finally,
there has been an interest in integrating planning-based ap-
proach with data-driven approaches. For example, Wilken
et al. (2023) proposed a hybrid method that captures statis-
tical relations between certain states of the environment and
goals learned from past observations.

While in this paper we focus on goal prediction prob-
lems, i.e., predicting user goals and actions, we explore data-
driven methodologies and focus on a problem related to fi-
nancial industry. In that context, a number of works that
tackle related problems have been investigated. Baeza-Yates
et al. (2015) presented a method for predicting the next mo-
bile app a user is going to open based on their usage history
and the “wisdom” of the crowd, while several works have
addressed the problem of customer churn in banking with
various machine learning techniques (Yaghini, Zhiyan, and
Fallahi 2011; Bilal Zorić 2016; Rahman and Kumar 2020).
While these works and our work in this paper address chal-
lenges in the financial industry, the specific goals and tech-
niques employed are different, i.e., we employ LSTM mod-
els with graph embeddings aimed at understanding customer
behavior and preferences.

Methodology
In this section, we describe the dataset, data preparation, and
models used for predicting customer goals and actions. In
particular, we employ two models – an LSTM model ex-
ploiting a bag-of-words representation, and an LSTM model
enhanced with a state graph embedding. Our approach is un-
derpinned by a comprehensive semi-synthetic dataset, cap-
turing intricate customer interactions with diverse banking
interfaces.

Date and Time Event
2022-02-28 18:06:08 mobile: login
2022-02-28 18:10:24 mobile: enter menu settings

2022-02-28 18:10:24 mobile: enter menu
profile-maintenance

2022-02-28 18:14:40 mobile: change information
on demographic

2022-02-28 18:18:56 mobile: log-off
2022-04-30 07:28:32 web: login

2022-04-30 07:28:32 web: enter menu
credit-card

2022-04-30 07:28:32 web: get information on
credit-card-transaction-history

2022-04-30 07:28:32 web: exit menu
root-section

2022-04-30 07:32:48 web: enter menu settings

2022-04-30 07:37:04 web: enter menu
alerts-maintenance

2022-04-30 07:41:20 web: change information
on alerts-definition

2022-04-30 07:45:36 web: log-off

Table 1: Example trajectory of events for an agent of medium
income, low fail behavior, and digital interface.

Customer Behavior Data
We utilize a semi-synthetic dataset of customer behavior
generated via a domain-independent simulator proposed by
Borrajo and Veloso (2020). The dataset consists of interac-
tions between customers and a multitude of bank interfaces:
bank-website, mobile app, teller counter, or ATM. Each in-
terface offers customers a (potentially unique) set of actions
such as making payments, checking rewards program infor-
mation, modifying personal information, etc. A set of ex-
ample actions are provided in Table 1, where we see a cus-
tomer login to the mobile app and modify their personal in-
formation; the same customer then logs into the website two
months later and checks their credit-card transaction history
as well as modifying their alter settings. Approximately 300
actions are recorded per-customer.

Customer Goals: In addition to customer actions, a di-
verse set of goals can be induced from the dataset, such as:

• check information: The customer wants to get some in-
formation about their account (e.g., balance).

• change information: The customer wants to change the
value of some data point (e.g., address).

• operational goals: The customer wants to perform some
banking operations, such as deposit-cash, withdrawal,
exchange, deposit-check, pay-bill, make-payment, and
so on.

These goals correspond to the customers purpose for inter-
acting with any of the bank interfaces. Customers can pos-
sess multiple goals; for example, the customer in Table 1
seeks to both check and change information while using the
website (second interaction in the table).

2

Customer Types: The dataset also features labels for the
type of customer, characterized by three attributes:

• Income: income level of the customer (high, medium,
low, standard).

• Fail behavior: how frequently the customer’s action cor-
respond to errors (rarely, often, no-failure).

• Digital behavior: customers preferred interface type (tra-
ditional, digital, mixed).

These attributes represent the probabilities of using different
channels (web, mobile app, ATM, banker, and teller), the
failure rate of operations, and types of goals. For instance,
a student might be categorized as low-rarely-digital, while a
medium-class worker could be medium-rarely-mixed.

Data Preparation
Next we discuss our approach to data preprocessing. The
predictive features X are the customer’s historical actions
(e.g. Table 1). The target features y are the customer’s future
actions, the customer’s goal, or the customer’s type.

Handcrafted Features: To increase the predictive effi-
cacy of the data we first introduce several handcrafted fea-
tures, and then discuss how both the handcrafted, and orig-
inal features, are represented. The predictive features X are
provided as Time (an integer) and Action (a string). We
break the Event string into more meaningful features which
are listed in Table 2. The Event string contains an indica-
tor of which interface the customer is interacting with (web,
mobile, teller, ATM), which we refer to as the primary loca-
tion feature.

Moreover, the Event string contains information indicat-
ing when the customer navigates through the interface, e.g.,
in Table 1 the customer has Event string “web: enter menu
credit-card”, which indicates that the customer has left the
web home-page (which they arrived at when logging in) and
navigated to a menu of credit-card options. We refer to these
features as secondary location features.

Defining secondary locations allows the model to more
effectively learn which actions are available to customers at
any given time, e.g., customers cannot modify their credit-
card information without having first entered the credit-card
menu. The combination of the primary and secondary lo-
cation features can be interpreted as the customer’s current
state.

In addition to the state features, we also define cor-
responding action features that fall into three categories:
transitioning-actions that indicate the customer chang-
ing primary (or secondary) locations (e.g., “web: enter
menu credit-card”); information-gaining-actions that indi-
cate the customer obtaining new information (e.g. “web:
get information on credit-card-transaction-history”); and
modification-actions that indicate the customer modifying
their information (e.g. “web: change information on alerts-
definition”). Full details on the state-action features are pro-
vided in Table 2. The predictive features X are thus repre-
sented in terms of these state-action pairs and a customer
trajectory consists are a list of state-action pairs.

Feature Name Possible Values
Primary location web, mobile, teller, banker, ATM

Secondary location
(web and

mobile menus)

credit-card, credit-score, offers, rewards, operations, settings,
alerts-maintenance, contact-us, account-documents,

profile-maintenance
Transitioning

actions
login, log-off, enter

enter-menu, exit, exit-menu

Information-
gaining
actions

alerts-definition, alerts-history, atm-branches, balance,
benefits, demographic, documents, faq, help-call, help-email,
offers, credit-card-trans-history, credit-card-trans-summary,

limit-credit-card, credit-score-history,
messages, rewards-activity, rewards-use-points,

credit-score-summary, trans-history, trans-summary
Modification

actions
demographic, password, user-id,
limit-credit-card, alerts-definition

Table 2: List of handcrafted features.

Graph Representation: In addition to a bag-of-word rep-
resentation (Harris 1954), we also utilize a state graph em-
bedding that will allow for better learning of each of our
objectives.

In the graph embedding, nodes correspond to state fea-
tures (i.e., primary and secondary location features). Nodes
are connected by an edge if there exists a transition (i.e., an
action that allows a customer to move between the two cor-
responding states). In addition to neighbor information, the
node features of the graph are given as four binary indica-
tors: the customer has visited this node in the past, the cus-
tomer is currently at this node, the customer performed an
information-gaining-action at this node, the customer per-
formed a modification-action at this node. These indicators
are refereed to respectively as ⟨past-nodes, ego-node, info-
gain, modification⟩.

The intuition behind the advantage of this graph embed-
ding is that it allows the model to have a less myopic under-
standing of the way in which actions affect the customer’s
location in each interface, which in turn allows the model to
have a less myopic understanding of which actions will be
available to the customer at the future time-steps as well as
possible paths to nodes which may achieve the customer’s
goal.

Predictive Models
To capture the temporal patterns in customer interactions
and learn the intricate relationships between actions and
goals over time, we utilized the architecture of LSTM net-
works (Hochreiter and Schmidhuber 1997). Specifically, we
used a bag-of-words and one-hot encoding to represent the
events as well as constructed a state graph to use as a GNN
embedding in the LSTM model. The graph was constructed
by examining all customer trajectories in the training dataset
and defining nodes and edges as any state or transition ac-
tion which appeared in more than 10 times. We found 10
to be the best frequency threshold when defining the graph
as this value provided an effective balance between includ-
ing irrelevant states and edges (which the model would then
need to learn to ignore) and excluding important states and
edges that will increase the myopicness of model predic-
tions. Figure 1 shows an example of bag-of-words repre-
sentation and state-space graph representation, respectively,
generated from the datasets.

3

Figure 1: An example of bag-of-words and one-hot encoding representation, and a state-space graph representation.

Predictive Objective: Our primary focus will be on the
following predictive tasks:

• Goal Prediction: Given nH historical actions, what goal
does the customer have?

• Type Prediction: Given nH historical actions, what is the
customer’s type?

• Trajectory Prediction: Given nH historical actions, what
are the customer’s next nF future actions?

Experimental Results
In this section, we present the experimental results of our
two proposed models – LSTM and GNN+LSTM. Our ex-
perimental setup consisted of the semi-synthetic dataset with
12 thousand customer interactions, split into 70% training,
15% validation, and 15% test sets. Each data point in our
dataset represents a sequence of a customer’s previous 20
events. The LSTM and GNN+LSTM models were trained
using the Adam optimizer (Kingma and Ba 2014), with a
learning rate of 0.01, over 5000 epochs with early stopping
based on the validation set performance. The primary met-
rics used for comparison were prediction accuracy for cus-
tomer goals, agent types, and future events.
Goal Prediction: Table 3 shows the accuracy for each ap-
proach when predicting the goal of the customer. We see that
both the LSTM and GNN+LSTM models are capable of ac-
curately predicting customer goals, however neither method

Model Accuracy
Check Info Change Info

LSTM 71% 68%
GNN+LSTM 77% 75%

Table 3: Accuracy for each approach when predicting agent
type. LSTM corresponds to the LSTM approach with a bag-
of-words embedding and GNN+LSTM corresponds to the
LSTM approach with the graph representation and GNN en-
coding layer . For each prediction, the model views the cus-
tomer’s most recent 20 events.

achieves greater than 80% accuracy. With that said, graph
embedding does offer a significant improvement to model
efficacy when compared to the bag-of-words embedding.
Type Prediction: In Table 4, we see the accuracy when pre-
dicting customer type.1 Both LSTM and GNN+LSTM have
high efficacy (roughly 90% or more) when predicting both
the agents failure rate type and preferred interface. In the
case of preferred interface, customers tend to exclusively
use their preferred interface, meaning that this predictive
task becomes significantly easier once observing historical
events from each customer.
Trajectory Prediction: In Table 5, we see the accuracy

1The ground truths for each customer type (income, fail behav-
ior, digital behavior) were stated in the dataset.

4

Model Accuracy
Income Fail Behavior Digital Behavior

LSTM 63% 89% 97%
GNN+LSTM 70% 90% 97%

Table 4: Accuracy for each approach when predicting cus-
tomer type. For each prediction, the model views the cus-
tomer’s most recent 20 events.

Model Accuracy
length 1 length 5 length 15

LSTM 52% 40% 33%
GNN+LSTM 67% 62% 49%

Table 5: Accuracy for approach when predicting the next 1,
5, and 15 customer events. For each prediction, the model
views the customer’s most recent 20 events.

when predicting the future events of customers. While the
accuracy on this task are notably lower than the other tasks,
the space of possible predictions (i.e., the space of possible
events) is far greater in trajectory prediction than in those
other tasks. As is expected we see that as the model is re-
quired to forecast customer events farther into the future, its
predictive efficacy decreases. However, we again see a large
improvement in predictive efficacy when using the graph
embedding over the bag-of-word embedding.

When examining the bag-of-words approach with an
LSTM model and the graph approach with a combination
of a GNN and LSTM, we observe consistent and signifi-
cant improvement with the graph embedding. This is due
in part to the non-myopic nature of the graph embedding
in that it explicitly encodes all possible paths customers can
take through each of the interfaces; as such the model to rea-
son more efficiently about the ways in which current, or past
events, influence future events. This is also visible in Fig-
ure 2, where we plot the loss functions of the LSTM and
GNN+LSTM models.

Conclusions
We have provided a pipeline for predicting customer behav-
ior, type, and objective, from observations of customers in-
teracting with multiple bank interfaces (web, mobile, teller,
ATM). This pipeline is comprised of both a feature extrac-
tion procedure which takes reordered customer “events” and
builds a state-action graph as well as where states and ac-
tions are the result of hand-crafted features (Table 2). Second
we use a combined GNN and LSTM architecture to make
use of both the temporal and structural nature of customer
interactions. We found this approach to be effective at each
of the three predictive tasks, and to have consistent improve-
ment over both baselines.

Future Work: Currently we are exploring extensions of
our graph based approach to not only predict customer be-
havior, but also to modify customer behavior. For example,
the bank may desire to migrate customers towards digital
interfaces, rather than in-person interfaces, i.e., modifying

Figure 2: Loss function of LSTM and GNN+LSTM ap-
proaches when predicting the next 1, 5, and 15 actions of
the customer when viewing the customer’s last 20 actions.

customer type. To modify the behavior of customers which
prefer in-person interfaces, we can first learn a state-action
graph for those customers, which in turn allows us to sur-
mise the perceived cost that those individuals have for us-
ing digital interfaces (unfamiliarity with mobile apps may
increase and individual’s perceived cost of taking actions
within the bank’s mobile app). With these perceived costs,
the bank can then use targeted rewards (e.g., cash rewards
for using the mobile app) to incentivize customers to use the
mobile app. After using the mobile app several times, in-
dividuals would become more familiar with app and would
thus have a lower perceived cost of using the mobile app
compared to in-person interfaces. Banks could then use this
reward shaping technique to help migrate customers to a de-
sired interface with greater precision than simply offering
blind rewards to all individuals. Behavior prediction, which
is the current focus of this paper, is an essential first-step in
modifying behavior as the ability to efficiently shape behav-
ior is directly tied to the ability to predict that behavior.

Acknowledgements

This work was funded in part by J.P. Morgan AI Research.
This paper was prepared for informational purposes by the
Artificial Intelligence Research group of JPMorgan Chase
& Co and its affiliates (“J.P. Morgan”), and is not a prod-
uct of the Research Department of J.P. Morgan. J.P. Morgan
makes no representation and warranty whatsoever and dis-
claims all liability, for the completeness, accuracy or relia-
bility of the information contained herein. This document is
not intended as investment research or investment advice, or
a recommendation, offer or solicitation for the purchase or
sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would
be unlawful.

5

References
Baeza-Yates, R.; Jiang, D.; Silvestri, F.; and Harrison, B.
2015. Predicting the next app that you are going to use.
In WSDM, 285–294.
Baker, C. L.; Saxe, R.; and Tenenbaum, J. B. 2009. Action
understanding as inverse planning. Cognition, 113(3): 329–
349.
Bilal Zorić, A. 2016. Predicting customer churn in banking
industry using neural networks. Interdisciplinary Descrip-
tion of Complex Systems: INDECS, 14(2): 116–124.
Borrajo, D.; Gopalakrishnan, S.; and Potluru, V. K. 2020.
Goal recognition via model-based and model-free tech-
niques. In ICAPS Workshop on Financial Planning (Fin-
Plan).
Borrajo, D.; and Veloso, M. 2020. Domain-independent
generation and classification of behavior traces. arXiv
preprint arXiv:2011.02918.
Harris, Z. S. 1954. Distributional structure. Word, 10(2-3):
146–162.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation, 9(8): 1735–1780.
Kaminka, G.; Vered, M.; and Agmon, N. 2018. Plan recog-
nition in continuous domains. In AAAI, 6202–6210.
Keren, S.; Gal, A.; and Karpas, E. 2019. Goal Recognition
Design in Deterministic Environments. JAIR, 65: 209–269.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Rahman, M.; and Kumar, V. 2020. Machine learning based
customer churn prediction in banking. In ICECA, 1196–
1201.
Ramı́rez, M.; and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In AAAI, 1121–
1126.
Shvo, M.; Klassen, T. Q.; Sohrabi, S.; and McIlraith, S. A.
2020. Epistemic plan recognition. In AAMAS, 1251–1259.
Shvo, M.; and McIlraith, S. A. 2020. Active goal recogni-
tion. In AAAI, 9957–9966.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan Recog-
nition as Planning Revisited. In IJCAI, 3258–3264.
Vered, M.; and Kaminka, G. A. 2017. Heuristic Online Goal
Recognition in Continuous Domains. In IJCAI, 4447–4454.
Wayllace, C.; Hou, P.; Yeoh, W.; and Son, T. C. 2016. Goal
recognition design with stochastic agent action outcomes. In
IJCAI, 3279–3285.
Wayllace, C.; Keren, S.; Gal, A.; Karpas, E.; Yeoh, W.; and
Zilberstein, S. 2020. Accounting for Partial Observability
in Stochastic Goal Recognition Design: Messing with the
Marauder’s Map. In ECAI.
Wayllace, C.; and Yeoh, W. 2022. Stochastic Goal Recog-
nition Design Problems with Suboptimal Agents. In AAAI,
9953–9961.
Wilken, N.; Cohausz, L.; Schaum, J.; Lüdtke, S.; and Stuck-
enschmidt, H. 2023. Investigating the Combination of
Planning-Based and Data-Driven Methods for Goal Recog-
nition. arXiv preprint arXiv:2301.05608.

Yaghini, M.; Zhiyan, T.; and Fallahi, M. 2011. A Prediction
Model for Recognition of Bad Credit Customers in Saman
Bank Using Neural Networks. In ICDATA, 1.

6

Value Detection Rate: A Performance Metric for Payments Fraud Detection

Danial Dervovic1, Saeid Amiri2, Michael Cashmore1

1JP Morgan AI Research. Edinburgh, UK
2JP Morgan AI Research. New York City, NY, USA

danial.dervovic@jpmchase.com, saeid.amiri@jpmchase.com, michael.cashmore@jpmorgan.com

Abstract

Any plan for preventing fraud in financial transactions net-
works requires a well specified metric for success. In the in-
dustry, a well-known metric used to benchmark payments
fraud detection algorithms is Value Detection Rate (VDR).
This metric explicitly considers monetary savings due to pre-
vented fraud in contrast to metrics in the academic litera-
ture. In this short note we motivate and introduce this met-
ric via a formal description and show it constitutes a consis-
tent asymptotically unbiased statistical estimator to a relevant
probabilistic query about test data drawn iid from the transac-
tion population. We show via experiments on two publically
available fraud datasets that fraud prevention policies guided
by VDR have smaller financial losses than those guided by
the popular Precision-at-k (P@k) metric. Moreover, we em-
pirically show the VDR estimate converges given a practical
number of samples, recapitulating the limiting case proven
formally.

Introduction
Payments Fraud is a damaging problem across industry,
eroding trust, impacting customer loyalty and employee
morale, alongside financial losses incurred due to the fraud
itself and attendant regulatory action. Indeed the problem is
widespread, with 71% of surveyed organisations being tar-
geted by fraudsters in 2021 according to the study by the As-
sociation for Financial Professionals (2022). In the 2022 sur-
vey by PwC (2022), responding organisations reported total
losses of US$42B.

Fraudsters typically belong to one of several
archetypes (Saporta and Maraney 2022; Association
for Financial Professionals 2022) where often there is a se-
quential component to their actions. For example, a fraudster
may initially attempt several smaller fraudulent transactions
involving a compromised account before attempting a larger
transaction. On the defender’s side, constraints on how
many resources can be used to fight fraud are balanced
against how much fraud can be prevented (Hassanzadeh
et al. 2021).

These characteristics of the payments fraud prevention
problem suggest this problem is well-suited to AI Planning
methods and sequential decision-making algorithms, yet the

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

literature is scant. The works by Shen and Kurshan (2021);
Vimal et al. (2021) formulate fraud prevention as an MDP
and use Deep Reinforcement Learning to solve this prob-
lem. Rigter et al. (2022) formulate an online task allocation
problem that applies to fraud prevention as a hybrid MDP
and solve it using a dynamic programming approach with
state abstraction. The paper by Dervovic et al. (2021) con-
siders fraud prevention as a constrained sequential decision-
making problem, solved via a dynamic threshold based pol-
icy. Planning-based techniques are used by Borrajo, Veloso,
and Shah (2021) for the – related, but different – task of
Anti-Money Laundering.

Indeed, the vast majority of literature on applying AI
to fraud detection uses Machine Learning or Data Min-
ing approaches. This literature is too extensive to present
here, so we reference a number of surveys on these ap-
proaches (Bolton and Hand 2002; Phua et al. 2010; Lucas
and Jurgovsky 2020; Ali et al. 2022; Narayan, Madhu Ku-
mar, and Chacko 2023).

In this work we describe the fraud detection problem and
present an important metric, VDR, for evaluating fraud de-
tection policies. Moreover, we show that VDR has several
desirable theoretical and experimental characteristics.

Formulating Fraud Detection
Fraud detection is usually presented as a supervised learn-
ing problem with a large class imbalance. Approaches to
imbalanced learning are extensively surveyed (Abd Elrah-
man and Abraham 2013; Wagle and Manoj Kumar 2023).
Concretely, individual transactions are modelled as samples
drawn from a distribution D over X × Y , where X corre-
sponds to transaction features available to the defender or
decision-maker responsible for detecting fraud. The data la-
bels Y = {0, 1} are binary, with 1 corresponding to a true
fraud and 0 corresponding to a non-fraudulent transaction.
Each sample (X,Y) ∼ D corresponds to one transaction.
Notably, the fraudulent (Y = 1) population is orders of mag-
nitude smaller than the non-fraudulent population (Y = 0).
The defender has a corpus of training data drawn from D.
Their goal is then to prevent as many fraudulent transactions
as possible at test time – with transactions drawn again from
D. In practise, the training data will be taken before a certain
time period and test from the time period immediately fol-
lowing (Saporta and Maraney 2022; Le Borgne et al. 2022).

7

This testing procedure is carried out to allow for violations
of the iid assumption on the data distribution, that is, the test
data being drawn from some alternative distribution D′. In
this case the decision-maker wishes to be confident that any
policy trained on data fromD still performs well on D′. The
performance in fraud prevention is measured along a num-
ber of different axes in the literature.

Existing Performance Metrics
The fraud detection problem is usually stated in terms of
unbalanced supervised classification, so most metrics are
based on the test-set confusion matrix based on a fixed
threshold, or threshold free methods such as Receiver Oper-
ator Characteristic (ROC) and Precision-Recall (PR) curves,
with the latter being more popular (Boyd, Eng, and Page
2013; Saito and Rehmsmeier 2015). The work by Davis and
Goadrich (2006) discusses the relationship between PR and
ROC curves with respect to imbalanced classification. Has-
sanzadeh et al. (2021) explicitly consider tradeoffs in these
metrics when there are constraints on the number of posi-
tive label assignments the defender can give – as is often
the case in practise. The framework of Cost-sensitive learn-
ing (Elkan 2001) seeks to minimise the misclassification
cost between positive and negative examples, even on an
example-by-example basis (Bahnsen, Aouada, and Ottersten
2014), but often the methods are tuned to a specific classi-
fication algorithm. The Precision-@-k metric (Fan and Zhu
2011), or P@k, selects the transactions with top-k highest
predicted fraud probability by a model and evaluates the pre-
cision on this set of data. Currently there is no consensus on
the best metric to use for evaluating fraud detection poli-
cies (Le Borgne et al. 2022), but instead one must decide on
the tradeoffs one is willing to make.

That being said, what is missing from these evaluation
metrics is considerations of monetary costs incurred by un-
detected fraudulent transactions. The Value Detection Rate
(VDR) is a metric used in industry that explicitly consid-
ers this. Namely, maximising VDR corresponds to minimis-
ing monetary costs. In this brief note we formally intro-
duce VDR. We proceed to show some theoretical and ex-
perimental properties of the VDR metric, namely its estima-
tor is asymptotically unnbiased and consistent. We empir-
ically validate these theoretical bounds on public payments
fraud datasets. Furthermore, we show that an inspection pol-
icy that is based on VDR minimises financial costs due to
missed fraudulent transactions in contrast to existing fraud
detection metrics.

Value Detection Rate
Value Detection Rate (VDR) is a quantity taking values in
[0, 1] designed to capture the financial damage prevented by
a plan or policy. Normalising to [0, 1] allows a fair perfor-
mance comparison of the same policy across different data
slices.

We assume that there is a trained classifier ŷ : X → [0, 1],
where the output ŷ(x) is interpreted as the classifier’s sub-
jective probability that the transaction x ∈ X is fraudulent.
For brevity we define the function r : X → R++ that de-
notes the monetary value of a transaction.

The classifier subjective probability and transaction value
allow us to define a scoring function, Ψ : X → R++,

Ψ(x) = ŷ(x) · r(x), (1)

that is, the scoring function is the monetary value of the
transaction weighted by the classifier’s subjective probabil-
ity that the transaction is fraudulent. Suppose we have a val-
idation set,Dn = {(xj , yj)}nj=1, drawn iid fromD. We fix a
proportion of transactions that are to be inspected ϵ ∈ (0, 1)
and define the inspection function, ψϵ : X → {0, 1},

ψϵ(x) = 1{Ψ(x) ≥ Ψϵ} , (2)

where

Ψϵ :=

min

{
Ψ(xj)

∣∣∣∣∣ j ∈ argmax
S⊂{1,...,n}

{∑
i∈S

Ψ(xi)

∣∣∣∣ |S| ≤ ϵn
}}

.

(3)

The score threshold Ψϵ represents the score needed to be in-
cluded in the top ϵ-scoring fraction of the validation set Dn.
The inspection function is the classifier that marks transac-
tions for inspection (ψϵ = 1) that exceed the score threshold
Ψϵ. We note that while the mathematical formula is com-
plicated, this is easy to implement – solving the inner opti-
misation problem by sorting Ψ(xi) in descending order and
choosing the top ⌊ϵn⌋ transactions is sufficient.

Given an inspection function ψϵ we want to know how
effective this inspection function is at surfacing fraud, pri-
oritising the most valuable transactions. Let (X,Y) ∼ D be
the random variable corresponding to a transaction, along
with its fraud label. The monetary value of a transaction, as-
suming it is fraudulent, is given by E[r(X) | Y = 1]. The
expected fraudulent value captured by our inspection func-
tion ψϵ is given by E[ψϵ(X) ·r(X) | Y = 1]. We construct a
dimensionless quantity that summarises the effectiveness of
an inspection function ψϵ, the Value Detection Rate (VDR),
VDRϵ.
Definition 1 (Value Detection Rate). Let ψ : X → {0, 1}
be a fraud classifier. Then the Value Detection Rate (VDR)
of ψ over D is defined as

VDR(ψ) =
E(X,Y)∼D[ψ(X) · r(X) | Y = 1]

E(X,Y)∼D[r(X) | Y = 1]
,

where for brevity we denote the VDR of an inspection func-
tion ψϵ as defined in Eq. (2) by VDRϵ ≡ VDR(ψϵ).

Intuitively, VDR encompasses the notion that we want
any fraud prevention scheme to capture as much of the
fraudulent monetary value as possible given a randomly
sampled transaction. Note that a perfect classifier ψ will
achieve VDR(ψ) = 1. Moreover, the trivial classifier ψ :
x 7→ 1 also has a perfect VDR score – it is the restriction
on inspecting only an ϵ-fraction of transactions while also
measuring fraudulent value captured that renders VDRϵ an
effective metric for measuring performance.

We note that there is an additional metric used in the in-
dustry, Total Detection Rate (TDR), corresponding to the

8

special case where we impose r : x 7→ 1. TDR is very
similar to Precision@k, where the sole difference is k is a
constant number of transactions to inspect vs a fraction ϵ,
indeed the metrics are identical when k = ⌈ϵn⌉.

Estimating VDR
Let us now assume we have test data Dm = {(xj , yj)}mj=1
drawn iid from D. How can we estimate VDRϵ using Dm.
An estimator that immediately springs to mind is the follow-
ing one.

V̂DRϵ :=

∑m
i=1 ψϵ(xi)r(xi)yi∑m

i=1 r(xi)yi
(4)

We shall see that this estimator is the appropriate one to
use, as it is asymptotically unbiased and consistent. We first
state a lemma that will greatly help in proving these propo-
sitions.
Lemma 2. (Cochran 1977, Theorem 6.4) Suppose we have
random variables U, V with finite variances S2

u, S2
v , cor-

relation coefficient ρu,v , and finite means µU , µV such
that µV ̸= 0. The limiting distribution of µ̂u/µ̂v :=∑n

i=1 ui/
∑n

i=1 vi, from random samples of size n from an
infinite population, is normal N (µ, σ2) with

µ =
µU

µV
, σ2 =

1

n

µ2
U

µ2
V

[
S2
u

µ2
U

− 2ρu,vSuSv

µUµV
+
S2
v

µ2
V

]
.

We can now show asymptotic unbiasedness and consis-
tency. Note in the following we assume that the distribution
r(X) has a finite mean and variance.
Proposition 3 (VDR Asymptotic Unbiasedness). The esti-
mator V̂DRϵ is asymptotically unbiased, that is

E
[
V̂DRϵ −VDRϵ

]
→ 0 as m→ 0.

Proof. The estimator V̂DRϵ is a ratio. Consider first the ex-
pectation of the numerator of (4),

E[
∑m

i=1 ψϵ(xi)r(xi)yi] =
∑m

i=1 E[ψϵ(xi)r(xi)yi], (5)
by linearity of expectations

= E[ψϵ(xi)r(xi)1{yi = 1}] (6)
collecting terms in the sum and rephrasing the yi variables

= E[ψϵ(X)r(X) | Y = 1]P(Y = 1). (7)
Similarly, for the denominator of (4) we have

E[
∑m

i=1 r(xi)yi] = mE[r(X) | Y = 1]P(Y = 1). (8)
Thus the ratio of expectations of the numerator and denom-
inator of (4) is E[ψϵ(X)r(X) | Y = 1]/E[r(X) | Y = 1] =
VDRϵ. Indeed, from Lemma 2 we have for large m that the
expectation of the ratio is the ratio of the expectations and
so V̂DRϵ constitutes an unbiased estimator of VDRϵ for a
sufficiently large test set Dm.

Proposition 4 (VDR Consistency). The estimator V̂DRϵ is
consistent, that is for all ε > 0

lim
m→∞

P
[∣∣∣V̂DRϵ −VDRϵ

∣∣∣ > ε
]
= 0.

Proof. From the proof of Proposition 3 and Lemma 2 we
have that V̂DRϵ follows a normal distribution for large m,
with mean VDRϵ. Notice that the variance is O(1/m), from
which consistency immediately follows.

0 20000 40000 60000 80000 100000

0.6

0.8

1.0

V
D

R
ε

Convergence of VDRε on creditcardfraud

ε = 0.01

0 20000 40000 60000 80000 100000
Number of samples, m, to estimate VDRε

0.6

0.8

1.0

V
D

R
ε

ε = 0.1

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of samples, m, to estimate VDRε

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
D

R
ε

Convergence of VDRε on ieee-cis

ε = 0.01

ε = 0.1

Figure 1: Plot of size of test set Dm against VDRϵ

showing convergence for large number of samples on
datasets creditcardfraud (top two panels) and
ieee-cis (bottom panel). These give a practical estimate
for the rates of convergence of Propositions 3 and 4. Re-
ported error bars are standard deviation over 20 samples.

Experiments
In this section we conduct two experiments: Experiment
1. VDR Convergence; and Experiment 2. VDR Effec-
tiveness. Our domain is fraud in financial transactions
– there are few public datasets with realistic exemplars
of this data (Le Borgne et al. 2022). We choose the
creditcardfraud (Dal Pozzolo et al. 2015) and
ieee-cis (IEEE-CIS 2019) datasets as they are based
on real data, provide realistic features and explicit monetary
values for transactions. Dataset preparation was identical to
that in (Dervovic et al. 2021) and the model used was XG-
Boost (Chen and Guestrin 2016) with default hyperparame-
ters.

In Experiment 1 (Figure 1) we vary the size of the test
set Dm used to estimate VDRϵ for ϵ ∈ {0.01, 0.1}, with
m varying from 5000 to the size of the respective vali-
dation sets. There are 20 replicates sampled without re-
placement for each value of m, of which there were 100
linearly spaced values. From Figure 1 we see for both

9

10−3 10−2 10−1 100

Inspection Proportion ε

6000

8000

10000

12000

14000

16000

V
al

ue
ca

pt
ur

ed
U

S$
Effect of Outsort Policy on creditcardfraud

Optimise TDR
Optimise VDR

10−3 10−2 10−1 100

Inspection Proportion ε

0.0

0.2

0.4

0.6

0.8

1.0

V
al

ue
ca

pt
ur

ed
U

S$

×106 Effect of Outsort Policy on ieee-cis
Optimise TDR
Optimise VDR

Figure 2: Curves of Fraudulent US$ captured against
outsort rate ϵ ∈ (0, 1) using two different policies:
Total Detection Rate (equiv. to P@k) and VDR. Top
panel is creditcardfraud dataset and bottom panel
is ieee-cis . Notice that using an outsorting policy in-
formed by VDR captures more fraudulent value over a wide
range of outsort rates. The x-axis is log-scaled showing this
effect persists over multiple orders of magnitude.

creditcardfraud and ieee-cis that the VDRϵ es-
timates are converging to approximately normal after a rea-
sonable number of samples m, as evidenced by the stabili-
sation in the size of the error bars. This empirically validates
the theoretical asymptotic bounds established in Proposi-
tions 3 and 4.

In Experiment 2 we consider fraud prevention via static
threshold policies, namely for a given threshold τ , there are
two policies:

VDR policy := Inspect x iff Ψ(x) ≥ τ,
TDR policy := Inspect x iff ŷ(x) ≥ τ. (9)

If a truly fraudulent transaction is inspected its monetary
value is said to be captured and if it is not inspected the
money is assumed to be lost by the decision maker. The
VDR policy is implictly optimising VDR as we are thresh-
olding based on the value-weighted model score, whereas

the TDR policy is thresholding solely on model score. The
TDR policy stands in for optimising existing fraud detection
metrics such as P@k.

For the VDR policy we take τ (VDR)
ϵ = Ψϵ as defined in

Eq. (3) and for the TDR policy we assume τ (TDR)
ϵ takes the

form

τ (TDR)
ϵ :=

min

{
ŷ(xj)

∣∣∣∣∣ j ∈ argmax
S⊂{1,...,n}

{∑
i∈S

ŷ(xi)

∣∣∣∣ |S| ≤ ϵn
}}

.

(10)

Both thresholds τ (VDR)
ϵ and τ

(TDR)
ϵ are computed with re-

spect to the model training data.
In Figure 2 we plot the fraudulent value captured in the

test set using the VDR and TDR informed policies, over a
range of ϵ values in (0, 1) covering several orders of magni-
tude. For the ieee-cis dataset we see that the VDR pol-
icy strictly dominates the TDR policy for all ϵ and dominates
for the creditcardfraud dataset. This confirms that us-
ing VDR to inform a fraud prevention policy gives superior
monetary savings due to avoided fraud than existing metrics.

Conclusion
In this short paper we formally introduce a metric used for
fraud detection in industry, VDR, and motivate its use in pre-
vention plans and policies. VDR is shown to have several de-
sirable statistical properties. We encourage the use of VDR
in works by the academic community on planning for fraud
detection and prevention.

Disclaimer. This paper was prepared for informational pur-
poses by the Artificial Intelligence Research group of JPMorgan
Chase & Co. and its affiliates (“JP Morgan”), and is not a prod-
uct of the Research Department of JP Morgan. JP Morgan makes
no representation and warranty whatsoever and disclaims all liabil-
ity, for the completeness, accuracy or reliability of the information
contained herein. This document is not intended as investment re-
search or investment advice, or a recommendation, offer or solici-
tation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evalu-
ating the merits of participating in any transaction, and shall not
constitute a solicitation under any jurisdiction or to any person, if
such solicitation under such jurisdiction or to such person would
be unlawful.

References
Abd Elrahman, S. M.; and Abraham, A. 2013. A review of
class imbalance problem. Journal of Network and Innova-
tive Computing, 1(2013): 332–340.
Ali, A.; Abd Razak, S.; Othman, S. H.; Eisa, T. A. E.;
Al-Dhaqm, A.; Nasser, M.; Elhassan, T.; Elshafie, H.; and
Saif, A. 2022. Financial Fraud Detection Based on Ma-
chine Learning: A Systematic Literature Review. Applied
Sciences, 12(19).
Association for Financial Professionals. 2022. 2022
AFP® Payments Fraud and Control Survey. Underwritten

10

by JP Morgan. https://www.afponline.org/publications-
data-tools/reports/survey-research-economic-data/Details/
payments-fraud.
Bahnsen, A. C.; Aouada, D.; and Ottersten, B. 2014.
Example-Dependent Cost-Sensitive Logistic Regression for
Credit Scoring. In Proc. ICMLA, 263–269.
Bolton, R. J.; and Hand, D. J. 2002. Statistical Fraud Detec-
tion: A Review. Statist. Sci., 17(3): 235–255.
Borrajo, D.; Veloso, M.; and Shah, S. 2021. Simulating and
Classifying Behavior in Adversarial Environments Based on
Action-State Traces: An Application to Money Laundering.
In Proceedings of the First ACM International Conference
on AI in Finance, ICAIF ’20. New York, NY, USA: Associ-
ation for Computing Machinery.
Boyd, K.; Eng, K. H.; and Page, C. D. 2013. Area under
the Precision-Recall Curve: Point Estimates and Confidence
Intervals. In Proceedings of the 2013th European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases - Volume Part III, ECMLPKDD’13, 451–466.
Chen, T.; and Guestrin, C. 2016. XGBoost: A Scalable
Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’16, 785–794. New York, NY,
USA: Association for Computing Machinery.
Cochran, W. G. 1977. Sampling Techniques, 3rd Edition.
John Wiley.
Dal Pozzolo, A.; Caelen, O.; Johnson, R. A.; and Bontempi,
G. 2015. Calibrating Probability with Undersampling for
Unbalanced Classification. In 2015 IEEE Symposium Series
on Computational Intelligence, 159–166.
Davis, J.; and Goadrich, M. 2006. The Relationship between
Precision-Recall and ROC Curves. In Proceedings of the
23rd International Conference on Machine Learning, ICML
’06, 233–240. New York, NY, USA: Association for Com-
puting Machinery.
Dervovic, D.; Hassanzadeh, P.; Assefa, S.; and Reddy, P.
2021. Non-parametric stochastic sequential assignment with
random arrival times. arXiv preprint arXiv:2106.04944.
Elkan, C. 2001. The Foundations of Cost-Sensitive Learn-
ing. In Proc. IJCAI, 973–978.
Fan, G.; and Zhu, M. 2011. Detection of rare items with
target. Statistics and Its Interface, 4(1): 11–17.
Hassanzadeh, P.; Dervovic, D.; Assefa, S.; Reddy, P.; and
Veloso, M. 2021. Tradeoffs in streaming binary classifica-
tion under limited inspection resources. In Proceedings of
the Second ACM International Conference on AI in Finance,
1–9.
IEEE-CIS, I. C. I. S. 2019. IEEE-CIS Fraud Detection.
https://www.kaggle.com/c/ieee-fraud-detection/datasets.
Le Borgne, Y.-A.; Siblini, W.; Lebichot, B.; and Bontempi,
G. 2022. Reproducible Machine Learning for Credit Card
Fraud Detection - Practical Handbook. Université Libre de
Bruxelles.
Lucas, Y.; and Jurgovsky, J. 2020. Credit card fraud de-
tection using machine learning: A survey. arXiv preprint
arXiv:2010.06479.

Narayan, A.; Madhu Kumar, S. D.; and Chacko, A. M. 2023.
A Review of Financial Fraud Detection in E-Commerce Us-
ing Machine Learning. In Bhateja, V.; Yang, X.-S.; Chun-
Wei Lin, J.; and Das, R., eds., Intelligent Data Engineering
and Analytics, 237–248. Singapore: Springer Nature Singa-
pore.
Phua, C.; Lee, V.; Smith, K.; and Gayler, R. 2010. A com-
prehensive survey of data mining-based fraud detection re-
search. arXiv preprint arXiv:1009.6119.
PwC. 2022. Global Economic Crime and Fraud Sur-
vey 2022. https://www.pwc.com/gx/en/services/forensics/
economic-crime-survey.html.
Rigter, M.; Dervovic, D.; Hassanzadeh, P.; Long, J.; Zehtabi,
P.; and Magazzeni, D. 2022. Optimal Admission Control
for Multiclass Queues with Time-Varying Arrival Rates via
State Abstraction. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, 9918–9925.
Saito, T.; and Rehmsmeier, M. 2015. The precision-recall
plot is more informative than the ROC plot when evaluat-
ing binary classifiers on imbalanced datasets. PLOS ONE,
10(3): e0118432.
Saporta, G.; and Maraney, S. 2022. Practical Fraud Preven-
tion: Fraud and AML Analytics for Fintech and ECommerce,
Using SQL and Python. O’Reilly Media, Incorporated.
Shen, H.; and Kurshan, E. 2021. Deep Q-Network-Based
Adaptive Alert Threshold Selection Policy for Payment
Fraud Systems in Retail Banking. In Proceedings of the First
ACM International Conference on AI in Finance, ICAIF ’20.
New York, NY, USA: Association for Computing Machin-
ery.
Vimal, S.; Kayathwal, K.; Wadhwa, H.; and Dhama, G.
2021. Application of Deep Reinforcement Learning to Pay-
ment Fraud. In Multi-Armed Bandits and Reinforcement
Learning: Advancing Decision Making in E-Commerce and
Beyond, KDD ’21.
Wagle, P. P.; and Manoj Kumar, M. V. 2023. A Compre-
hensive Review on the Issue of Class Imbalance in Pre-
dictive Modelling. In Shetty, N. R.; Patnaik, L. M.; and
Prasad, N. H., eds., Emerging Research in Computing, In-
formation, Communication and Applications, 557–576. Sin-
gapore: Springer Nature Singapore.

11

Accelerating Benders Decomposition via Reinforcement Learning Surrogate
Models

Kyle Mana*, Stephen Mak*†, Parisa Zehtabi, Michael Cashmore, Daniele Magazzeni,
Manuela Veloso

{kyle.mana, parisa.zehtabi, michael.cashmore, daniele.magazzeni, manuela.veloso}@jpmorgan.com, sm2410@cam.ac.uk

Abstract
Stochastic optimization (SO) attempts to offer optimal
decisions in the presence of uncertainty. Often, the classical
formulation of these problems becomes intractable due to a)
the number of scenarios required to capture the uncertainty
and b) the discrete nature of real-world planning problems.
To overcome these tractability issues, practitioners turn to
decomposition methods that divide the problem into smaller
more tractable sub-problems. The focal decomposition
method of this paper is Benders decomposition (BD), which
decomposes stochastic optimization problems on the basis
of scenario independence. In this paper we propose a
method of accelerating BD with the aid of a surrogate
model in place of an NP-hard integer master problem.
Through the acceleration method we observe 30% faster
average convergence when compared to other accelerated
BD implementations. In a working example, we introduce
an RL agent as a surrogate and solve stochastic inventory
management problems.

Introduction
Optimization is frequently subject to conditions of
uncertainty. If this uncertainty is not sufficiently accounted
for by a solution, even minor perturbations in the
environment can devalue results and lead to catastrophic
outcomes. While uncertainty can often be simulated or
even parameterized, solving over that uncertainty offers
incredible complexity. To make optimal decisions that
consider both the uncertainty and constraints of a system,
the field of SO is often applied. SO considers a distribution
of possible scenarios rather than a deterministic event, and
seeks an optimal outcome across the range of possibilities.

A common challenge for stochastic optimization is
tractability. Generating an optimal decision that considers
its outcome across a large number of scenarios can be
extremely costly. To combat these computational issues, a
common approach is to decompose the problem into simpler
and independent sub-problems that can be combined to
retrieve a global certificate of optimality. In this paper, we
offer an adaptation of the common decomposition method
of Benders decomposition (BD).

*Denotes equal contribution
†Work done while at JP Morgan AI Research

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Despite wide usage since its introduction, BD suffers
from two well-known practical limitations. First, in discrete
space BD relies on an NP-hard mixed-integer master
problem (MIMP). This MIMP is responsible for making
global decisions that are homogeneous across scenarios.
Second, with each iteration a set of scenario-specific
sub-problems (SP) generate gradient approximations that
are passed to the MIMP as constraints (or cuts). The result
is a MIMP with complexity that scales linearly with the
number of required iterations as constraints are added.

Given these deficiencies, accelerating BD has become
a compelling research problem. In production routing
applications, Adulyasak et al. (2015) implement
lower-bound lifting inequalities to tighten initial lower
bounds, and exploit scenario grouping to reduce added
complexity at each iteration. Baena et al. (2020) attempt to
localize the loss approximation of BD by restricting each
iteration to a subspace centered around strong past solutions.
Crainic et al. (2016) aid initial iterations by including an
informative subset of scenarios within the MIMP. Lee et
al. (2021) offer a machine learning approach to predicting
constraint importance; retaining only important cuts and
limiting MIMP complexity. Each of these proposals has
shown computational benefits, but remain solely dependent
on the expensive MIMP to generate successive solutions.
In contrast, Poojari and Beasley (2009) replace the MIMP
with a genetic algorithm to produce faster feasible solutions.
Although the heuristic produces fast master problem (MP)
solutions, it is still reliant on SP approximations to
undertstand scenario loss, and offers feasible as opposed to
certifiably optimal solutions.

Our proposal introduces a surrogate model to quickly
generate solutions to the discrete MP rather than relying on
the MIMP. This surrogate generates fast solutions to unseen
problems after learning the loss of decisions in similar
stochastic environments. At varying rates, the MIMP is still
run to retrieve the certificate of optimality offered by BD. In
total, our contributions are:
• A generalized method of accelerating BD that retrieves

optimal solutions to stochastic optimization problems
while drastically reducing run times.

• A solution selection method that uses cuts from BD
sub-problems to inform selection of future surrogate MP
solutions; offering a further unification of the surrogate

12

MP within the BD framework.
• A worked inventory management problem with detailed

implementation of the acceleration method. We offer an
explicit Benders formulation, and leverage an RL model
as our surrogate MP.

• Experiments showing a 30% reduction in run-time vs
alternative acceleration methods.

Background
A widely used form of stochastic optimization is Sample
Average Approximation (SAA). SAA aims to approximate
loss over the distribution of possible scenarios using
simulation. In SAA, R scenarios are simulated, with each
simulation yielding its own deterministic sub-problem with
a loss function f(x,w,Dr), where x is a set of global
decisions (universal across all scenarios), w is a cost vector,
and Dr is a set of scenario-specific parameters. The total
loss of the problem is then computed as an average of the
loss across all scenarios,

ℓ(x) =
1

R

∑

∀r∈R

f(x,w,Dr) (1)

Despite success in a number of optimal planning domains,
the struggles of scaling SO problems are well documented.
For example, Gendreau et al. (1996) note that when solving
stochastic vehicle routing problems, practitioners commonly
resort to comparing heuristics as exact methods become
intractable. To combat scalability issues, decomposition
methods are commonly employed to solve large-scale SO
problems. Here we introduce the principles of Benders
decomposition. Consider an SAA problem of the form:

min
x,y

cTx+
1

R

∑

∀r∈R

wT yr (2)

subject to
Ax = b (3)

Bx+Dryr = g, ∀r ∈ R (4)

x ∈ Z, yr ∈ Z+, ∀r ∈ R (5)

where x is again our set of global decisions, A, b, and B
are parameters that define constraints on x, c is the cost of
global decisions, Dr and g are scenario-specific parameters,
yr is a set of decisions made independently within each
scenario, and w is a cost applied to each scenario-specific
decision. In this formulation, wT yr is equivalent to (1). The
first step of BD is to separate the global decision variables
x and scenario-specific decision variables yr. This leaves us
with a master problem

{min
x,θ

cTx+
1

R

∑

∀r∈R

θr : Ax = b, x ∈ Z+} (6)

and a collection ofR sub-problems, where for each r ∈ R
we have

{min
yr

wT yr : Dryr = g −Bx∗, yr ∈ R+} (7)

The sub-problems accept a fixed x∗ based on the solution
to (6), and are solved to obtain optimal sub-problem
decisions yr. Note that BD introduces a set of auxiliary
variables θr,∀r ∈ R to the master problem (6). This
auxiliary variable, frequently called the recourse variable,
is responsible for tracking an approximation of the
sub-problem loss that has been moved to (7). Let us assume
the sub-problem is always feasible. This is not a necessary
assumption, but simplifies the following description of BD.

Note that integrality on yr has been relaxed in the
sub-problem. This relaxation is necessary for Benders
decomposition, and only possible when a) the sub-problem
variables were not discrete to begin with or b) the
decomposition results in a totally-unimodular sub-problem
structure. Taking the dual of the sub-problem, we get:

{max
qr

qTr (g −Bx∗) : qTr Dr ≤ w} (8)

The dual sub-problem has three essential properties. First,
through strong duality the optimal value of (8) is equivalent
to the optimal value of (7) at x∗. Second, the objective
function (8) is linear with respect to the master problem
decisions x. And lastly, with the optimal dual values of q∗r
we can establish

{minyr
wT yr : Dryr = g −Bx} ≥

q∗Tr (g −Bx),∀x ∈ R,∀w ∈ R (9)

via weak duality. With these traits established, we see that
the optimal dual SP objective q∗Tr (g −Bx) can be included
as a valid constraint on θr in the MIMP. These constraints
serve as a sub-gradient approximations of the SP loss. For
each SP solution, we can update the MIMP with the valid
constraint of θr ≥ q∗Tr (g − Bx) and re-solve for a new
x. This process is repeated until the SP’s do not offer any
strengthening constraints on θr, indicating convergence and
full approximation of SP loss. Figure 1 offers a visual
representation of this process.

Figure 1: Iterative procedure of Benders decomposition,
alternating between a MIMP (6) and SP (8).

Reinforcement Learning
Reinforcement learning (RL) offers a powerful approach to
solving combinatorial problems. Delarue et al. (2020) gives
one such example of RL applied to combinatorial problems,
solving notoriously challenging capacitated vehicle routing
problems using value-based methods. As shown in Delarue

13

et al., the benefit of RL-based methods is that after learning
the optimal policy they can generate actions in discrete space
very quickly, albeit without a guarantee of optimality.

RL is typically based on the Markov Decision Process
(MDP) framework as described by Sutton and Barto (2018).
This can be defined by a tuple ⟨S,A, T ,R⟩ where S is the
set of states, A is the set of actions, T is a set of transition
probabilities from state s to the next state s′, and R is the
reward function. In temporal environments, we can adopt
the notation of st ∈ S, at ∈ A for the state and action of a
given time step t.

In RL, an agent attempts to learn the optimal action in
a given state. Performance is measured by the collective
rewards over future states and actions. The behaviors of
the agent are updated based on prior experience, and can
collectively be defined by a policy, π(s, a). RL algorithms
can be broadly partitioned into two classes: value-based and
policy based. In a value-based implementations, the policy
π(s, a) is selected using value-function approximation
methods, where

Qπ(st, at) =
∑

∀j∈T

Est+1,at+1,...[γtR(st+j , at+j)] (10)

is the expected reward of an action, γt is a discount
rate placed on future reward, and an optimal policy is
deterministically selected based on argmaxπQπ .

Rather than estimating the value-function Q and
generating policies based on actions that maximize that
approximation, policy-based reinforcement learning aims
to optimize a functional representation of the policy
π(s, a). We define the functional representation of a policy
as πβ(s, a), where β is a set of learned parameters.
Importantly, in policy-based learning the agent optimizes the
parameters β to generate a stochastic policy. This stochastic
policy respects the fact that the cumulative reward for an
action may not be deterministic, and consequentially a single
best action may not exist.

Work from Sutton et al. (1999) introduces an optimization
procedure for policy-based RL that updates the parameter
set β via an estimate of the policy gradient. A powerful
variation of policy-based optimization was introduced by
Schulman et al. (2017) to avoid detrimentally large policy
updates. In their version of policy-based optimization, the
policy changes are regulated by limiting the reward of policy
variation. Their method, titled Proximal Policy Optimization
(PPO), updates the objective function to clip the reward of
policy updates where the ratio |π

new
β (at|st)

πold
β (at|st) | extends beyond

some ϵ.
Policy-based RL is a more applicable form of RL for

our proposal, as it enables a set of diverse actions to
be generated in a given state. Given a requirement for
non-deterministic actions, our working example implements
a PPO RL algorithm with a multi-layer neural network
serving as our agent. The parameter set of this network, β,
defines our policy πβ.

Accelerating Benders Decomposition
With background on BD and RL provided, we introduce our
proposed method of accelerating Benders decomposition.
First, we will offer specifics on how a surrogate model
is used in place of the MIMP. Then, we will introduce
three possible mechanisms for selecting actions from the
surrogate model. Lastly, we will offer a more thorough
coverage of the theoretical benefits that the surrogate model
provides, and known deficiencies of BD that it addresses.

Surrogate-MP
Recall the iterative procedure outlined in figure 1. The SP’s
can be solved efficiently using any standard LP solver, but
each iteration calls back to a complex MIMP. Not only is
the MIMP NP-hard, but its complexity scales linearly with
the number of iterations as a new constraint is added from
the SP. Given these mechanics, there is a strong desire to
a) increase the speed of each master problem iteration and
b) decrease the total number of calls to the MIMP required.
We achieve both results by periodically introducing a faster
surrogate model in place of the MIMP (figure 2). This
surrogate model can be any model that has learned to map
the stochastic input space to the discrete decision space
with intentions of minimizing the problem loss. Later in the
paper, we introduce an RL agent as our surrogate model to
generate master problem solutions. We call this framework
Surrogate-MP.

Figure 2: Iterative procedure of Surrogate-MP.

Note in this modified schema that with each iteration, the
decision to use the surrogate in place of the MIMP is drawn
from a Bernoulli distribution with a control parameter Γ. If
a value of 1 is returned from the Bernoulli distribution, the
surrogate is used to generate global decisions. Otherwise,
the standard MIMP is run and the optimality gap can be
confirmed. Regardless of whether the MIMP or surrogate
are used, global decisions are passed to the sub-problem and
loss approximating cuts are added.

Controlling Surrogate Usage
The surrogate model usage can be controlled in a variety of
ways, and we offer three forms of control. These variants
are aimed at answering 1) How frequently should we

14

use the surrogate? 2) How can we be sure the surrogate
solutions are useful for convergence? 3) If surrogate
actions are non-deterministic, how can we decide which
action are best to use? The three methods we implement
are a greedy selection, weighted selection, and informed
selection. Each of these methods assume the surrogate has
generated a non-deterministic batch of actions for the given
environment.

Greedy Selection The greedy selection process first
evaluates every surrogate solution in a batch against
expectations over the horizon to estimate solution
performance. At each iteration, the decision to use the
surrogate is made with some probability. If the surrogate is
used, we select the top performing solution from the batch
and use it as our MP solution. The solution is then removed
from the batch and the process is continued.

Weighted Selection Rather than deterministically
selecting actions based on their performance against an
expectation, we can perform weighted random sampling.
We again use the calculated loss of action i evaluated against
an expected outcome, which we call ℓi. However, instead of
selecting argmini(ℓi) as in the greedy method, we create

a probability vector, where p(i) =
1
ℓi∑

∀i∈I
1
ℓi

. Using this

probability vector, we perform weighted sampling from the
batch of actions each time the surrogate is called.

Informed The final proposal is observed to be strongest
in our experiments, and incorporates feedback from the BD
sub-problems. With informed selection, surrogate solutions
are selected using the constraint set currently placed on
θr. The benefit of utilizing the constraint matrix to select
surrogate solutions is that these constraints inherently
motivate exploration to either a) minimal or b) poorly
approximated regions of the convex loss. Given final
convergence is defined by a binding subset of these
constraints, it is necessary to explore these minimal or
poorly approximated regions.

To describe the method, we introduce a constraint
matrix Ar ∈ RI×N which contains the sub-gradient
approximations imposed on θr, and a row vector of constant
values cr ∈ RI that is added to each sub-gradient
approximation. I refers to the iteration number of BD, N
refers to the number of MP decision variables, and r refers
to the scenario.

Note each iteration generates a new set of sub-gradient
approximations that are added to the matrix. As mentioned,
these are the same sub-gradients that are applied to θr
in the master problem, and are generated using our dual
sub-problem. On a given iteration, we have a batch of
M solutions that have been generated by the surrogate.
Decisions for this batch are represented by matrix D ∈
ZN×M . We begin by computing the loss approximations of
each gradient, for each of the M solutions. This is given as
TCAr ∈ RI×M .

TCAr = Ar ·O + (cr · 11×I)T (11)

The TCAr matrix contains approximations of the

sub-problem loss for each of the M solutions, generated
by each of the I constraints currently placed on θr. We
can now take the maximum value for each column M as
the approximated cost of solution m. In LP terms, this
maximum value relates to the binding constraint on θr in
the MIMP, and is thus our true approximation of SP cost at
that point. We represent this approximation (ℓmr) as:

ℓm,r = max
∀i∈I

(TCAr)im (12)

Now we fully approximate the expected loss for each of
the M solutions by taking an average across all R scenarios,
and adding the fixed loss of that decision (denoted fm).

ℓm =
1

R

∑

∀r∈R

ℓm,r + fm (13)

the surrogate solution that minimizes the problem

argminmℓm (14)

is then taken as our MP solution, and passed to the
sub-problem for constraint generation.

Benefits of Surrogate-MP
The benefits of using a surrogate model with learned actions
in place of the MIMP is based on two central principles.

1. The time required to generate solutions from a
pre-trained surrogate model is negligible compared to the
time required to solve a large scale MIP.

2. The surrogate model has learned its actions from
past exposure to the stochastic environment. As a
result, sub-problem loss is expressed in surrogate model
solutions regardless of how well θr approximates SP loss.
This means that even early iterations of the surrogate
model will be highly reflective of sub-problem loss.

The first benefit is fairly self-explanatory; we desire faster
MP solutions, and the surrogate provides them. The second
benefit is more nuanced and worth expanding. We recall the
general form MIMP (6), where θr offers an approximation
of sub-problem loss that is refined through linear constraints
generated by (8). It is well observed that this approximation
can converge quickly if global decisions are localized to
the optimal region, but it can also be very slow if global
decisions are far from the optimal region or the cuts poorly
approximate the loss (Crainic et al. (2016), Baena et al.
(2020)). At initialization, θr has not received any feedback
from the SP, and is instead bound by some heuristic or
known lower bound (commonly θr ≥ 0 for non-negative
loss). Given the lack of information initially imparted on
θr, the MP generates global solutions that lack consideration
of SP loss and can be very distant from the optimal region.
Similar to a gradient based algorithm with a miss-specified
learning rate, this can lead BD to oscillate around the
minimal region or converge slowly, wasting compute and
adding complexity with minimal benefit to the final solution
(Baena et al. (2020)).

The surrogate mitigates this major issue by generating
global decisions that reflect an understanding of

15

their associated SP loss without requiring strong loss
approximations on θr. As a result, initial global decisions
generated by the surrogate are localized to the minimal
region and cuts can quickly approximate the minimum
of the convex loss. These two fundamental benefits are
the basis for a 30% reduction in run-times, observed in
experiments with the working example that follows.

Working Example
Let us introduce an inventory management problem (IMP)
as a working example. In the proposed IMP, we assume
the required solutions must a) choose a delivery schedule
from a finite set, b) decide an order-up-to amount (order
= order-up-to - current inventory) for each order day, and
c) place costly emergency orders if demand cannot be
met with current inventory. For simplicity we consider a
single-item, single-location ordering problem where there
is a requirement to satisfy all demand using either planned
schedules, or more costly just-in-time emergency orders.
The demand estimate is generated using a forecast model
with an error term from an unknown probability distribution.

Adaptations of the general form IMP are applied
in industries ranging from financial services, to
brick-and-mortar retail. In e-commerce, vendors make
decisions to either assume the holding costs associated
with stocking inventory near demand locations, or use more
costly fulfillment options to meet consumer needs (Arslan
et al. (2021)). In commercial banking, cash must be held at
physical locations and made available to customers when
needed, with a compounding cost of capital being applied to
any unused cash (Ghodrati et al. (2013)). Or in commodities
trading, physical assets may need to be purchased and held
until a desired strike price is realized in the future (Goel et
al. (2011)).

SO Formulation and Decomposition

To model the IMP as a SO mixed-integer problem we
introduce the following notation: let T be set of days t, R
be set of scenarios r, and S define a finite set of schedules
s. Holding cost of an item (per unit-of-measure, per day) is
h, the cost of emergency services (per unit) is e, the penalty
applied to over-stocking (per unit over-stocked) is q, and fs
is the fixed cost of a schedule. Capacity is defined by m and
starting inventory by y. The parameterwst indicates whether
schedule s orders on day t. Demand on day t under scenario
r is ntr.

The decision space is defined by seven sets of variables.
The decision to use schedule s is made using variable
us ∈ {0, 1}. The order-up-to amount is decided by
at ∈ Z+, and ktr ∈ Z is the required order quantity to meet
the order-up-to amount. Inventory on hand is monitored
by dtr ∈ Z+, the units of holding space required to stock
the inventory is ptr ∈ Z+, the required emergency order
quantity is otr ∈ Z+, and vtr ∈ Z+ is the number of units
that inventory is over-filled by (all defined ∀t ∈ T, ∀r ∈ R).
The formulation of our IMP is

min
∑

∀s∈S

(usfs) +
1

R

∑

∀r∈R

∑

∀t∈T

(ptrh+ otre+ vtrq) (15)

subject to:

dtr = y − ntr + ktr − vtr + otr, t = 0,∀r ∈ R (16)

dtr = dt−1,r+ktr−ntr+otr−vtr,∀t ∈ {1, ..., T},∀r ∈ R
(17)

ptr ≥ y + ktr − vtr, t = 0,∀r ∈ R (18)
ptr ≥ at,∀t ∈ {1, ..., T},∀r ∈ R (19)

ptr ≥ pt−1,r − at,∀t ∈ {1, ..., T},∀r ∈ R (20)
y + ktr − vtr ≤ m, t = 0,∀r ∈ R (21)

dt−1,r + ktr − vtr ≤ m,∀t ∈ {1, ..., T},∀r ∈ R (22)

ktr = at − y
∑

∀s∈S

uswst (23)

ktr ≥ at − dt−1,r,∀t ∈ {1, ..., T},∀r ∈ R (24)

ktr ≤ at−dt−1,r+(1−
∑

∀s∈S

uswst)m,∀t ∈ {1, ..., T},∀r ∈ R

(25)
ktr ≤ at,∀t ∈ T, ∀r ∈ R (26)

ktr ≥ −
∑

∀s∈S

uswst ×m,∀t ∈ T, ∀r ∈ R (27)

vtr ≤ at,∀t ∈ T, ∀r ∈ R (28)

at ≤
∑

∀s∈S

uswst ×m,∀t ∈ T (29)

∑

∀s∈S

us = 1 (30)

The objective (15) minimizes the sum of planned schedule
costs and the average of holding costs, emergency order
costs, and over-fill costs across the R scenarios. Flow
constraints (16) and (17) balance inflow and outflow of
inventory through demand and deliveries. The holding cost
is enforced by constraints (18), (19), and (20). Constraints
(21) and (22) mandate that inventory cannot be filled beyond
its capacity. Lastly, constraints (23), (24), (25), (26), (27),
(28), and (29) ensure an order exactly fills the inventory
to the optimal order-up-to-amount, and that orders are only
placed on scheduled days. (30) guarantees exactly one
schedule is selected.

For BD, we note that a and u are schedule and order-up-to
decisions that must be made the same across all scenarios.
As a result, a, u, (29), and (30) are contained in the MIMP
while the remaining decision variables and constraints
are delegated to the scenario specific sub-problems. For
brevity, we omit the primal sub-problem formulation and
directly introduce the cut-generating dual sub-problem
formulation. We define the dual variables in line with their
related constraints: α ∈ R [(16), (17)], γ ∈ R+ [(18), (19)],
ω ∈ R+ (20), ϕ ∈ R+ [(21),(22)], ξ0 ∈ R (23), ξlb ∈ R+

(24), ξub ∈ R− (25), σ ∈ R− (26), π ∈ R+ (27), β ∈ R−

(28).

16

Master Problem

min
a,u,θ

∑

∀s∈S

(us × fs) +
1

R

∑

∀r∈R

θr (31)

s.t.
at ≤

∑

∀s∈S

uswst ×m,∀t ∈ T (32)

∑

∀s∈S

us = 1 (33)

θr ≥ 0,∀r ∈ R (34)
Dual Sub-problem (solved independently for each

scenario r)

max
α,ϕ,ξ0,ξlb,ξub,σ,π

α0r(y − n0r)+

γ0ry+

ξ0r (a0 − y ×
∑

∀s∈S

usws0)+

ϕ0r(m− y)+
T∑

t=1

(−αtrntr + γtrat − ωtrat + ϕtrm+

ξlbtratr + ξubtr (atr + (1−
∑

∀s∈S

uswst)m))+

∑

∀t∈T

(βtrat + σtrat − πtr(
∑

∀s∈S

uswst ×m)) (35)

s.t.
αtr ≤ 0, t = T (36)

αtr−αt+1,r+ϕt+1,r+ξ
ub
t+1,r+ξ

lb
t+1,r ≤ 0,∀t ∈ {0, ..., T−1}

(37)
γtr − ωt+1,r ≤ h, t = 0 (38)
γtr + ωtr ≤ h, t = T (39)

γtr − ωt+1,r + ωtr ≤ h,∀t ∈ {1, ..., T − 1} (40)
αtr + βtr − ϕtr + γtr ≤ q, t = 0 (41)

αtr + βtr − ϕtr ≤ q,∀t ∈ {1, ..., T} (42)
−αtr ≤ p,∀t ∈ T (43)

ξ0r − γtr + ϕtr − αtr + σtr + πtr = 0, t = 0 (44)
ξlbtr+ξ

ub
tr +ϕtr−αtr+σtr+πtr = 0,∀t ∈ {1, ..., T} (45)

Let us refer to the polyhedron defined by MP constraints
at iteration i as Pi. The master problem generates optimal
decisions a∗ and u∗ given the current approximation of
sub-problem costs on θ. The objective function of the
dual sub-problem (referred to as L(a,u, r), where r is the
scenario) is updated with a∗ and u∗, and the sub-problem is
solved. Recalling the mechanics of BD, the optimal solution
to the dual sub-problem has two valuable properties: a) as
a numeric value it defines the true scenario specific costs,
and b) as a function it offers a sub-gradient on θr. The
master problem polyhedron is then updated to Pi+1 = Pi ∩
{u,a,θ : θr ≥ L∗(a,u, r)}, where L∗(a,u, r) refers to the
optimized loss function of the sub-problem iteration. This
process is repeated until convergence, with each iteration of
the MP being solved over a more refined approximation of
sub-problem costs.

RL Surrogate - Formulation
We leverage an RL agent as the surrogate model in our
Surrogate-MP implementation. The state of our IMP is
represented by the tuple st = ⟨d, h, e, q,m, µ, σ,w,o, r⟩ ∈
S, where t is a time step over the horizon T . Parameters d,
h, e, q, w, and m directly follow the definitions introduced
in the SO Formulation and Decomposition section (page
5). Additional state parameters include µ as the expected
demand, and σ as the estimated standard deviation of
demand. A vector o tracks orders over the time horizon T .
All future orders are set to zero, and past orders are taken
from actions as they are performed. Similarly, a vector r
tracks the forecast errors from past observations. All future
error observations are set to zero, and events are populated
as they are observed by the state.

The actions are represented by ⟨kt,ut⟩ ∈ A which
denotes (a) the quantity to order, and (b) the schedule to
adhere to, at time t respectively. Note that the schedule must
be determined at the beginning of the horizon, and thus only
ut=0 is relevant. This is enforced through action masking
and for simplicity we will refer to ut=0 as u. The reward is
negative cost, as defined by the objective (15).

As previously mentioned, we use PPO to optimize a
multi-layer neural network as our agent. The network is a
feed-forward neural network with two hidden layers and
two linear output layers. The linear output layers return
the log-odds that define our stochastic action space. We
standardize the network inputs (the state) to be mean
centered with unit variance, and generate kt and ut

sequentially ∀t ∈ T .
The agent is presented with an initial state s0 and must

select a scheduling action to take. This scheduling action, u,
relates to a binary vector w ∈ {0, 1}T that defines whether
an order is possible on day t. If wt = 1, an order can
be placed, otherwise the agent cannot order. This schedule
becomes part of the state, over-writing the initial zero vector
w.

With the schedule defined, the agent must generate a
second action for state s0; this time selecting an order
amount. The repeated visitation of state s0 is necessary as
the selected schedule w has now become part of the state.
While we have not temporally shifted, the state has changed.

After a second visitation of s0, the agent sequentially
traverses the horizon T . With each time step, an ordering
decision is made and either accepted or masked depending
on the schedule vector w. Updates to the state include
population of order quantities, residual updates, and an
update of the inventory on hand based on observed demand
and order amounts. If an order is scheduled, we retrieve the
order-up-to amounts, denoted as a in the SO Formulation
section, by adding inventory on hand at the end of t − 1 to
the ordering decision kt. If an order is not scheduled the
order-up-to amount is 0. After traversing the full horizon
T , the agent will have selected a schedule u ∈ {0, 1}S
and have a vector of order-up-to quantities a ∈ ZT

≥0
from the agent. These two decision vectors, u and a are
the essential ingredients required by the BD sub-problem.
With these vectors, we can solve (35), generate sub-gradient
approximations on θr, and further refine our approximation

17

of true, stochastic, sub-problem cost.

Experiments

To evaluate the Surrogate-MP method, we implement
our IMP formulation across 153 independent cases using
real-world data. Each experiment was performed with a
sample size of 500 scenarios (R = 500), a horizon of 28
days (T = 28), and 169 possible schedules (S = 169). The
resultant problem has a high dimensional discrete decision
space, consisting of scheduling and ordering decisions. In
total, the decision space is Z70,197. Experiments were run
on a 36 CPU, 72 GB RAM c5.9xlarge AWS instance. For
solving the integer master problem and linear sub-problems,
we leveraged the CPLEX commercial solver with default
settings, allowing for distribution across the 36 CPU
machine. We experimented with all three surrogate solution
selection methods: greedy, random, and informed. For every
implementation of Surrogate-MP, we deactivate calls to the
surrogate after the optimality gap is ≤ 5%. The intuition
behind deactivating the surrogate model is that as the gap
percent shrinks, the MIMP must be used to retrieve the
certificate of optimality.

As a benchmark, we evaluate our method against
a baseline implementation of Benders decomposition.
Accelerations implemented in the baseline include
scenario group cuts (Adulyasak et al. (2015)) and partial
decomposition (Crainic et al. (2016)). We did not compare
against a generic implementation of Benders decomposition
due to tractability issues.

Results

All three implementations (greedy, random, and informed)
produced faster convergence than the benchmark BD
implementation. Random implementation performed
14.96% (104.51s average run-time) faster than the baseline,
greedy implementation achieved 19.43% (99.92s average
run-time) faster performance, and the informed surrogate
implementation performed 30.45% faster (85.47s average
run-time). The convergence rates are displayed in figure 3.

Method Avg Run-time (seconds)
No Surrogate 122.90

Random Surrogate 104.51
Greedy Surrogate 99.92

Informed Surrogate 85.47

In addition to acheiving faster average convergence,
Surrogate-MP outperformed the baseline BD
implementation across the majority of instances.
Surrogate-MP with informed selection achieved better
convergence rates on 135 of the 153 instances (88.24%,
figure 4).

Figure 3: Convergence rates of a baseline BD, and
Surrogate-MP with three selection methods (greedy,
random, informed).

Figure 4: Count of instances with faster convergence
between Surrogate-MP and a baseline BD implementation.

Acknowledging the strong performance of Surrogate-MP
with informed selection, we continued our experiments
by testing different frequencies of surrogate model usage.
We leveraged three different rate parameters Γ that
control whether to use the surrogate model during each
iteration ([0, 1] ∼ Bernoulli(Γ)). We experimented with
Γ = 0.25, 0.50, and 0.75. For every value of Γ we use
Surrogate-MP with informed selection. We observe in
figures 5 and 6 that more frequent surrogate model usage
results in improved convergence, with optimal convergence
rates being generated by Γ = 0.75.

18

Figure 5: Convergence rates for different levels of informed
surrogate usage. The dotted line indicates a gap of 5% (the
point at which we deactivate the Surrogate-MP).

Figure 6: Convergence instances of BD accelerated by an
informed Surrogate-MP, with different surrogate usages.

Conclusion & Future Work
In conclusion, by inserting a surrogate model in place of
the MIMP we achieve a drastic reduction in convergence
time. The proposed method is generalizable to any BD
implementation, retreives certificates of optimality, and any
surrogate capable of generating MP solutions can be used.
We leverage an RL agent as our surrogate, and display
results showing superiority in 88.24% of instances with a
30% reduction in average run time.

Observing the performance of our method, a promising
extension of this work would be to design stronger
integration between the surrogate model, SP, and MP. We
took steps toward integration with the informed method of
selecting surrogate solutions, and realized promising results.
Some opportunities for integration we leave unexplored
would be to directly inform the surrogate model on the

strength of past solutions, offer sub-gradient information
as a feature, or redesign the surrogate objective function
to focus on weakly approximated areas of the SP loss
as opposed to mirroring the BD objective directly. We
are additionally eager to observe the performance of
Surrogate-MP on other discrete SO problems.

Disclaimer. This paper was prepared for informational
purposes by the Artificial Intelligence Research group of
JPMorgan Chase & Co. and its affiliates (“JP Morgan”),
and is not a product of the Research Department of JP
Morgan. JP Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness,
accuracy or reliability of the information contained herein.
This document is not intended as investment research
or investment advice, or a recommendation, offer or
solicitation for the purchase or sale of any security, financial
instrument, financial product or service, or to be used in
any way for evaluating the merits of participating in any
transaction, and shall not constitute a solicitation under any
jurisdiction or to any person, if such solicitation under such
jurisdiction or to such person would be unlawful.

References
Adulyasak, Y.; Cordeau, J.-F.; and Jans, R. 2015. Benders
Decomposition for Production Routing Under Demand
Uncertainty. Operations Research, 63(4): 851–867.
Arslan, A. N.; Klibi, W.; and Montreuil, B. 2021.
Distribution network deployment for omnichannel
retailing. European Journal of Operational Research,
294(3): 1042–1058.
Baena, D.; Castro, J.; and Frangioni, A. 2020. Stabilized
Benders Methods for Large-Scale Combinatorial
Optimization, with Application to Data Privacy.
Management Science, 66(7): 3051–3068.
Crainic, T. G.; Hewitt, M.; Maggioni, F.; and Rei, W. 2016.
Partial Benders Decomposition Strategies for Two-Stage
Stochastic Integer Programs.
Delarue, A.; Anderson, R.; and Tjandraatmadja, C. 2020.
Reinforcement learning with combinatorial actions: An
application to vehicle routing. Advances in Neural
Information Processing Systems, 33: 609–620.
Gendreau, M.; Laporte, G.; and Séguin, R. 1996. Stochastic
vehicle routing. European journal of operational research,
88(1): 3–12.
Ghodrati, A.; Abyak, H.; and Sharifihosseini, A. 2013. ATM
cash management using genetic algorithm. Management
Science Letters, 3(7): 2007–2041.
Goel, A.; and Gutierrez, G. J. 2011. Multiechelon
procurement and distribution policies for traded
commodities. Management Science, 57(12): 2228–2244.
Lee, M.; Ma, N.; Yu, G.; and Dai, H. 2021. Accelerating
Generalized Benders Decomposition for Wireless
Resource Allocation. IEEE Transactions on Wireless
Communications, 20(2): 1233–1247.
Poojari, C.; and Beasley, J. 2009. Improving benders
decomposition using a genetic algorithm. European Journal
of Operational Research, 199(1): 89–97.

19

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR, abs/1707.06347.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement
Learning: An Introduction. The MIT Press, second edition.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y.
1999. Policy Gradient Methods for Reinforcement Learning
with Function Approximation. In Solla, S.; Leen, T.; and
Müller, K., eds., Advances in Neural Information Processing
Systems, volume 12. MIT Press.

20

Deep Reinforcement Learning for Optimal Portfolio Allocation: A Comparative
Study with Mean-Variance Optimization

Srijan Sood, 1 Kassiani Papasotiriou, 1 Marius Vaiciulis,2 Tucker Balch 1.
1 J.P. Morgan AI Research

2 J.P. Morgan Global Equities; Oxford-Man Institute of Quantitative Finance
{srijan.sood, kassiani.papasotiriou, marius.vaiciulis, tucker.balch}@jpmorgan.com

Abstract

Portfolio Management is the process of overseeing a group
of investments, referred to as a portfolio, with the objective
of achieving predetermined investment goals and objectives.
Portfolio Optimization is a key component that involves al-
locating the portfolio assets so as to maximize returns while
minimizing risk taken. Portfolio optimization is typically car-
ried out by financial professionals who use a combination of
quantitative techniques and investment expertise to make de-
cisions about the portfolio allocation.
Recent applications of Deep Reinforcement Learning (DRL)
have shown promising results when used to optimize portfo-
lio allocation by training model-free agents on historical mar-
ket data. Many of these methods compare their results against
basic benchmarks or other state-of-the-art DRL agents but
often fail to compare their performance against traditional
methods used by financial professionals in practical settings.
One of the most commonly used methods for this task is
Mean-Variance Portfolio Optimization (MVO), which uses
historical timeseries information to estimate expected asset
returns and covariances, which are then used to optimize for
an investment objective.
Our work is a thorough comparison between model-free DRL
and MVO for optimal portfolio allocation. We detail the
specifics of how to make DRL for portfolio optimization
work in practice, also noting the comparable tweaks needed
to get MVO operational. Backtest results display strong im-
proved performance of the DRL agent in terms of many per-
formance metrics, including Sharpe ratio, maximum draw-
downs, and absolute returns.

Introduction
Portfolio management is a key issue in the financial ser-
vices domain. It constitutes allocating funds across a diverse
variety of assets, typically to generate uncorrelated returns
while minimizing risk and operational costs. Portfolios can
constitute holdings across asset classes (cash, bonds, equi-
ties, etc.), or can also be optimized within a specific asset
class (e.g., picking the appropriate composition of stocks for
an equity portfolio). Investors may choose to optimize for
various performance criteria, often centered around maxi-
mizing portfolio returns relative to risk taken. Since the ad-
vent of Modern Portfolio Theory (Markowitz 1952), a lot of

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

progress has been made in both theoretical and applied as-
pects of portfolio optimization. These range from improve-
ments in the optimization process, to the framing of ad-
ditional constraints that might be desirable to rational in-
vestors (Cornuejols and Tütüncü 2006; Li and Hoi 2014;
Kalayci et al. 2017; Ghahtarani, Saif, and Ghasemi 2022).
Recently, the community has tapped the many advancements
in Machine Learning (ML) to aid with feature selection,
forecasting and estimation of asset means and covariances,
as well as using gradient based methods for optimization.

Concurrently, the past decade has witnessed the success
of Reinforcement Learning (RL) in the fields of gaming,
robotics, natural language processing etc. (Silver et al. 2017;
Nguyen and La 2019; Su et al. 2016). The sequential deci-
sion making nature of Deep RL, along with its success in
applied settings, has captured the attention of the finance
research community. In particular, some of the most pop-
ular areas of focus of the application of DRL in finance have
been on automated stock trading (Yang et al. 2020; Théate
and Ernst 2021; Zhang, Zohren, and Roberts 2020; Wu et al.
2020), risk management through deep hedging (Buehler
et al. 2019; Du et al. 2020; Cao et al. 2021; Benhamou et al.
2020b) and portfolio optimization. In the upcoming section,
we’ll examine the landscape of DRL in portfolio optimiza-
tion and trading problems. While these approaches exhibit
improved performance than previous studies, they do have
some shortcomings. For instance, some generate discrete as-
set trading signals which limit their use in broader portfo-
lio management. Additionally, majority of these approaches
compare results against ML or buy-and-hold baselines, and
don’t consider classical portfolio optimization techniques,
such as Mean-Variance Optimization.

In our work, we aim to compare a simple and robust DRL
framework, that was designed around risk-adjusted returns,
with one of the traditional finance methods for portfolio op-
timization, MVO. We train policy gradient based agents on
a multi asset trading environment that simulates the US Eq-
uities market (using market data replay), and create observa-
tion states derived from the observed asset prices. The agents
optimize for risk-adjusted returns, not dissimilar to the tra-
ditional MVO methods. We compare the performance of the
DRL strategy against MVO through a series of systematic
backtests, and observe improved performance along many
performance metrics, including risk adjusted returns, max

21

drawdown, and portfolio turnover.

Related Work
There is a lot of recent research interest into the application
of Deep RL in trading and portfolio management problems.
For portfolio optimization, a lot of the research focuses on
defining various policy network configurations and reports
results that outperform various traditional baseline meth-
ods (Wang et al. 2019; Liang et al. 2018; Lu 2017; Jiang
and Liang 2017; Wang et al. 2021; Deng et al. 2016; Cong
et al. 2021). Other work explores frameworks that inject in-
formation in the RL agent’s state by incorporating asset en-
dogenous information such as technical indicators (Liu et al.
2020; Sun et al. 2021; Du and Tanaka-Ishii 2020) as well as
exogenous information such as information extracted from
news data (Ye et al. 2020; Lima Paiva et al. 2021).

The current benchmarks for DRL frameworks typically
involve comparing results against other DRL or ML ap-
proaches, a buy-and-hold baseline, or market/index perfor-
mance. However, these benchmarks may be overly simplis-
tic or provide only a relative comparison. To truly gauge the
effectiveness of a DRL agent, it would be more meaning-
ful to benchmark it against methodologies used by financial
professionals in practice, such as Mean Variance Optimiza-
tion (MVO).

While there are some approaches that compare DRL per-
formance with MVO (Li et al. 2019; Koratamaddi et al.
2021; i Alonso, Srivastava et al. 2020), the comparison sim-
ply serves as another baseline, and the methodology is not
clearly described because an in-depth comparison is not the
primary focus of their study. To our knowledge, there is only
one study that goes into a robust in-depth comparison of
MVO and DRL (Benhamou et al. 2020a). However, across
all these studies, there is usually a discrepancy between the
reward function used to train the RL agent, and the objective
function used for MVO (for e.g., daily returns maximization
vs risk minimization). In order to make a fair comparison, it
is crucial that both approaches optimize for the same goal.
Additionally, some of these approaches provide exogenous
information (e.g., signals from news data) to the DRL agent,
which makes for a biased comparison with MVO. Addition-
ally, none of these works provide implementation details for
the MVO frameworks they used for their comparison. We
aim to address these issues by conducting a robust compar-
ison of Deep RL and Mean-Variance Optimization for the
Portfolio Allocation problem.

Background
The goal of portfolio optimization is to continuously diver-
sify and reallocate funds across assets with the objective of
maximizing realized rewards while simultaneously restrain-
ing the risk. In practice, portfolio management often aims to
not only maximize risk-adjusted returns but also to perform
as consistently as possible over a given time interval (e.g. on
a quarterly or yearly basis).

Markowitz introduced the modern portfolio theory (MPT)
(Markowitz 1952), a framework that allows an investor to
mathematically balance risk tolerance and return expecta-

tions to obtain efficiently diversified portfolios. This frame-
work relies on the assumption that a rational investor will
prefer a portfolio with less risk for a specified level of re-
turn and concludes that risk can be reduced by diversifying
a portfolio. In this section, we will introduce Mean Variance
Optimization (MVO) – one of the main techniques of the
MPT – which we later compare to the performance of our
DRL framework. Additionally, we introduce RL preliminar-
ies, describing the technique independent of portfolio opti-
mization.

Mean-Variance Portfolio Optimization
Mean-Variance Optimization (MVO) is the mathematical
process of allocating capital across a portfolio of assets (op-
timizing portfolio weights) to achieve a desired investment
goal, usually: 1. Maximize returns for a given level of risk,
2. Achieve a desired rate of return while minimizing risk, or
3. Maximize returns generated per unit risk. Risk is usually
measured by the volatility of a portfolio (or asset), which is
the variance of its rate of return. For a given set of assets,
this process requires as inputs the rates of returns for each
asset, along with their covariances. As the true asset returns
are unknown, in practice, these are estimated or forecasted
using various techniques that leverage historical data.

This task is then framed as an optimization problem, sin-
gle or multi-objective, which can be solved in a variety of
ways (Cornuejols and Tütüncü 2006; Kalayci et al. 2017;
Ghahtarani, Saif, and Ghasemi 2022).

A typical procedure is to solve it as a convex optimization
problem and generate an efficient frontier of portfolios such
that no portfolio can be improved without sacrificing some
measure of performance (e.g., returns, risk). Let w be the
weight vector for a set of assets, µ be the expected returns,
the portfolio risk can be described as wTΣw, for covariance
matrix Σ. To achieve a desired rate of return µ∗, we can solve
the portfolio optimization problem:

minimize
w

wTΣw

subject to wTµ ≥ µ∗,

wi ≥ 0,
∑

wi = 1

Varying µ∗ gives us the aforementioned efficient frontier.
Another common objective is the Sharpe Ratio (Sharpe

1998; Chen, He, and Zhang 2011), which measures the re-
turn per unit risk. Formally, for portfolio p, the Sharpe Ratio
is defined as:

Sharpe Ratiop =
E[Rp −Rf]

σp

where Rp are the returns of the portfolio, σp is the stan-
dard deviation of these returns, andRf is a constant risk-free
rate (e.g., US Treasuries, approximated by 0.0% in recent
history). Although tricky to solve in its direct form –

max
w

µTw −Rf

(wTΣw)1/2

22

– it can be framed as a convex optimization problem through
the use of a variable substitution (Cornuejols and Tütüncü
2006). We choose the Sharpe Ratio as our desired objective
function for this study as we can optimize for risk-adjusted
returns without having to specify explicit figures for mini-
mum expected returns or maximum risk tolerance.

Reinforcement Learning
Reinforcement Learning (RL) is a sub-field of machine
learning that refers to a class of techniques that involve
learning by optimizing long-term reward sequences obtained
by interactions with an environment (Sutton and Barto
2018). An environment is typically formalized by means of
a Markov Decision Process (MDP). An MDP consists of a a
5-tuple (S,A, Pa, Ra, γ), where:
• S is a set of states
• A is a set of actions
• Pa(s, s

′) = Pr(st+1 = s′ | st = s, at = a) is the
probability that action a in state s at time t will lead to
state s′ at time t+ 1

• Ra(s, s
′) is the immediate reward received after transi-

tioning from state s to state s′, due to action a
• γ is a discount factor between [0, 1] that represents the

difference in importance between present and future re-
wards

A solution to an MDP is a policy π that specifies the action
π(s) that the decision maker will choose when in state s.
The objective is to choose a policy π that will maximize
the expected discounted sum of rewards over a potentially
infinite horizon:

E

[∞∑

t=0

γtRat
(st, st+1)

]

The field of Deep Reinforcement Learning (DRL) lever-
ages the advancements in Deep Learning by using Neu-
ral Networks as function approximators to estimate state-
action value functions, or to learn policy mappings π. These
techniques have seen tremendous success in game-playing,
robotics, continuous control, and finance (Mnih et al. 2013;
Berner et al. 2019; Nguyen and La 2019; Hambly, Xu, and
Yang 2021; Charpentier, Elie, and Remlinger 2021).

RL for Portfolio Allocation Given its success in stochas-
tic control problems, RL extends nicely to the problem of
portfolio optimization. Therefore, it is not surprising that the
use of DRL to perform tasks such as trading and portfolio
optimization has received a lot of attention lately. Recent
methods focus on learning deep features and state represen-
tations, for example, through the use of embedding features
derived from deep neural networks such as autoencoders and
LSTM models. These embeddings capture price related fea-
tures which can range from technical indicators (Wang et al.
2019; Soleymani and Paquet 2020; Wang et al. 2021), to in-
formation extracted from news in order to account for price
fluctuations (Ye et al. 2020). Other proposed features use
attention networks or graph structures (Wang et al. 2021,
2019) to perform cross-asset interrelationship feature extrac-
tion.

Problem Setup
We frame the portfolio optimization problem in the RL set-
ting. As described in the Background section, RL entails
learning in a framework with interactions between an agent
and an environment. For the portfolio optimization setting,
we create an environment that simulates the US Equities
market (using market data replay), and create observation
states derived from the observed asset prices. The agent’s
actions output a set of a portfolio weights, which are used to
rebalance the portfolio at each timestep.

Actions
For portfolio allocation over N assets, an agent selects port-
folio weights w = [w1, . . . , wn] such that

∑N
i=1 wi = 1,

where 0 ≤ wi ≤ 1. An asset weight of 0 indicates zero hold-
ings of a particular asset in a portfolio, whereas a weight of
1 means the entire portfolio is concentrated in said asset. In
extensions of this framework, wi < 0 would allow for short-
ing an asset, whereas wi > 1 indicates a leveraged position.
However, for our case, we restrict actions to non-leveraged
long-only positions. These constraints can be enforced by
applying the softmax function to an agent’s continuous ac-
tions.

States
An asset’s price at time t is denoted by Pt. The one-period
simple return is defined asRt =

Pt−Pt−1

Pt−1
. Consequently, the

one-period gross return can be defined as Pt

Pt−1
= Rt + 1.

Further, we can define the one-period log return as rt =
log(Pt

Pt−1
) = log(Rt + 1). For our setting, we choose the

time period to be daily, and therefore calculate daily log
returns using end-of-day close prices. An asset’s log re-
turns over a lookback period T can then be captured as
rt = [rt−1, rt−2, . . . , rt−T+1]. In our case, the lookback
period is T = 60 days.

For a selection of n + 1 assets - n securities and cash
(denoted by c) - we form the agent’s observation state at
time t, St as a [(n+ 1)× T] matrix:

St =

w1 r1,t−1 . . . r1,t−T+1

w2 r2,t−1 . . . r2,t−T+1

...
. . .

...
wn rn,t−1 . . . rn,t−T+1

wc vol20
vol20
vol60

VIXt . . .

The first column is the agent’s portfolio allocation vec-
tor w as it enters timestep t. This might differ slightly from
the portfolio weights it chooses at the timestep before, as
we convert the continuous weights into an actual allocation
(whole shares only), and rebalance the allocation such that
it sums to 1.

For each non-cash asset, we include the log re-
turns over T . These are represented by the vector
[rn,t−1, . . . , rn,t−T+1] for asset n in the state matrix above.
Additionally, in the last row, we include three market volatil-
ity indicators at time t: vol20, vol20

vol60
, VIX, which we describe

in detail in the Experiments section.

23

Reward
Rather than maximizing returns, most modern portfolio
managers attempt to maximize risk-adjusted returns. Since
we wish to utilize DRL for portfolio allocation, we want a
reward function that helps optimize for risk-adjust returns.
The Sharpe ratio is the most widely-used measure for this,
however, it is inappropriate for online learning settings as it
is defined over a period of time T . To combat this, we use
the Differential Sharpe Ratio Dt (Moody et al. 1998) which
represents the risk-adjusted returns at each timestep t and
has been found yield more consistent returns than maximiz-
ing profit (Moody and Saffell 2001; Dempster and Leemans
2006). Therefore, an agent that aims to maximize its future
Differential Sharpe rewards learns how to optimize for risk
adjusted returns.

We can define the Sharpe Ratio over a period of t returns
Rt, in terms of estimates of the first and second moments of
the returns’ distributions:

St =
At

Kt(Bt −A2
t)

1/2

with

At =
1

t

t∑

i=1

Ri and Bt =
1

t

t∑

i=1

R2
i , Kt = (

t

t− 1
)1/2

where Kt is a normalizing factor.
A andB can be recursively estimated as exponential mov-

ing averages of the returns and standard deviation of returns
on time scale η−1. We can obtain a differential Sharpe ratio
Dt by expanding St to first order in η:

St ≈ St−1 + ηDt|η=0 +O(η2)

Where Differential Sharpe Ratio Dt:

Dt ≡
∂St

∂η
=
Bt−1∆At − 1

2At−1∆Bt

(Bt−1 −A2
t−1)

3/2

with

At = At−1 + η∆At

Bt = Bt−1 + η∆Bt

∆At = Rt −At−1

∆Bt = R2
t −Bt−1

initialized with A0 = B0 = 0. We pick η ≈ 1
252 (a year has

approximately 252 trading days).

Learning Algorithm
RL algorithms can be mainly divided into two categories,
model-based and model-free, depending whether the agent
has access to or has to learn a model of the environment.
Model-free algorithms seek to learn the outcomes of their
actions through collecting experience via algorithms such as
Policy Gradient, Q-Learning, etc. Such an algorithm will try
an action multiple times and adjust its policy (its strategy)
based on the outcomes of its action in order optimize re-
wards.

Policy Optimization Policy optimization methods are
centered around the policy πθ(a|s) which is the function
that maps the agent’s state s to the distribution of its next
action a. These methods optimize the parameters θ either by
gradient ascent on the performance objective J(πθ) or by
maximizing local approximations of J(πθ). This optimiza-
tion is almost always performed on-policy since the experi-
ences are collected using the latest learned policy, and then
using that experience to improve the policy. Some exam-
ples of popular policy optimization methods are A2C/A3C
(Mnih et al. 2016) and PPO (Schulman et al. 2017). For our
experiments we use PPO.

RL Environment Specifics
The environment serves as a wrapper for the market, sliding
over historical data in an approach called market replay. It
also serves as a broker and exchange; at every timestep, it
processes the agents’ actions and rebalances the portfolio
using the latest prices and the given allocation. As the day
shifts and new prices are received, it communicates these to
the agent as observations, along with the Differential Sharpe
reward. For the purposes of this study, we assume that there
are no transaction costs in the environment, and we allow for
immediate rebalancing of the portfolio.

At the beginning of each timestep t, the environment cal-
culates the current portfolio value:

port valt =
∑

Pi,t ∗ sharesi,t−1 + ct−1

In the above expression, Pi is the price of index i at day
t, sharesi,t−1 are the index shares at t − 1, and ct−1 is the
amount of cash at t− 1.

In order to calculate sharesi,t and ct, the environment al-
locates port valt to the indices and cash according to the
new weights wi. Next, it rebalances the portfolio weights wi

to wi reb by multiplying wi with the current portfolio value,
rounding down the number of shares and converting the re-
maining shares into cash.

After rebalancing, the environment creates the next state
St+1 and proceeds to the next timestep t+1. It calculates the
new portfolio value based on Pt+1 and computes the reward
Rt = Dt which it returns to the agent.

Experiments
Data & Features
For our experiments, we use daily adjusted close price data
of the S&P500 sector indices as shown in Figure 1, the VIX
index and the S&P500 index between 2006 and 2021 (inclu-
sive), extracted from Yahoo Finance. The price data is used
to compute log returns, as described in a previous section.

To capture market regime, we compute three volatility
metrics from the S&P500 index. The first one, vol20, is
the 20-day rolling window standard deviation of the daily
S&P500 index returns, the second, vol60, is the 60-day
rolling window standard deviation of the daily S&P500 in-
dex returns and the third is the ratio of these two vol20

vol60
. This

ratio indicates the short-term versus the long-term volatil-
ity trend. If vol20

vol60
> 1, that indicates that the past 20-day

24

Figure 1: S&P500 and its 11 sector indices between 2006
and 2021.

daily returns of the S&P500 have been more volatile than
the past 60-day daily returns, which might indicate a move-
ment from lower volatility to a higher volatility regime (and
vice versa). We use the first and third metrics in the obser-
vation matrix, along with the value of the VIX index. These
values are standardized by subtracting the mean and dividing
by the standard deviation, where the mean and standard de-
viation are estimated using an expanding lookback window
to prevent information leakage.

Deep RL Approach
Training Process Although financial data is notoriously
scarce (atleast on the daily scale), we want to test the DRL
framework across multiple years (backtests). Additionally,
financial timeseries exhibit non-stationarity (Cont 2001);
this can be tackled by retraining or fine-tuning models by
utilizing the most recently available data. In light of these
stylized facts, we devise our experiment framework as fol-
lows:

The data is split into 10 sliding window groups (shifted
by 1-year). Each group contains 7 years worth of data, the
first 5 years are used for training, the next 1 year is a burn
year used for training validation, and the last year is kept
out-of-sample for backtesting.

During the first round of training, we initialize 5 agents
(different seeds) with the hyperparameters described in the
following section. All five agents start training on data from
[2006 − 2011) and their performance is periodically evalu-
ated using the validation period 2011. At the end of the first
round of training, we save the best performing agent (based
on highest mean episode validation reward). The final year
(2012) is kept held-out for backtesting.

This agent is used as a seed policy for the next group of
5 agents in the following training window [2007 − 2012),
validation year 2012 and testing year 2013, where this ex-
periment is repeated. This process continues till we reach
the final validation period of 2020, generating a total of 50

training timesteps 7.5M
n envs 10
n steps 756
batch size 1260
n epochs 16
gamma 0.9
gae lambda 0.9
clip range 0.25
learning rate 3e-4 annealed to 1e-5

Table 1: Hyperparameters used for PPO.

agents (10 periods x 5 agents), and 10 corresponding back-
tests (described in a following section).

PPO Implementation & Hyperparameters We use the
StableBaselines3 (Raffin et al. 2021) implementation of
PPO, and report the hyperparameters used in Table 1. These
were picked based on empirical studies (Henderson et al.
2018; Engstrom et al. 2019; Rao et al. 2020), as well as a
coarse grid search over held-out validation data.

Additionally, we make use of the Vectorized Sub-
ProcVecEnv environment wrappers provided by StableBase-
lines3 to collect experience rollouts through multiprocessing
across independent instances of our environment. Therefore,
instead of training the DRL agent on one environment per
step, we trained our model on n envs = 10 environments
per step in order to gain more diverse experience and speed
up training.

Each round of training lasted a total 7.5M timesteps
so as to have approximately 600 episodes per round per
environment: (252 trading days per yr× 5 yrs per round)×
(10 environments)×(600 episodes) ≈ 7.5M timesteps. The
rollout buffer size was set to n steps = 252×3×n envs so
as to collect sufficient experiences across environments. We
set up the learning rate as a decaying function of the current
progress remaining, starting from 3e− 4, annealed to a final
value of 1e−5. We used a batch size of 1260 = (252×5),
set the number of epochs when optimizing the surrogate loss
to n epochs = 16, picked the discount factor γ = 0.9,
set the bias-variance trade-off factor for Generalized Advan-
tage Estimator gae lambda = 0.9 and clip range = 0.25.
Additionally, we use a [64, 64] fully-connected architecture
with tanh activations, and intiailize the policy with a log
standard deviation log std init = −1.

Mean-Variance Optimization Approach
As we wish to compare the model-free DRL approach with
MVO, we equalize the training and operational conditions.
For training, the MVO approach uses a 60-day lookback pe-
riod (same as DRL) to estimate the means and covariances
of assets. Asset means are simply the sample means over the
lookback period. However, we do not directly use the sam-
ple covariance, as this has been shown to be subject to esti-
mation error that is incompatible with MVO. To tackle this,
we make use of the Ledoit-Wolf Shrinkage operator (Ledoit
and Wolf 2004). Additionally, we enforce non-singular and
positive-semi-definite conditions on the covariance matri-

25

Metric DRL MVO
Annual return 0.1211 0.0653

Cumulative returns 0.1195 0.0650
Annual volatility 0.1249 0.1460

Sharpe ratio 1.1662 0.6776
Calmar ratio 2.3133 1.1608

Stability 0.6234 0.4841
Max drawdown -0.3296 -0.3303

Omega ratio 1.2360 1.1315
Sortino ratio 1.7208 1.0060

Skew -0.4063 -0.3328
Kurtosis 2.7054 2.6801
Tail ratio 1.0423 0.9448

Daily value at risk -0.0152 -0.0181

Table 2: Statistics for the DRL and MVO approaches. All
metrics are averaged across 10 backtests (backtesting pe-
riod: [2012 − 2021]), except Max Drawdown which is re-
ported as the maximum seen in any period.

ces, setting negative eigenvalues to 0, and then rebuilding
the non-compliant matrices.

Given the estimated means and covariances for a look-
back period, we then optimize for the Sharpe Maximization
problem and obtain the weights at every timestep. We use
the implementation in PyPortfolioOpt (Martin 2021) to aid
us with this process.

Evaluation & Backtesting
We evaluate the performance of both techniques through 10
independent backtests [2012 − 2021]. Both strategies start
each backtest period with an all cash portfolio allocation of
$100, 000. Then, the strategies trade daily using the portfo-
lio weights obtained by each method, enforcing for weight
constraints

∑
w = 1, 0 ≤ wi ≤ 1, and ensuring only whole

number of shares are purchased. By doing so, we can obtain
daily portfolio values (and returns), which we subsequently
use to compute the statistics we will discuss in the Results
section. These are computed with the aid of the Python li-
brary Pyfolio.

DRL Agent: We evaluate the trained PPO agents in de-
terministic mode. For each backtest, the agent used has a
gap burn year between the last day seen in training and the
backtest period. For example, a DRL backtest carried out in
2012 would use an agent trained in [2006−2011), with 2011
being the burn year.

MVO: As the MVO approach does not require any train-
ing, it simply uses the past 60-day lookback period before
any given day to calculate portfolio weights. For example,
a MVO backtest starting January 2012 will use data starting
October 2011 (this 60-day window shifts with each day).

Results
Figure 2 illustrates the performance metrics obtained by
applying the aforementioned backtest process on all test-

ing periods [2012-2021]. The DRL agent outperforms the
MVO portfolio by exhibiting higher Sharpe and lower yearly
maximum drawdowns in virtually every year throughout the
backtest period (see Figure 1). It also outperforms the MVO
portfolio in terms of having marginally lower maximum
drawdown.

To compare overall performance on the entire backtest pe-
riod between the two methods, we compute the average per-
formance across all 10 backtest periods. For DRL, we aver-
age the performance across the 5 agents (each trained on a
different seed) for each year and then average performance
across all backtest periods. Similarly, for MVO, we average
its performance across all 10 years. By looking at Table 2 we
observe that DRL annual returns and Sharpe ratio are 1.85x
higher than those of the MVO portfolio. The DRL strategy’s
Sharpe throughout the whole backtest period is 1.16x com-
pared to 0.66x for MVO.

Figure 3a) and Figure 4a) plot the monthly returns over all
backtest periods for the two methods. It is evident that DRL
is experiencing more steady returns month-to-month than
MVO. On the other hand, MVO swings between periods of
high returns to periods of low returns a lot more frequently
without a steady positive return trajectory. Similarly, in Fig-
ure 3b) and Figure 3b), we plot the annual returns for the
two methods. The vertical dashed line indicates the average
annual return across the 10 backtests. For DRL we observe
positive returns for almost all backtest years which is a lot
more consistent than the behavior of MVO’s annual returns.
Figure 3c) and Figure 3c) plot the distribution of monthly re-
turns averaged across all months. The DRL monthly returns
distribution has a lower standard deviation and and spread
than MVO and a positive mean.

Further, we compute the daily portfolio change for each
strategy by measuring the change in its portfolio weights.
∆pw is the absolute value of the element-wise difference
between two allocations (ignoring the cash component). As
buying and selling are treated as individual transactions,
∆pw ∈ [0.0, 2.0]. For example, take a case where the port-
folio at time t−1 is concentrated in non-cash asset A, and at
time t is entirely concentrated in non-cash asset B. This re-
quires selling all holdings of A, and acquiring the equivalent
shares in B, leading to ∆pw = 2.0.

Using metric ∆pw, we observe that the Reinforcement
Learning strategy has less frequent changes to its portfolio.
In practice, this would result in lower average transaction
costs. In particular, the average change in portfolio composi-
tion is nearly double for Mean-Variance portfolio compared
to the DRL strategy during market downturn in March 2020,
as shown in Figure 2, when trading conditions were partic-
ularly challenging (i.e. significantly lower market liquidity
and elevated bid/ask spreads). Finally, the DRL strategy’s
performance is derived from the average of five individual
agents initialized with different seeds, providing additional
regularization which is likely to result in a more stable out-
of-sample strategy compared to the MVO strategy.

Conclusion
We highlight our key contributions as follows:

26

Figure 2: Backtest Results: MVO vs DRL Portfolio Allocation.

Figure 3: a) DRL Monthly Returns b) DRL Annual Returns c) DRL Monthly Distribution of Returns.

Figure 4: a) MVO Monthly Returns b) MVO Annual Returns c) MVO Monthly Distribution of Returns.

27

• We have designed a simple environment that serves as
a wrapper for the market, sliding over historical data us-
ing market replay. The environment can allocate multiple
assets and can be easily modified to reflect transaction
costs.

• We compare our framework’s performance during ten
backtest experiments over different periods for the US
Equities Market using S&P500 Sector indices. Our ex-
periments demonstrate the improved performance of
the deep reinforcement learning framework over Mean-
Variance portfolio optimization.

• The profitability of the framework surpasses MVO in
terms of Annual Returns, Sharpe ratio and Maximum
Drawdown. Additionally, we observe that DRL strategy
leads to more consistent returns and more stable port-
folios with decreased turnover. This has implications for
live-deployment, where transaction costs and slippage af-
fect P&L.

Future Work
In our future work, we would like to model transaction costs
and slippage either by explicitly calculating them during as-
set reallocation or as a penalty term to our reward. Moreover,
we would like to explore adding a drawdown minimization
component to our reward that will potentially help the agent
learn a more consistent trading strategy.

Another area of exploration is training a regime switching
model which will balance its funds amongst two agents de-
pending on market volatility (low vs high). One of them will
be a low-volatility trained agent and the other a high volatil-
ity trained agent. We would like to compare performance
between our current implicit regime parametrization and an
explicit one. Further exploration of these research directions
may produce significant insights into practical trading be-
havior.

Disclaimer: This paper was prepared for information
purposes by the Artificial Intelligence Research group of
J. P. Morgan Chase & Co. and its affiliates (“J. P. Morgan”),
and is not a product of the Research Department of J. P. Mor-
gan. J. P. Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness,
accuracy or reliability of the information contained herein.
This document is not intended as investment research or in-
vestment advice, or a recommendation, offer or solicitation
for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for
evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to
any person, if such solicitation under such jurisdiction or to
such person would be unlawful.

References
Benhamou, E.; Saltiel, D.; Ungari, S.; and Mukhopad-
hyay, A. 2020a. Bridging the gap between Markowitz
planning and deep reinforcement learning. arXiv preprint
arXiv:2010.09108.

Benhamou, E.; Saltiel, D.; Ungari, S.; and Mukhopadhyay,
A. 2020b. Time your hedge with deep reinforcement learn-
ing. arXiv preprint arXiv:2009.14136.
Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak,
P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse,
C.; et al. 2019. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680.
Buehler, H.; Gonon, L.; Teichmann, J.; and Wood, B. 2019.
Deep hedging. Quantitative Finance, 19(8): 1271–1291.
Cao, J.; Chen, J.; Hull, J.; and Poulos, Z. 2021. Deep hedg-
ing of derivatives using reinforcement learning. The Journal
of Financial Data Science, 3(1): 10–27.
Charpentier, A.; Elie, R.; and Remlinger, C. 2021. Rein-
forcement learning in economics and finance. Computa-
tional Economics, 1–38.
Chen, L.; He, S.; and Zhang, S. 2011. When all risk-adjusted
performance measures are the same: In praise of the Sharpe
ratio. Quantitative Finance, 11(10): 1439–1447.
Cong, L. W.; Tang, K.; Wang, J.; and Zhang, Y. 2021. Alpha-
Portfolio: Direct construction through deep reinforcement
learning and interpretable AI. Available at SSRN, 3554486.
Cont, R. 2001. Empirical properties of asset returns: stylized
facts and statistical issues. Quantitative finance, 1(2): 223.
Cornuejols, G.; and Tütüncü, R. 2006. Optimization meth-
ods in finance, volume 5. Cambridge University Press.
Dempster, M. A.; and Leemans, V. 2006. An automated FX
trading system using adaptive reinforcement learning. Ex-
pert Systems with Applications, 30(3): 543–552.
Deng, Y.; Bao, F.; Kong, Y.; Ren, Z.; and Dai, Q. 2016. Deep
direct reinforcement learning for financial signal representa-
tion and trading. IEEE transactions on neural networks and
learning systems, 28(3): 653–664.
Du, J.; Jin, M.; Kolm, P. N.; Ritter, G.; Wang, Y.; and Zhang,
B. 2020. Deep reinforcement learning for option replication
and hedging. The Journal of Financial Data Science, 2(4):
44–57.
Du, X.; and Tanaka-Ishii, K. 2020. Stock embeddings ac-
quired from news articles and price history, and an appli-
cation to portfolio optimization. In Proceedings of the 58th
annual meeting of the association for computational linguis-
tics, 3353–3363.
Engstrom, L.; Ilyas, A.; Santurkar, S.; Tsipras, D.; Janoos,
F.; Rudolph, L.; and Madry, A. 2019. Implementation mat-
ters in deep rl: A case study on ppo and trpo. In International
conference on learning representations.
Ghahtarani, A.; Saif, A.; and Ghasemi, A. 2022. Robust
portfolio selection problems: a comprehensive review. Op-
erational Research, 1–62.
Hambly, B.; Xu, R.; and Yang, H. 2021. Recent ad-
vances in reinforcement learning in finance. arXiv preprint
arXiv:2112.04553.
Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup,
D.; and Meger, D. 2018. Deep reinforcement learning that
matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32.

28

i Alonso, M. N.; Srivastava, S.; et al. 2020. Deep reinforce-
ment learning for asset allocation in us equities. Technical
report.
Jiang, Z.; and Liang, J. 2017. Cryptocurrency portfolio man-
agement with deep reinforcement learning. In 2017 Intelli-
gent Systems Conference (IntelliSys), 905–913. IEEE.
Kalayci, C.; Ertenlice, O.; Akyer, H.; and Aygören, H. 2017.
A review on the current applications of genetic algorithms
in mean-variance portfolio optimization. Pamukkale Uni-
versity Journal of Engineering Sciences, 23: 470–476.
Koratamaddi, P.; Wadhwani, K.; Gupta, M.; and Sanjeevi,
S. G. 2021. Market sentiment-aware deep reinforcement
learning approach for stock portfolio allocation. Engi-
neering Science and Technology, an International Journal,
24(4): 848–859.
Ledoit, O.; and Wolf, M. 2004. Honey, I shrunk the sample
covariance matrix. The Journal of Portfolio Management,
30(4): 110–119.
Li, B.; and Hoi, S. C. 2014. Online portfolio selection: A
survey. ACM Computing Surveys (CSUR), 46(3): 1–36.
Li, X.; Li, Y.; Zhan, Y.; and Liu, X.-Y. 2019. Opti-
mistic bull or pessimistic bear: Adaptive deep reinforce-
ment learning for stock portfolio allocation. arXiv preprint
arXiv:1907.01503.
Liang, Z.; Chen, H.; Zhu, J.; Jiang, K.; and Li, Y. 2018. Ad-
versarial deep reinforcement learning in portfolio manage-
ment. arXiv preprint arXiv:1808.09940.
Lima Paiva, F. C.; Felizardo, L. K.; Bianchi, R. A. d. C.;
and Costa, A. H. R. 2021. Intelligent trading systems: a
sentiment-aware reinforcement learning approach. In Pro-
ceedings of the Second ACM International Conference on
AI in Finance, 1–9.
Liu, X.-Y.; Yang, H.; Chen, Q.; Zhang, R.; Yang, L.; Xiao,
B.; and Wang, C. D. 2020. FinRL: A deep reinforcement
learning library for automated stock trading in quantitative
finance. arXiv preprint arXiv:2011.09607.
Lu, D. W. 2017. Agent inspired trading using recurrent rein-
forcement learning and lstm neural networks. arXiv preprint
arXiv:1707.07338.
Markowitz, H. 1952. Portfolio Selection. The Journal of
Finance, 7(1): 77–91.
Martin, R. A. 2021. PyPortfolioOpt: portfolio optimization
in Python. Journal of Open Source Software, 6(61): 3066.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, 1928–1937.
PMLR.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Moody, J.; and Saffell, M. 2001. Learning to trade via di-
rect reinforcement. IEEE transactions on neural Networks,
12(4): 875–889.

Moody, J.; Wu, L.; Liao, Y.; and Saffell, M. 1998. Perfor-
mance functions and reinforcement learning for trading sys-
tems and portfolios. Journal of Forecasting, 17(5-6): 441–
470.
Nguyen, H.; and La, H. 2019. Review of deep reinforcement
learning for robot manipulation. In 2019 Third IEEE Inter-
national Conference on Robotic Computing (IRC), 590–595.
IEEE.
Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus,
M.; and Dormann, N. 2021. Stable-Baselines3: Reliable Re-
inforcement Learning Implementations. Journal of Machine
Learning Research, 22(268): 1–8.
Rao, N.; Aljalbout, E.; Sauer, A.; and Haddadin, S. 2020.
How to make deep RL work in practice. arXiv preprint
arXiv:2010.13083.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Sharpe, W. F. 1998. The sharpe ratio. Streetwise–the Best of
the Journal of Portfolio Management, 169–185.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. nature, 550(7676): 354–359.
Soleymani, F.; and Paquet, E. 2020. Financial portfolio op-
timization with online deep reinforcement learning and re-
stricted stacked autoencoder—DeepBreath. Expert Systems
with Applications, 156: 113456.
Su, P.-H.; Gasic, M.; Mrksic, N.; Rojas-Barahona, L.; Ultes,
S.; Vandyke, D.; Wen, T.-H.; and Young, S. 2016. On-line
active reward learning for policy optimisation in spoken di-
alogue systems. arXiv preprint arXiv:1605.07669.
Sun, S.; Wang, R.; He, X.; Zhu, J.; Li, J.; and An, B.
2021. Deepscalper: A risk-aware deep reinforcement learn-
ing framework for intraday trading with micro-level market
embedding. arXiv preprint arXiv:2201.09058.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Théate, T.; and Ernst, D. 2021. An application of deep re-
inforcement learning to algorithmic trading. Expert Systems
with Applications, 173: 114632.
Wang, J.; Zhang, Y.; Tang, K.; Wu, J.; and Xiong, Z.
2019. Alphastock: A buying-winners-and-selling-losers in-
vestment strategy using interpretable deep reinforcement at-
tention networks. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data
mining, 1900–1908.
Wang, Z.; Huang, B.; Tu, S.; Zhang, K.; and Xu, L. 2021.
DeepTrader: A Deep Reinforcement Learning Approach for
Risk-Return Balanced Portfolio Management with Market
Conditions Embedding. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 35(1): 643–650.
Wu, X.; Chen, H.; Wang, J.; Troiano, L.; Loia, V.; and Fu-
jita, H. 2020. Adaptive stock trading strategies with deep
reinforcement learning methods. Information Sciences, 538:
142–158.

29

Yang, H.; Liu, X.-Y.; Zhong, S.; and Walid, A. 2020. Deep
reinforcement learning for automated stock trading: An en-
semble strategy. In Proceedings of the First ACM Interna-
tional Conference on AI in Finance, 1–8.
Ye, Y.; Pei, H.; Wang, B.; Chen, P.-Y.; Zhu, Y.; Xiao, J.; and
Li, B. 2020. Reinforcement-learning based portfolio man-
agement with augmented asset movement prediction states.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, 1112–1119.
Zhang, Z.; Zohren, S.; and Roberts, S. 2020. Deep rein-
forcement learning for trading. The Journal of Financial
Data Science, 2(2): 25–40.

30

Surrogate Assisted Monte Carlo Tree Search in Combinatorial Optimization

Saeid Amiri1, Parisa Zehtabi2, Danial Dervovic3, Michael Cashmore3

1JP Morgan AI Research. New York City, NY, USA
2JP Morgan AI Research. London, UK

3JP Morgan AI Research. Edinburgh, UK
saeid.amiri@jpmchase.com, parisa.zehtabi@jpmorgan.com, danial.dervovic@jpmchase.com,

michael.cashmore@jpmorgan.com

Abstract

Industries frequently adjust their facilities network by open-
ing new branches in promising areas and closing branches in
areas where they expect low profits. In this paper, we examine
a particular class of facility location problems. Our objective
is to minimize the loss of sales resulting from the removal of
several retail stores. However, estimating sales accurately is
expensive and time-consuming. To overcome this challenge,
we leverage Monte Carlo Tree Search (MCTS) assisted by
a surrogate model that computes evaluations faster. Results
suggest that MCTS supported by a fast surrogate function
can generate solutions faster while maintaining a consistent
solution compared to MCTS that does not benefit from the
surrogate function.

Introduction
As populations shift, market trends change, and customer
demands evolve, many service industries and retail stores
are faced with the decision of adding, removing, relocat-
ing, or consolidating their facility locations. An example is
a 2018 survey that showed the market trends resulting in
some liquor stores becoming obsolete 1. In this paper, we fo-
cus on a particular class of facility location problem that in-
volves closing a fixed number of retail stores in which com-
puting the features of the evaluation function is expensive.
This problem is a Combinatorial Optimization (CO). COs
are often NP-hard and computationally intractable due to
the large state-spaces. Consequently, solving CO problems
often requires designing heuristics or approximation algo-
rithms (Williamson and Shmoys 2011). Furthermore, real-
world optimization problems are often complex, nonlinear,
and may have multiple objectives and constraints that can
be computationally expensive to evaluate. The solutions to
CO often involves the design of heuristics or approximation
algorithms.

Monte Carlo Tree Search (MCTS) (Kocsis and Szepesvári
2006; Coulom 2006) is a popular technique for solving
search problems in large spaces, particularly in the domain

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.forbes.com/sites/taranurin/2019/11/22/independent-
liquor-stores-will-become-obsolete-believe-nearly-one-out-of-
two-owners/?sh=5eb971f57b9b

Selection Expansion
Surrogate
Evaluation Backup Re-evaluation

(Main function)

Repeat while time
remains

Figure 1: Surrogate assisted Monte Carlo Tree Search (SM-
CTS) where an occasional reevaluation step refines the node
values.

of games. It involves building a search tree of possible ac-
tions and their corresponding outcomes, and using evalu-
ations (simulations) to estimate the value of each action.
MCTS has been applied to a wide range of problems such
as games (Silver et al. 2017; Rubin and Watson 2011),
robotics (Kim et al. 2020), finance (Vittori, Likmeta, and
Restelli 2021) and music (Liebman et al. 2017). Recent
works have used MCTS in CO. One work used Graph Neural
Networks and Reinforcement Learning in order to compute
heuristics for the MCTS-based action selection in schedul-
ing and vehicle routing problems (Oren et al. 2021). MCTS
has also been applied to capacity expansion in a residency
matching problem to find an optimal policy for matching
medical doctors to hospital vacancies (Abe, Komiyama, and
Iwasaki 2022).

Inspired by these successes, we leverage MCTS in the
facility location problem. We propose Surrogate-assisted
MCTS (SMCTS) to solve a combinatorial search problem
where we use a fast surrogate evaluation function in concert
with the slow default evaluation function. The main evalua-
tion function is a regression model that evaluates the current
network profitability but is computationally expensive due
to the varying network-dependent features. The surrogate is
fast to compute but is less accurate. The choice of an effi-
cient surrogate function is its own research problem, and we
simply assume that a surrogate function is available. In this

31

paper, we focus on how to use the surrogate function jointly
with the main evaluation function, aiming at faster solution
computation. Figure 1 depicts the SMCTS steps where the
selection, expansion, evaluation (by surrogate function), and
backup is complemented by an occasional re-evaluation step
that takes place in order to refine possible inaccurate surro-
gate model evaluations.

We apply this approach to the problem of store closure in
a network of liquor stores with the goal of minimizing the
overall sales loss. Our empirical results show that by using
MCTS with a surrogate function, the overall computation
time is reduced.

Related Work
Classes of facility location problems are among the funda-
mental problems in Operations Research. Traditionally, they
have been framed using Operation Research techniques such
as set covering (Namazian and Roghanian 2021; Murray
2016; Miliotis, Dimopoulou, and Giannikos 2002), maxi-
mal covering (Church and ReVelle 1974; Berman and Krass
2002), or p-median problems where the goal is minimiz-
ing the travel distance from customers (Kariv and Hakimi
1979). Facilities could be static such as branches and ware-
houses (Zaikin, Ignatiev, and Marques-Silva 2020) or dy-
namic such as charging stations (Andrenacci, Ragona, and
Valenti 2016; Drezner and Wesolowsky 1991; Wesolowsky
1973).

Most works formulate the problem either as integer pro-
gramming or clustering methods. In the former, various
heuristic techniques such as tabu search, Lagrangian relax-
ation (Santos 2009), greedy interchange (Kuehn and Ham-
burger 1963), branch and bound (Järvinen, Rajala, and
Sinervo 1972; Dupont 2008), primal and dual (Captivo
1991), binomic approach (Maniezzo, Mingozzi, and Bal-
dacci 1998) and gamma heuristics (Rosing, Revelle, and
Schilling 1999) have been used. In the latter, some works
leveraged unsupervised clustering methods to find the de-
mand centroids for charging stations and assign customers
based on distance to the closest centroid (Andrenacci, Rag-
ona, and Valenti 2016; Ip, Fong, and Liu 2010). In some
papers, Analytic Hierarchy Process have been proposed for
banking branch location based on customer demographic
and economic features (Gorener, Dinçer, and Hacioglu
2013; Sharmin and Solaiman 2019).

Most works have used the travel distance and customer
demand as the only features in their objective and constraints
formulation. Zaikin, Ignatiev, and Marques-Silva (2020) set
the customer dissatisfaction minimization as the goal in the
branch closure problem using Max-SAT methods.

Almost all works have considered the solution to the fa-
cility location problem as a one-shot static solution where
the location of multiple facilities are selected all at once. In
practice, firms and industries would decide to alter the ex-
isiting network of facilities. One work considered removing
or addition of existing facilities using integer programming
and approximation techniques (Wang et al. 2003).

In comparison, this paper focuses on a data-driven evalu-
ation function that estimates the overall sales profit based on

numerous features such as the number and the distance of
nearby facilities. In addition, we leverage surrogate evalua-
tions as a fast evaluation for the facility location problems.

Surrogate-assisted optimization Leveraging surrogates
for optimization has already been explored by researchers
in other contexts (Namazi et al. 2020; Gu et al. 2021; Liu,
Zhang, and Gielen 2013). For instance, (Liu, Zhang, and
Gielen 2013) proposed a Gaussian Process-assisted evolu-
tionary algorithm to solve computationally expensive prob-
lems. A surrogate model has been used to prune the solution
search space in the Travelling Thief problem (Namazi et al.
2020).

To the best of our knowledge, this is the first work of
leveraging surrogates in MCTS in CO problems.

Problem Statement
This problem is a class of facility location problem in which
a fixed number of retail stores are going to be closed. There
is a city network of N ∈ N stores. We seek to remove M
stores (M < N), that result in minimum forgone sales of the
network. Our decision variable is the vector X (|X| = N)
such that:

Xj =

{
1 if store j remains open
0 If store j remains closed

and the objective is expressed as:

Minimize
N∑

j=1

Fm(1N , j)−
N∑

j=1

Fm(X, j)

Subject to ||X||2 =M

where 1N is a vector of 1s and size N . The objective as
mentioned above is to minimize the total loss of sales as a
result of store closures and the constraint states that exactly
M stores will be closed. Fm is an evaluation function that
estimates the sales of store j. It is important to note that the
sales estimated per store depend not only upon the features
of that store, but also on other stores, including whether or
not they are closed.

Next, we describe how we find the solutions to this opti-
mization problem.

Framework
In this section, we explain the surrogate assisted MCTS
framework.

Node representation: In our search tree, a node is identi-
fied by the set of candidate stores for removal according to
the path from the root. The root node represents no store re-
moval and the tree depth is M where M is the total number
of stores to be removed from the network. In other words,
the nodes at depth M are terminal nodes. Each node keeps
duplicate attributes V ′

s and N ′
s for its value and the number

of visits in case it goes through the re-evaluation step. SM-
CTS has five components:

32

• Selection: Starting at the root node, the tree policy, in
our case UCB1 (Kocsis and Szepesvári 2006), is used
to select the next node based on its value, as described
below:

argmax

{
vs + C

√
Np/Ns

}

where vs is the value of the node s, Ns the number of
times node s is visited, Np is the number of times the
parent node has been visited. The choice of C affect the
ratio of exploration versus exploitation in the search.2

• Evaluate: A node can be evaluated using functions Fm

and Fs. Fm is the main evaluation function that is costly
to compute. Fs is an approximate surrogate function that
is faster to compute but less accurate compared to Fm.

• Backup: The return generated by the main or surrogate
evaluation function is backed up to update the values.

• Expand: A node is expanded to its children by remov-
ing any of the remaining stores from the network. The
number of children expanded is equal to the remaining
number of stores in the network. Removing a store can
be denoted as taking action ai ∈ A meaning the removal
of the ith store.

• Re-evaluation: A node’s children are re-evaluated if
their values are within the estimation error of the neigh-
boring nodes in the same tier.

Next, we briefly explain the SMCTS algorithm.

Algorithm: Algorithm 1 requires a surrogate function Fs

with the error bound σs, (in our case, σs is the difference be-
tween the Root Mean Squared Error (RMSE) of the Fs and
Fm) and a main evaluation function is Fm. Node s is initial-
ized with the root node s0. The selection is done using the
UCB1 algorithm where it suggests the best action a denot-
ing the next best store for removal (Lines 4-5). Once the next
node is selected, it expands into new children. (Lines 6 -7).
The value of the node is estimated by the surrogate function
Fs and backed up to the parent nodes recursively (Lines 9-
10). The novelty of SMCTS is in the re-evaluate step where
an occasional refinement of node values is done in order to
reduce value errors. The re-evaluation step is presented in
Algorithm 2. This algorithm is called when all the children
of node s are visited an equal number of times. In that case,
Algorithm 2 sorts the values of all children in the subtree
(sharing same parent node). We name the values of two ad-
jacent sorted nodes Vsi and Vsi+1 . These values may not be
accurate as they have been evaluated using Fs, therefore if
Vsi+1

−σs is less than Vsi +σs, then these node values need
to be updated with Fm. The number of times that re-evaluate
is called would depend on σs and the distribution of node
values.

Experiments
This section details the conducted experimental evaluation,
analysing the performance of SMCTS in different problem
settings. Our evaluation aimed at studying the following hy-
pothesis:

2We use v′s, N ′
p, N ′

s instead, after the node is reevaluated.

Algorithm 1: Surrogate-assisted MCTS
Input: Surrogate function Fs, evaluation function Fm,
action set A, root node s0, error bound σs

1: while Computational budget do
2: s← s0
3: while s.terminal is False do
4: a← Select(s,A)
5: s← s.children[a]
6: if s.leaf is True then
7: Expand(s)
8: end if
9: v ← Evaluate(s, Fs)

10: Backup(s, v)
11: if s.leaf is False and s.children equally visited

then
12: Re− evaluate(s, Fm, σs)
13: end if
14: end while
15: end while
16: return Node with the highest value

Algorithm 2: Re-evaluate nodes
Input: Node s, Fm, σs error bound

1: Sort children of s based on value
2: for i in [0, s.children.length− 1] do
3: vsi ← s.children[i].value
4: vsi+1 ← s.children[i+ 1].value
5: if vsi+1 − σs < vsi + σs then
6: v′si+1

← Evaluate(s.children[i+ 1], Fm)

7: v′si ← Evaluate(s.children[i], Fm)
8: Backup(si, v

′
si)

9: Backup(si+1, v
′
si+1

)
10: end if
11: end for

1. In scenarios with higher scale (large number of total
stores or large number of removals), SMCTS tends to
leverage surrogate function more than the evaluation
function.

2. The number of surrogate evaluations depends on the
surrogate quality. The higher error it has, the more re-
evaluation steps are needed.

3. With an efficient choice of a surrogate function, SMCTS
maintains a solution consistent with unassisted MCTS.

Next we explain the dataset and the evaluation functions.

Dataset: We use the Iowa Liquor Dataset 3 that contains
the daily purchase information of various liquors in each
store in the state of Iowa. The dataset has the information
of the stores such as the store name, address, coordinates,
zip code with 978 unique values, and the city name with 476

3https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-
Sales/m3tr-qhgy

33

2 3 4 5 6 7 8
Number of Stores Removed

0.5

0.6

0.7

0.8

0.9

1.0

R
at

io
 o

f S
ur

ro
ga

te
 E

va
lu

at
io

ns

Figure 2: SMCTS where an occasional reevaluation step
refines the node values. The horizontal axis represents the
number of stores that need to be removed.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
 (RMSE) of the Surrogate

0.6

0.7

0.8

0.9

1.0

1.1

R
at

io
 o

f S
ur

ro
ga

te
 E

va
lu

at
io

ns

Surrogate Fs

Figure 3: SMCTS with various surrogate errors. The verti-
cal axis is the ratio of surrogate function Fs evaluations to
the total evaluations. The horizontal axis represent surrogate
functions with increasing normalized RMSEs.

cities and the type and amount of the liquor they have sold
at each day. We preprocess the data by calculating the total
sales of all liquors at each store in a year and by defining
some new features such as the number of stores in 0.5 miles
proximity. These additional features are network dependent
and require to be recomputed for every node in the tree, re-
sulting in Fm to be costly.

Evaluation Functions: Our main evaluation function Fm

is an XGBoost regression model that estimates the sales
amount for a store. Given a store removal, some features in
the dataset need to be recalculated, resulting in a costly eval-
uation. To create a surrogate function Fs, we use a subset of
the features of the dataset and train another XGBoost regres-
sion model. Fs is less accurate on sales estimation compared
to Fm. In our case, Fs has a normalized RMSE of 0.27 and
Fm has the RMSE of 0.16 (both on the test set). We use
SMCTS for liquor store removals for a given county with
varying counts of store to remove. Figure 2 shows the aver-
age ratio of the number of times Fs has been called versus
Fm for ten counties (randomly sampled) where the number
of stores in those counties ranged from 17 to 64, represent-

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Number of Stores Removed

0.6

0.7

0.8

0.9

1.0

1.1

Sø
re

ns
en

D
ic

e
co

ef
fic

ie
nt

 o
f S

M
TC

S
vs

. M
C

TS

Figure 4: Evaluation of the consistency of stores selected by
SMCTS vs. MCTS. The vertical axis shows the number of
the selected stores by SMCTS being different from MCTS.
The results are the average of 10 counties that are randomly
selected.

ing 70 store removal problems. We observe that with the in-
crease in the number of removed branches, the relative num-
ber of times the surrogate function is called increases, facil-
itating reduction of the overall evaluation burden. Figure 3
shows the ratio of surrogate evaluation to the total evaluation
using various surrogates with various error bound. With the
increase in the error of the surrogate, we observe an increase
in the re-evaluation step. Such increase is valuable as long as
SMCTS is consistent with MCTS store selection. Figure 4
presents the consistency comparison of the two approaches
for various store removals. We use the Sørensen–Dice co-
efficient to measure the similarity of the results of the two
methods. The values are the average of ten counties, ran-
domly sampled from the dataset. We observe that in most
cases, SMCTS output is consistent with MCTS. There is a
bit of inconsistency for 3 and 4 branch removals, such incon-
sistencies are due to the weaker estimations of FS in outlier
counties.

Conclusion & Future Work
In this work, we proposed MCTS search with surrogate
functions for combinatorial optimization. We demonstrated
that by using less accurate but faster surrogate function, we
can solve optimization problems more efficiently. We ap-
plied our approach to a store closure problem in which the
goal is to minimize the total sales loss of a retail store.

In this paper, we assumed the surrogate function is pro-
vided while this is not the case in practice. For future work,
we propose to investigate ways to implement and design the
surrogate function and the criteria for it to improve the SM-
CTS. In addition, we will explore the applicability of SM-
CTS with other datasets and domains with stochasticity in
the action space.

Disclaimer. This paper was prepared for informational pur-
poses by the Artificial Intelligence Research group of JPMorgan
Chase & Co. and its affiliates (“JP Morgan”), and is not a prod-
uct of the Research Department of JP Morgan. JP Morgan makes
no representation and warranty whatsoever and disclaims all liabil-

34

ity, for the completeness, accuracy or reliability of the information
contained herein. This document is not intended as investment re-
search or investment advice, or a recommendation, offer or solici-
tation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evalu-
ating the merits of participating in any transaction, and shall not
constitute a solicitation under any jurisdiction or to any person, if
such solicitation under such jurisdiction or to such person would
be unlawful.

References
Abe, K.; Komiyama, J.; and Iwasaki, A. 2022. Anytime capacity
expansion in medical residency match by monte carlo tree search.
arXiv preprint arXiv:2202.06570.
Andrenacci, N.; Ragona, R.; and Valenti, G. 2016. A demand-side
approach to the optimal deployment of electric vehicle charging
stations in metropolitan areas. Applied Energy, 182: 39–46.
Berman, O.; and Krass, D. 2002. The generalized maximal cover-
ing location problem. Computers & Operations Research, 29(6):
563–581.
Captivo, M. E. 1991. Fast primal and dual heuristics for the p-
median location problem. European Journal of Operational Re-
search, 52(1): 65–74.
Church, R.; and ReVelle, C. 1974. The maximal covering location
problem. In Papers of the regional science association, volume 32,
101–118. Springer-Verlag Berlin/Heidelberg.
Coulom, R. 2006. Efficient selectivity and backup operators in
Monte-Carlo tree search. In International conference on computers
and games, 72–83. Springer.
Drezner, Z.; and Wesolowsky, G. 1991. Facility location when de-
mand is time dependent. Naval Research Logistics (NRL), 38(5):
763–777.
Dupont, L. 2008. Branch and bound algorithm for a facility lo-
cation problem with concave site dependent costs. International
journal of production economics, 112(1): 245–254.
Gorener, A.; Dinçer, H.; and Hacioglu, U. 2013. Application
of multi-objective optimization on the basis of ratio analysis
(MOORA) method for bank branch location selection. Interna-
tional Journal of Finance & Banking Studies (2147-4486), 2(2):
41–52.
Gu, Q.; Wang, Q.; Li, X.; and Li, X. 2021. A surrogate-assisted
multi-objective particle swarm optimization of expensive con-
strained combinatorial optimization problems. Knowledge-Based
Systems, 223: 107049.
Ip, A.; Fong, S.; and Liu, E. 2010. Optimization for allocating
BEV recharging stations in urban areas by using hierarchical clus-
tering. In 2010 6th International conference on advanced informa-
tion management and service (IMS), 460–465. IEEE.
Järvinen, P.; Rajala, J.; and Sinervo, H. 1972. A branch-and-bound
algorithm for seeking the p-median. Operations Research, 20(1).
Kariv, O.; and Hakimi, S. L. 1979. An algorithmic approach to net-
work location problems. I: The p-centers. SIAM journal on applied
mathematics, 37(3): 513–538.
Kim, B.; Lee, K.; Lim, S.; Kaelbling, L.; and Lozano-Pérez, T.
2020. Monte carlo tree search in continuous spaces using voronoi
optimistic optimization with regret bounds. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, 9916–9924.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based monte-carlo
planning. In European conference on machine learning. Springer.

Kuehn, A. A.; and Hamburger, M. J. 1963. A heuristic program for
locating warehouses. Management science, 9(4): 643–666.
Liebman, E.; Khandelwal, P.; Saar-Tsechansky, M.; and Stone, P.
2017. Designing better playlists with monte carlo tree search. In
Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 31, 4715–4720.
Liu, B.; Zhang, Q.; and Gielen, G. G. 2013. A Gaussian process
surrogate model assisted evolutionary algorithm for medium scale
expensive optimization problems. IEEE Transactions on Evolu-
tionary Computation, 18(2): 180–192.
Maniezzo, V.; Mingozzi, A.; and Baldacci, R. 1998. A bionomic
approach to the capacitated p-median problem. Journal of Heuris-
tics, 4(3): 263.
Miliotis, P.; Dimopoulou, M.; and Giannikos, I. 2002. A hierar-
chical location model for locating bank branches in a competitive
environment. International transactions in operational research,
9(5): 549–565.
Murray, A. T. 2016. Maximal coverage location problem: impacts,
significance, and evolution. International Regional Science Re-
view, 39(1): 5–27.
Namazi, M.; Sanderson, C.; Newton, M.; and Sattar, A. 2020. Sur-
rogate assisted optimisation for travelling thief problems. In Pro-
ceedings of the International Symposium on Combinatorial Search,
volume 11, 111–115.
Namazian, Z.; and Roghanian, E. 2021. A decision problem for
bank branch site selection: a GIS mapping perspective with maxi-
mal covering location problem: a case study of Isfahan, Iran. Inter-
national Journal of Services and Operations Management, 39(3):
337–361.
Oren, J.; Ross, C.; Lefarov, M.; Richter, F.; Taitler, A.; Feldman,
Z.; Di Castro, D.; and Daniel, C. 2021. SOLO: search online, learn
offline for combinatorial optimization problems. In Proceedings of
the International Symposium on Combinatorial Search, volume 12,
97–105.
Rosing, K. E.; Revelle, C. S.; and Schilling, D. A. 1999. A gamma
heuristic for the p-median problem. European Journal of Opera-
tional Research, 117(3): 522–532.
Rubin, J.; and Watson, I. 2011. Computer poker: A review. Artifi-
cial intelligence, 175(5-6): 958–987.
Santos, A. C. 2009. Solving large p-median problems using a La-
grangean heuristic. Ph.D. thesis, Université Blaise Pascal (Cler-
mont Ferrand 2).
Sharmin, S.; and Solaiman, K. 2019. BigBank: A GIS integrated
AHP-TOPSIS based expansion model for banks. In 2019 SITIS,
311–318. IEEE.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang,
A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
2017. Mastering the game of go without human knowledge. nature,
550(7676): 354–359.
Vittori, E.; Likmeta, A.; and Restelli, M. 2021. Monte carlo tree
search for trading and hedging. In Proceedings of the Second ACM
International Conference on AI in Finance, 1–9.
Wang, Q.; Batta, R.; Bhadury, J.; and Rump, C. M. 2003. Budget
constrained location problem with opening and closing of facilities.
Computers & Operations Research, 30(13): 2047–2069.
Wesolowsky, G. O. 1973. Dynamic facility location. Management
Science, 19(11): 1241–1248.
Williamson, D. P.; and Shmoys, D. B. 2011. The design of approx-
imation algorithms. Cambridge university press.
Zaikin, O.; Ignatiev, A.; and Marques-Silva, J. 2020. Branch lo-
cation problems with maximum satisfiability. In ECAI 2020, 379–
386. IOS Press.

35

FinRDDL: Can AI Planning be used for Quantitative Finance Problems?

Sunandita Patra1, Mahmoud Mahfouz1, 2, Sriram Gopalakrishnan1,
Daniele Magazzeni1, and Manuela Veloso1

1 J.P. Morgan AI Research
2 Imperial College London

{sunandita.patra, mahmoud.a.mahfouz, sriram.gopalakrishnan, daniele.magazzeni, manuela.veloso}@jpmchase.com

Abstract

In this paper, we introduce FinRDDL, the first framework for
financial portfolio management problems using a planning
language. FinRDDL uses Relational Dynamic Influence Di-
agram Language (RDDL) to formalize the problems of asset
allocation and optimal trade execution; two canonical quanti-
tative finance problems. We show how the seminal works of
Markowitz (1952) for asset allocation and Almgren and Chriss
(2001) for optimal trade execution can be modelled using
RDDL and provide preliminary results on how the perfor-
mance of various AI actors with different planning strategies
compare against existing methods. Finally, we highlight the
limitations of existing planning algorithms for solving finan-
cial sequential decision making problems and discuss future
research avenues.

1 Introduction
Sequential decision-making problems in finance have at-
tracted significant academic interest from both the quanti-
tative finance and artificial intelligence (AI) communities.
Two canonical problems, in particular, have been the focus of
research: asset allocation and optimal trade execution. Both
problems fall within the context of financial portfolio man-
agement whereby asset allocation deals with the problem of
deciding the weights of the financial assets to include in a
portfolio and optimal trade execution deals with efficiently
placing the corresponding trades in the market.

The primary goal of this paper is to investigate whether
it is possible to formalize asset allocation and optimal trade
execution problems in a planning formalism and utilize AI
planning techniques to solve them. By examining the bene-
fits and limitations of using AI planning methods, we aim
to provide insights into whether this approach can offer an
alternative to current approaches used in quantitative finance.

There are several challenges with using planning in this
field, starting with the fact that the state and action space are
often continuous. Finding optimal plans in such numerical
planning domains is very hard; Helmert (2002) has shown
that such problems are often not event decidable (i.e. it is
not known if a solution exists). Dealing with a continuous
space of possible states and actions can be difficult and com-
putationally expensive to work with. As a result, practical

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approaches with continuous action spaces often require ap-
proximating the optimal policy using techniques such as
function approximation, gradient-based optimization, or rein-
forcement learning.

Another significant challenge for using planning method-
ologies is that the underlying environment the plan is exe-
cuted on is highly dynamic and affected by exogenous events.
This dynamic nature of the environment can make it difficult
to anticipate the long-term consequences of actions. One way
the field of quantitative finance handles this issue is by using
different statistical models to model and predict the variables
of interest such as the asset price evolution (Hu and Øksendal
1998; Hachicha, Jarboui, and Siarry 2011).

Based on these challenges, we believe RDDL (Sanner et al.
2010) is an appropriate planning language for modelling
financial trading problems because (a) it can capture a contin-
uous state and action space, (b) it allows concurrent actions
with possibly conflicting effects, and, (c) various mathemat-
ical models for predicting asset prices can be integrated in
RDDL’s conditional probabilistic state transition functions.

Our Contributions
• We formalize the asset allocation and optimal trade execu-

tion problems using RDDL. To the best of our knowledge,
this is the first application of RDDL to model these two
canonical quantitative finance problems.

• We experimentally evaluate five different acting strategies:
uniform allocation, Greedy Markowitz, Monte Carlo Tree
Search, Mixed-integer quadratic programming, and tf-
plan (Wu, Say, and Sanner 2017) for asset allocation.

• We provide a desiderata for the AI planning commu-
nity highlighting the limitations of current planning ap-
proaches and how they can be improved to solve quantita-
tive finance problems.

The paper is organized as follows: we first provide the
background and related work in section 2 on asset allocation,
optimal trade execution and RDDL. We then describe the
FinRDDL framework, the AI planning techniques explored
and the experimental evaluation for asset allocation in sec-
tion 3 and optimal trade execution in section 4. We provide
a desiderata for the AI planning community in section 5 and
conclude the paper in section 6 with a summary of our work
and suggestions for future research.

36

2 Background & Related Work
This section provides an overview of the financial terminol-
ogy necessary to understand the asset allocation and optimal
trade execution problems. We examine the relevant literature
pertaining to these two problems. Additionally, we provide
an outline of the fundamental components of RDDL.

2.1 Asset Allocation
Financial portfolio management is a multi-faceted process
that relies on human expertise and historical data analysis for
constructing portfolios of financial assets on behalf of individ-
ual or institutional investors. A key component of portfolio
management is asset allocation. This is the task of optimally
allocating a finite cash budget to a finite set of financial assets
to meet a certain financial objective dictated by the investor.
The objectives vary depending on the investor’s goals, invest-
ment horizon and risk appetite. A portfolio is a collection of
multiple financial assets characterized by its constituents (N
assets) and a portfolio weights vector wt at time t which is
defined as:

wt = [w1,t, . . . , wN,t]
T ∈ RN and

N∑

i=1

wi,t = 1 (2.1)

where, wi,t represents the ratio of the total budget invested in
asset i at time t.

Investors are typically concerned with price changes over
time as opposed to absolute prices since they reflect their
investment’s profit and loss. Let pi,t denote the price of asset
i at time t. The gross return Ri,t, simple return ri,t and log
return ρi,t of an asset i at time t are given by:

Ri,t ≜
pi,t
pi,t−1

∈ R (2.2)

ri,t ≜
pi,t − pi,t−1

pi,t−1
=

pi,t
pi,t−1

− 1 = Ri,t − 1 ∈ R (2.3)

ρi,t ≜ ln(Ri,t) = ln

(
pi,t
pi,t−1

)
= ln(ri,t + 1) ∈ R (2.4)

For a portfolio with multiple assets, a linear combination
of each asset return weighted by the portfolio weights vector
yields the portfolio return. For example, the portfolio log
return is defined as:

ρt ≜
N∑

i=1

wi,tρi,t = wT
t ρt = ln

(
1 +wT

t rt
)
∈ R (2.5)

where, ρt = [ρ1,t, ρ2,t, . . . , ρN,t]
T ∈ RN . Translating this

to investments over multi-periods with an investment horizon
H , we obtain the cumulative log return ρt→H , an example of
an objective an investor would seek to maximize,

ρt→H ≜ ln

(
H∏

i=t+1

Ri

)
=

H∑

i=t+1

ln (Ri) =

H∑

i=t+1

ρi ∈ R

(2.6)
The first attempt to suggest an optimization approach

for asset allocation in a systematic way was introduced by
Markowitz (1952). The key insight of this approach is that by

combining assets with different expected returns and volatil-
ity, one can decide on a mathematically optimal allocation.
Following this seminal work, the problem of asset alloca-
tion was studied extensively in the literature with a wide
range of approaches investigated. We focus on prior work on
multi-period asset allocation, a sequential decision making
problem, where the portfolio weights are adjusted periodi-
cally (e.g. monthly) to meet the investor’s objectives. This is
in contrast to single-period asset allocation where the opti-
mal portfolio weights are decided once and the portfolio is
maintained over a fixed time period (e.g. 1 year).

Boyd et al. (2017) presents a framework for single-period
and multi-period optimization of asset allocation strategies,
balancing expected return, risk, transaction and holding costs.
They employ a convex optimization problem formulation,
under the assumption that cost, risk, trading and holding
functions and constraints are all convex. The method is used
to plan a sequence of trades with future quantities estimated
using predictions, without addressing the critical compo-
nent of forecasting future quantities. Li, Uysal, and Mul-
vey (2022) describes a method for multi-period portfolio
optimization that employs model predictive control with a
risk-parity objective, and provide a successive convex pro-
gramming algorithm that is more computationally efficient
compared to previous methods. Their comprehensive com-
parison of models demonstrates that multi-period models
outperform single-period models in out-of-sample periods
with market impact costs, achieving higher Sharpe ratios
for mean-variance and risk-parity formulations, respectively.
Lastly, Blay et al. (2020) take an analogous approach to ours
and use a simulator to capture market dynamics and compute
a set of weights (allocations) for multi-period asset allocation.
The weights are computed using gradient based optimiza-
tion procedure, and their method computes a fixed allocation
over all periods. This is like computing a static plan for a
dynamic or probabilistic environment. Using RDDL, we can
compute a policy that adapts it’s allocation decisions (actions)
based on the current state which includes prices, and current
allocation amongst others.

2.2 Optimal Trade Execution
The optimal trade execution (OTE) problem is another clas-
sical problem in quantitative finance that refers to the chal-
lenges of buying or selling securities in a manner that mini-
mizes transaction costs and maximizes trading profits. Con-
sider a portfolio manager (PM) who wishes to adjust (rebal-
ance) his/her portfolio by liquidating (selling) a fixed large
block of a given security. The PM would send his order to
a broker who is tasked with executing it in the market (e.g.
on an exchange like NASDAQ). A common practice is to
slice-and-dice the PM’s order into smaller child orders to
be executed within a given time horizon. This then turns the
OTE problem into a sequential decision making problem of
deciding the optimal sequence of child orders to place in the
market to minimize the transaction costs.

The OTE problem is characterized by having an objec-
tive function (minimizing execution costs), a set of possible
actions to take (order types, prices and quantities to place
in the market) and market variables to take into considera-

37

tion when making the decision at every step of the execution
time horizon. The problem is multi-faceted as there are sev-
eral challenges to consider. At the macroscopic level the PM
needs to decide the time horizon and total quantity to execute.
At the mesoscopic level, the broker faces the order scheduling
problem (OSP) and has to decide how to slice the metaorder
across time and determine the volume to execute for each
slice. Finally, the broker is also faced with the order place-
ment problem (OPP) at the microscopic level where he/she
needs to decide which order type to use and which market
venue to send the order to (Bouchaud et al. 2018). In this
paper, we focus only on the order scheduling problem.

The order scheduling problem has been widely studied in
the literature and was first formalized by Bertsimas and Lo
(1998) in their work on the optimal control of execution costs.
The authors formulate the problem mathematically as a se-
quential decision making problem, define the concept of best
execution and use the implementation shortfall (Perold 1988)
as the cost objective to be minimized. They then use stochas-
tic dynamic programming to solve the problem and derive a
number of closed-form solutions under certain assumptions
around the price dynamics. An important contribution of
the paper is showing that breaking up a large trade into a a
number of smaller trades of equal size is optimal when the
price dynamics follow an arithmetic random walk, the price
impact is linear in the trade size and its effect is permanent
on future prices. Almgren and Chriss (2001) extended this
work using a mean-variance approach similar to that used
in asset allocation to allow for the minimization of the ex-
pected implementation shortfall and the variance (volatility)
of the expected execution costs. Similar to (Bertsimas and Lo
1998), they also derive closed-form solutions of the optimal
schedules under a set of assumptions around the price dynam-
ics and market impact and show that there exists an optimal
solution balancing trade off between the costs of trade execu-
tion and the speed at which the trades are sent to the market.
Following the seminal works of Bertsimas and Lo (1998)
and Almgren and Chriss (2001), optimizing trade execution
became an active research topic for decades with researchers
investigating different forms of price dynamics, market im-
pact and optimal trading strategies (Bouchaud et al. 2018).
See Donnelly (2022) for a recent review on this topic. Given
the importance of this problem, we present a formulation
of this problem in RDDL in section 4 for the planning and
RL research community, and discuss the pertinent dynamics
therein.

2.3 Relational Dynamic Influence Diagram
Language (RDDL)

RDDL (Sanner et al. 2010) is a formal language used to
model dynamic environments for decision-making problems.
It allows for uncertainty in the environment dynamics (proba-
bilistic transitions), and is geared toward planning problems.
Multi period asset allocation and order execution are classic
examples of such problems, and RDDL can be used to model
them.

To model a problem using RDDL, we need to define the
state and action fluents which can change at every discrete
time step. Action fluents represent the decision variables.

Actions can occur concurrently. Constants are declared as
non-fluents. Two key components of an RDDL domain are
the transition function and rewards associated with each state-
action pair. The transitions capture the dynamics and uncer-
tainty in the market, such as the probability of different price
movements, while the reward considers the expected return,
risk of the portfolio and transaction costs. The reward func-
tion can be defined to incorporate different investment goals,
such as maximizing return, minimizing risk, or optimizing the
trade-off between the two. We can also incorporate various
constraints, such as transaction costs, liquidity requirements,
and risk tolerance levels. These can be represented as addi-
tional variables or as part of the reward function.

Finally, any RDDL solver that supports continuous state
and action spaces can be used to generate an optimal policy
based on the model defined in this work. In the case of as-
set allocation, the policy provides guidance on the optimal
allocation of assets between the different classes, taking into
account the current market conditions and investment goals.

We have chosen not to use PPDDL (Younes and Littman
2004) due to its lack of support for concurrent actions that
may result in conflicting effects. Given the stochastic nature
of our problem, there is always some probability that such
conflicts may occur. For instance, changing the weight of two
assets in our portfolio may result in related market impacts.
Enumerating the joint actions and their effects would be a
possible solution, but is very difficult to maintain over time.
Additionally, multiple exogenous events that may occur in
a single day cannot affect the same fluent or state variable,
further limiting the applicability of PPDDL.

With respect to planning in RDDL, the Prost planner
(Keller and Eyerich 2012) is a probabilistic planning system
that utilizes the UCT algorithm and several enhancements to
improve its performance in domain-independent probabilis-
tic planning. It has demonstrated significant improvement in
benchmark domains. However, Prost cannot handle continu-
ous state and action spaces (intended for discrete domains).

3 FinRDDL: Asset Allocation
This section builds upon the mathematical terminology es-
tablished in section 2.1 for the asset allocation problem. The
main focus of this section is to present the primary objective
(reward), the RDDL model, and a preliminary experimen-
tal evaluation to compare different planning strategies for
multi-period asset allocation using RDDL.

Objective. For the multi-period asset allocation problem,
the objective is to find the optimal set of portfolio weights
wi,t for all assets i over the investment horizon. Formally,

argmax
{wi,t}i=1,...,N

t=1,...,H

H∑

t=1

N∑

i=1

(
wi,tρi,t − ασwi,tσ

−αδ ∥wi,t − wi,t−1∥1
)

s.t.
∑N

i=1 wi,t = 1 and wi,t ≥ 0,∀t = 1, . . . ,H
(3.1)

where, H is the investment time horizon, N is the number
of available assets and wi,t is the weight of asset i at time t.

38

The expression maximizes the sum of the expected returns
and minimizes the risk and transaction costs of all assets
over all periods. The first constraint ensures that the asset
weights at each period sum up to 1 and the second constraint
enforces non-negativity of the weights. The scaling constants
ασ and αδ determine the respective weightings of the three
optimization metrics - return, risk, and transaction costs.

In order to simulate the evolution of asset prices over time,
practitioners often rely on calibrated geometric Brownian
motion models (GBM) (Abidin and Jaffar 2012). The model
assumes that the asset price follows a stochastic process,
where the changes in the asset price are normally distributed
and the drift and volatility are estimated properties. The re-
sulting equation describes a random walk with drift, where
the expected value of the asset price grows over time but with
increasing variability. The equation for geometric Brownian
motion is:

dpt = µptdt+ σptdWt, (3.2)
where, pt is the asset price at time t, µ is the drift, or expected
rate of return per unit time, σ is the volatility, or standard de-
viation of the asset returns per unit time and dWt is a Wiener
process, representing the random noise or error term. This
stochastic differential equation (SDE) describes the change
in the asset price over an infinitesimal time period dt.

Figure 1: Different asset price paths following the Geometric
Brownian Motion (GBM) model with a starting price of $100,
drift (µ) of 0.001 and volatility (σ) of 0.005.

3.1 RDDL Model
Following the discussion about RDDL from Section 2.3, we
start by defining the objects, followed by the state and action
fluents, state transition function, reward function and the
constraints. Each asset is represented as an object, denoted
by asset or ?a (the ‘?’ symbol indicates a variable in RDDL).
A domain instance can include any number of assets.
State variables: Each asset is associated with two state vari-
ables (fluents); one each for its current weight and price. In
addition, there is a variable that tracks the current day (the
timer or step index variable).

w(asset)(real) : current weight of asset (3.3)
p(asset)(real) : current price of asset (3.4)

day(int) : current day (3.5)

Actions: An action-fluent set w(asset) is defined for each
asset, allowing to change the weight (allocation) of the cor-
responding asset. Notably, RDDL allows concurrent actions
with potentially conflicting effects. This is particularly rele-
vant when rebalancing the portfolio, as we may need to adjust
the weights of multiple assets simultaneously.
State transition function: The weight of an asset ?a is updated
as:

w′(?a) =
set w(?a)∑

?b:asset set w(?b)
, if period | day, (3.6)

= w(?a), otherwise, (3.7)

where period is the reallocation period length in days. This
ensures that asset weights are only updated at the reallocation
points. A normalization step divides each asset’s weight up-
date by the total weight of all assets in the portfolio, ensuring
that the asset weights sum up to 1, which is necessary for a
valid portfolio.

The price of an asset ?a is updated following the Geometric
Brownian motion as,

p′(?a) = p(?a).eµ(?a)+σ(?a)N (0,1) (3.8)

where, µ(?a) (drift) and σ(?a) (volatility) are non-fluents
set for each problem instance and N (0, 1) samples from
the standard Normal distribution. The current day simply
progresses as,

day′ = day + 1. (3.9)

Reward. RDDL is limited to having only one objective func-
tion as the reward. Therefore, to incorporate multiple factors
such as log return, portfolio risk, and transaction costs, we
combine them into a single expression and scale them using
hyperparameters. These hyperparameters, which are non-
fluents, are denoted by ασ for risk and αδ for transaction
costs. Specifically, the reward for a step is computed as the
sum over all assets:

Reward =
∑

?a:asset

w(?a){ln p
′(?a)
p(?a)

− ασσ(?a) (3.10)

− αδ |w′(?a)− w(?a)|} (3.11)

State Invariants. We ensure that the asset weights always stay
in the range [0,1] with the constraint,

∀?a:asset(w(?a) ≥ 0 ∧ w(?a) ≤ 1)

The full RDDL domain descriptions and example instances
are included in the appendix.

3.2 Planning Strategies
In this section, we discuss four potential planning algorithms
to solve the RDDL formulation of the asset allocation prob-
lem.

Markowitz Mean Variance Optimization (MMVO)
Mean-variance optimization (Markowitz 1952) is a classi-
cal approach for the single period asset allocation problem
that maximize portfolio returns while minimizing portfolio
risk. It uses estimates of the expected returns and covariance

39

of different assets and then creates a quadratic program with
asset weights as variables to solve for.

For a universe of N assets with associated historical data,
we first obtain the empirical estimates of the expected returns
ρ = [ρ1, ρ2, . . . , ρN] ∈ RN and the covariance matrix of the
asset returns Σ ∈ RN×N , where, ρi is the sample mean log
return of asset i and σij is the covariance of assets i and j.
We then compute the portfolio weights vector w ∈ RM as:

max
w

wTρ or minw wTΣw

s.t. 1T
Nw = 1 ∧w ≽ 0

(3.12)

where, wTΣw represents the portfolio volatility (risk) and
wTρ is the portfolio expected return. Equation 3.12 is a
quadratic program that can be solved numerically using
gradient-based algorithms (Boyd, Boyd, and Vandenberghe
2004).

Solving for conflicting objectives gives rise to the efficient
frontier which shows the set of optimal portfolios with the
highest levels of return for a given level of risk and vice versa.
In the context of multi-period asset allocation, this approach
reduces to greedily maximizing the return (or minimizing
risk) at each rebalancing point as it occurs.

Monte Carlo Tree Search (MCTS) MCTS (Kocsis and
Szepesvári 2006) a well known algorithm for decision mak-
ing in stochastic dynamic environments. The general idea is
to incrementally build the search tree by simulating potential
asset price evolution (pt) over time t via an RDDL simulator.
Starting with an initial portfolio and an empty search tree,
each iteration traverses the tree from the root node to a leaf
node using the Upper Confidence Bound (UCB) (Kocsis and
Szepesvári 2006) to select the most promising combination
of assets weights wt at rebalancing point t. The selected node
is expanded by adding children representing changes in wt.
Then, a rollout is simulated starting from the newly added
node using randomly chosen changes in wt. The statistics
of all visited nodes are updated based on the outcome of the
simulated evolution of pt. The steps are repeated until t = H
(the investment horizon). The set of optimal weights for each
period, {w∗

t }Ht=1 are selected based on the statistics accumu-
lated during the search, typically by choosing {wt}Ht=1 with
the highest expected reward. We have currently discretized
the action space in steps of 0.1 in our implementation to ex-
pand a node. (Mansley, Weinstein, and Littman 2011) and
(Kim et al. 2020) are possible techniques one can adapt to do
MCTS in continuous spaces.

Mixed Integer Quadratic Programming (MIQP) Boyd
et al. (2017) multi-period asset allocation uses a MIQP con-
vex optimization formulation used for optimizing investment
portfolios over multiple time periods at once. The algorithm
determines the optimal allocation of all assets across all re-
allocation periods that maximizes the total expected reward
from Equation 3.1. To estimate returns and volatility, we uti-
lized the RDDL simulator by playing it and obtaining relevant
data. These estimates are fed into the objective expression.

tf-plan. Wu et al. (Wu, Say, and Sanner 2017) developed
the tf-plan algorithm which does symbolic gradient optimiza-
tion on RNNs to effectively plan in high-dimensional mixed

discrete and continuous nonlinear domains. tf-plan uses Ten-
sorflow with RMSProp optimization and is competitive with
MILP-based optimization on piecewise linear planning do-
mains and outperforms state-of-the-art interior point meth-
ods for nonlinear domains, demonstrating a new frontier for
highly scalable planning in nonlinear hybrid domains. How-
ever, since it does not support ln (and other math functions) in
its RDDL domain description, we use a modified step reward
function from Equation 3.11 as:

Reward =
∑

?a:asset

w(?a){p
′(?a)
p(?a)

− ασσ(?a) (3.13)

− αδ |w′(?a)− w(?a)|} (3.14)

3.3 Experimental Evaluation
With our RDDL model (section 3.1 and potential planning
algorithms (section 3.2) we compare the performance of
the following AI actors for asset allocation using distinct
planning strategies:

• Uniform Actor. Always distributes the total wealth uni-
formly among the different assets.

• Greedy Markowitz Actor. At every rebalancing point, it
ignores the transaction costs and strictly maximizes the
reward for the current period (Markowitz 1952).

• MCTS Actor. Does Monte Carlo Tree Search with a dis-
cretized search space (Kocsis and Szepesvári 2006) to
decide the optimal set of asset weights.

• MIQP Actor. Formulates and solves the reward maximiza-
tion problem across multiple periods as a convex opti-
mization problem (Boyd et al. 2017).

• tf-plan Actor. Follows the recommendation of the tf-plan
algorithm (Wu, Say, and Sanner 2017).

While our RDDL model is general enough for N assets,
we do our preliminary tests on a synthetic universe consist-
ing of two assets (Table 1). Each asset follows a Geometric
Brownian Motion (Figure 1) of prices with a specific return
(mean) and risk (variance). We assume that the investment
horizonH is known in advance and we set it to 300 days. The
horizon consists of five re-balancing opportunities, at an in-
terval of 60 days. By doing a set of exploratory experiments,
we set the values of the two hyperparameters, ασ = 0.1 (for
risk), and αδ = 0.001 (for transaction costs). We ran our
experiments on a c4.8xlarge Amazon EC2 instance with 36
vCPUs, 60 GiB RAM and a maximum timeout of 10 mins
for plan computation. We use pyRDDLGym (Taitler et al.
2022) to create a gym (Brockman et al. 2016) environment
from the RDDL file. We test the strategies of the AI actors on
the gym environment to track the step rewards and the total
cumulative rewards.

Table 1: Synthetic Asset Data Configuration for our experi-
mental evaluation.

Asset Price at t = 0 Drift µ Volatility σ
Asset 1 10 0.001 0.010
Asset 2 50 0.001 0.005

40

Figure 2: The top plots show the observed daily step reward for AI actors with different planning strategies. The bottom plot
shows the total cumulative reward upto that day. Higher rewards indicate better performance. The plots on the right show the step
and cumulative rewards for the tf-plan actor. tf-plan uses gross return instead of log returns in its reward function due its lack of
support for the RDDL ln function.

To measure the performance of the different actors, we
observe three parameters, (1) the step reward every day (we
simply call it reward), (2) the total cumulative reward from
the beginning until day t, and (3) how the weights of assets
change with time.

Reward. The step reward for a specific day is determined
by evaluating the reward function (Equation 3.11) for that
particular day. In Figure 2 (top-left), the step rewards are
displayed for all actors except for tf-plan. This is due to
the fact that the return component of the reward function
contains a natural logarithm function, which is not supported
by the version of RDDL used by tf-plan. Consequently, we
computed the step reward for the tf-plan actor (Figure 2 top-
right) by using the gross return in the reward expression,
which resulted in more spread out values compared to the
other actors.

Total Cumulative Reward. To determine the overall per-
formance of each actor, we computed the total cumulative
reward, which is the sum of all step rewards accumulated
up to that point. The comparison of the actors in terms of
cumulative rewards earned is shown in Figure 2 (bottom).
It is evident that the Greedy Markowitz actor experiences a
significant dip at the rebalancing periods, as it completely dis-
regards transaction costs. In contrast, all other actors outper-
form the uniform strategy. Notably, the MIQP actor exhibits
the best performance overall. However, it is worth noting that
a true comparison of the tf-plan actor with other actors can
only be made using normalized reward functions. Figure 2
(bottom-right) displays the promising performance of the tf-
plan actor, but normalization is required for fair comparison
with the other actors.

Figure 3: This plot shows how the weight (ratio of the total
wealth) of a single portfolio asset changes with time. Please
note that the transitions in weights are sharp jumps but they
are smoothed out for improved readability.

Asset Weights In Figure 3, we observe how the weight of a
specific portfolio asset changes over time. The plot compares
the performance of different actors in terms of minimizing
jumps in it’s share of the portfolio over time. The solid lines
show the average weights. The MCTS actor’s strategy ap-
pears to result in more gradual changes in asset weight over
time, which may lead to a more stable and consistent perfor-
mance in asset allocation. In contrast, the other actors exhibit
more significant and abrupt changes in asset weight over
time, which may result in a higher degree of volatility and
unpredictability in performance.

Discussion In the context of asset allocation, the perfor-
mance of different actors is highly dependent on various
hyperparameters. For the MCTS actor, the discretization step
is a critical hyperparameter that significantly impacts the

41

quality of the solution. Additionally, the number of loops and
rollouts are other key parameters that need to be tuned care-
fully for optimal performance. tf-plan presented limitations
in terms of the lack of support for the modulus and natural
logarithmic function and the inability to set a reallocation
period in the domain. In this case, actions are applicable at
every step, and state invariants and action preconditions are
not directly honored from the RDDL.

The choice of reward hyperparameters significantly im-
pacts the overall performance of each actor. As next steps,
we plan to evaluate the performance of different actors with
varying numbers of assets, horizon sizes, and rebalancing
window sizes. Additionally, we will conduct experiments
using real stock exchange data to evaluate the practical utility
of the various actors. Finally, we plan to conduct a computa-
tion time analysis of each approach to evaluate their practical
feasibility.

4 FinRDDL: Optimal Trade Execution
Once the asset weights are decided in the portfolio, if changes
are needed from the previous state, then a trade has to be
placed in the market and executed to implement the desired
portfolio rebalancing changes.

Consider an investor that wishes to liquidate (sell) X units
of a security between times t = 0 and t = T . The execution
time horizon T is divided intoN intervals of length τ = T/N
to define the discrete times tk = kτ for k = 0, . . . , N . At
time tk, the market price of the security is denoted by Sk,
the execution price of the broker’s order is S̃k. The number
of units we plan to hold at time tk is denoted by xk and
the number of units to sell is nk. Finally, the rate of trading
(execution speed) during the interval tk−1 to tk is given by
v = nk/τ .

The scheduling problem is then formulated as the problem
of finding the optimal sequence {nk}Nk=0 that maximizes the
revenue obtained from selling X with N orders:

max
{nk}N

k=0

E

[
N∑

k=1

S̃knk

]

s.t.
∑N

k=1 nk = X

(4.1)

We follow the formulation of the price dynamics in (Alm-
gren and Chriss 2001) where the market price evolves accord-
ing to two factors; volatility and market impact. The volatility
of the security price is a manifestation of market forces that
occur randomly and are not affected by our trading. The mar-
ket impact, on the other hand, is the component that accounts
for the change in the market price Sk and the execution price
S̃k which is impacted by our trading. Assuming that the se-
curity price evolves according to a the discrete arithmetic
random walk, we define Sk and S̃k as:

Sk = Sk−1 +σ
√
τξk − τg(v), S̃k = Sk−1− h(v) (4.2)

where, σ is a constant representing the volatility of the asset,
ξk are draws from independent random variables each with
zero mean and unit variance, g(v) is the permanent impact
function that represents the change in the market price Sk

caused by our trading and h(v) is the temporary impact

function that we use to obtain the actual execution price.
Assuming that we are selling and both impact functions to be
linear in the rate of trading v = nk/τ , we get:

g(v) = γv, h(v) = εnk + ηv (4.3)

where γ is the linear permanent impact constant, ε is a con-
stant defining the fixed cost of selling and η is the linear
temporary impact constant.

To be able to measure the quality (and optimality) of the
sequence of orders in the generated schedule, a reference
price such as Sk at t = 0 is typically used. A common
measure for transaction costs is the implementation shortfall
(Perold 1988) which is the difference between the revenue
if we were sell X at a given price (e.g. S0) and the actual
revenue obtained with the sequence of orders {nk}Nk=0.

C = XS0 −
N∑

k=1

nkS̃k

= XS0 −
N∑

k=1

(
σ
√
τξk − τγv

)
xk −

N∑

k=1

εnk +
η

τ
n2k

(4.4)

The unconstrained quadratic optimization problem with a
Lagrange multiplier λ representing risk aversion is:

min
{nk}N

k=0

(E [C] + λV [C]) (4.5)

The closed-form solutions for this problem with linear
price impact are equations 17 and 18 in (Almgren and Chriss
2001). The optimal solutions with different values of λ and τ
are shown in figure 4.

The RDDL domain file developed for the optimal trade
execution problem is detailed in listing 3 in the appendix. The
state is defined to be a combination of the agent and market
variables and includes the time elapsed t, quantity executed
xk, market price Sk and the execution price S̃k. The action at
a given state is the number of shares to sell nk. The transition
functions and the reward are given by equations 4.2 and 4.4
respectively.

5 Desiderata for AI Planning for Quantitative
Finance Problems

Through this study, we gained valuable insights into the po-
tentials and limitations of AI planning for financial trading
problems. Based on our analysis, we have identified the main
areas where AI planning can be improved:

Support for multi-dimensional rewards. In our formu-
lation for asset allocation, we combined risk, returns, and
transaction costs into a single reward expression. However,
the hyperparameters ασ and αδ need to be set effectively,
making it a sensitive task. Multi-objective planning algo-
rithms (Zhang et al. 2022; Do and Kambhampati 2003; Yu,
Kirley, and Buyya 2007) can be particularly helpful in this
regard. To the best of our knowledge, RDDL or pyRDDLgym
do not support multi-objective rewards as of yet.

42

Figure 4: Trade trajectories and schedules with different risk-aversion values λ (top) and trading speed τ (bottom). Our RDDL
domain which can simulate this behavior is provided in listing 3 in the appendix.

Challenges and opportunities of planners with continuous
state-action spaces in dynamic environments. While the
RDDL language supports continuous state and action spaces,
most planners assume the search space to be discrete. For
instance, the popular probabilistic planning system, Prost
planner (Keller and Eyerich 2012), uses a discretization ap-
proach to represent continuous state spaces as a finite set of
discrete states by default. To address this limitation, Prost pro-
vides advanced features that allow users to model continuous
state spaces more accurately, which can be explored. Planners
that support PDDL+ such as DiNo (Piotrowski et al. 2016)
can support continuous state and action spaces (albeit they
discretize it during solving). However, they do not support
handling concurrent actions with conflicting effects.

Improving the MCTS actor. The current MCTS actor can
be enhanced in several ways to improve its performance. One
way is to modify the reward function to include risk metrics
such as Value at Risk or Expected Shortfall and optimize the
Pareto frontier of risk and return. Another way is to paral-
lelize the rollouts to reduce the computational time required
for rollouts, particularly in applications with large search
spaces. Additionally, incorporating continuous and/or state
and action space through techniques such as (Mansley, Wein-
stein, and Littman 2011; Yee et al. 2016) can make MCTS
more flexible and applicable to a wider range of problems.

Bridging the gap between simulation and reality. While
the current RDDL formulation poses a challenging planning
problem, real-world trading problems involve even more

complex features that are often overlooked in the model.
For instance, the total wealth is a critical parameter that can
significantly impact the asset weights. Additionally, illiquid
assets may have trade restrictions that need to be taken into
account. Order execution happens in continuous time with
durative actions. It may be beneficial to address asset alloca-
tion and order execution as an integrated planning and acting
problem, rather than solving them separately. The investment
horizon can be unknown and multiple orders may need to be
scheduled and executed together.

6 Conclusion

In this study, we formulated the asset allocation and optimal
trade execution as planning problems using the RDDL do-
main modelling language. We tested several AI actors with
different planning strategies on the developed RDDL instance
for asset allocation. Finally, we critically analyzed the cur-
rent limitations of automated planning for financial trading
problems, and how they can be addressed. By combining
RDDL modeling with planning, we have the potential to gen-
erate strong trading policies that are tailored to the specific
needs and objectives of the investor. The use of RDDL for
modelling asset allocation represents an important research
avenue in portfolio management that allows for more so-
phisticated and effective decision-making in a complex and
dynamically evolving market environment.

43

References
Abidin, S. N. Z.; and Jaffar, M. M. 2012. A review on
Geometric Brownian Motion in forecasting the share prices
in Bursa Malaysia. World Applied Sciences Journal, 17(1):
82–93.
Almgren, R.; and Chriss, N. 2001. Optimal execution of
portfolio transactions. Journal of Risk, 3: 5–40.
Bertsimas, D.; and Lo, A. W. 1998. Optimal control of
execution costs. Journal of financial markets, 1(1): 1–50.
Blay, K.; Gosh, A.; Kusiak, S.; Markowitz, H.; Savoulides,
N.; and Zheng, Q. 2020. Multiperiod Portfolio Selection: A
Practical Simulation-Based Framework. Journal of Invest-
ment Management, 18(4): 94–129.
Bouchaud, J.-P.; Bonart, J.; Donier, J.; and Gould, M. 2018.
Trades, quotes and prices: financial markets under the micro-
scope. Cambridge University Press.
Boyd, S.; Boyd, S. P.; and Vandenberghe, L. 2004. Convex
optimization. Cambridge university press.
Boyd, S.; Busseti, E.; Diamond, S.; Kahn, R. N.; Koh, K.;
Nystrup, P.; Speth, J.; et al. 2017. Multi-period trading via
convex optimization. Foundations and Trends® in Optimiza-
tion, 3(1): 1–76.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. .
Do, M.; and Kambhampati, S. 2003. Sapa: A multi-objective
metric temporal planner. Journal of Artificial Intelligence
Research, 20: 155–194.
Donnelly, R. 2022. Optimal Execution: A Review. Applied
Mathematical Finance, 1–32.
Hachicha, N.; Jarboui, B.; and Siarry, P. 2011. A fuzzy
logic control using a differential evolution algorithm aimed
at modelling the financial market dynamics. Information
Sciences, 181(1): 79–91.
Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In AIPS, 44–53.
Hu, Y.; and Øksendal, B. 1998. Optimal time to invest when
the price processes are geometric Brownian motions. Finance
and Stochastics, 2(3): 295–310.
Keller, T.; and Eyerich, P. 2012. PROST: Probabilistic plan-
ning based on UCT. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 22,
119–127.
Kim, B.; Lee, K.; Lim, S.; Kaelbling, L.; and Lozano-Pérez,
T. 2020. Monte carlo tree search in continuous spaces using
voronoi optimistic optimization with regret bounds. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, 9916–9924.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Machine Learning: ECML 2006: 17th
European Conference on Machine Learning Berlin, Germany,
September 18-22, 2006 Proceedings 17, 282–293. Springer.
Li, X.; Uysal, A. S.; and Mulvey, J. M. 2022. Multi-period
portfolio optimization using model predictive control with
mean-variance and risk parity frameworks. European Journal
of Operational Research, 299(3): 1158–1176.

Mansley, C.; Weinstein, A.; and Littman, M. 2011. Sample-
based planning for continuous action markov decision pro-
cesses. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 21, 335–338.
Markowitz, H. 1952. Portfolio selection. The Journal of
Finance, 7(1): 77–91.
Perold, A. F. 1988. The implementation shortfall: Paper
versus reality. Journal of Portfolio Management, 14(3): 4.
Piotrowski, W. M.; Fox, M.; Long, D.; Magazzeni, D.; and
Mercorio, F. 2016. Heuristic Planning for PDDL+ Domains.
In AAAI Workshop: Planning for Hybrid Systems, volume 16,
12.
Sanner, S.; et al. 2010. Relational dynamic influence diagram
language (rddl): Language description. Unpublished ms.
Australian National University, 32: 27.
Taitler, A.; Gimelfarb, M.; Gopalakrishnan, S.; Mladenov, M.;
Liu, X.; and Sanner, S. 2022. pyRDDLGym: From RDDL to
Gym Environments. arXiv preprint arXiv:2211.05939.
Wu, G.; Say, B.; and Sanner, S. 2017. Scalable planning with
tensorflow for hybrid nonlinear domains. Advances in Neural
Information Processing Systems, 30.
Yee, T.; Lisỳ, V.; Bowling, M. H.; and Kambhampati, S. 2016.
Monte Carlo Tree Search in Continuous Action Spaces with
Execution Uncertainty. In IJCAI, 690–697.
Younes, H. L.; and Littman, M. L. 2004. PPDDL1. 0: An
extension to PDDL for expressing planning domains with
probabilistic effects. Techn. Rep. CMU-CS-04-162, 2: 99.
Yu, J.; Kirley, M.; and Buyya, R. 2007. Multi-objective plan-
ning for workflow execution on grids. In 2007 8th IEEE/ACM
International Conference on Grid Computing, 10–17. IEEE.
Zhang, H.; Salzman, O.; Kumar, T. S.; Felner, A.; Ulloa,
C. H.; and Koenig, S. 2022. A* pex: Efficient approximate
multi-objective search on graphs. In Proceedings of the Inter-
national Conference on Automated Planning and Scheduling,
volume 32, 394–403.

Acknowledgments
This paper was prepared for informational purposes in part
by the Artificial Intelligence Research group of JPMorgan
Chase & Co and its affiliates (”J.P. Morgan”), and is not
a product of the Research Department of J.P. Morgan. J.P.
Morgan makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, accuracy or
reliability of the information contained herein. This document
is not intended as investment research or investment advice,
or a recommendation, offer or solicitation for the purchase or
sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would
be unlawful.

44

Appendix: FinRDDL
In this appendix, we present comprehensive RDDL descriptions along with an example instance for both the asset allocation and
order execution problems. For asset allocation, we provide two distinct models: one with continuous action space and another
with a discretized action space.

Asset Allocation (Continuous)
Listing 1 is the domain for the asset allocation problem with continuous action space. This model is utilized by various actors,
including the uniform actor, Greedy Markowitz actor, and the MIQP actor. The tf-plan actor employs a slightly modified version
of this domain that excludes the use of the log function when computing the rewards.

Listing 1: Asset Allocation RDDL domain with a continuous action space
1 /
2 / / A s i m p l e c o n t i n u o u s s t a t e − a c t i o n MDP f o r t h e a s s e t a l l o c a t i o n problem wi th a c t i o n s

d e s c r i b i n g t h e c o n t i n u o u s p o r t f o l i o w e i g h t s .
3 /
4
5 domain a s s e t a l l o c a t i o n c o n t i n u o u s {
6
7 requirements = { c o n t i n u o u s , i n t e g e r − v a l u e d } ;
8
9 t y p e s {

10 a s s e t : o b j e c t ;
11 } ;
12
13 p v a r i a b l e s {
14 / / number o f days between a s s e t we igh t u p d a t e s
15 REALLOCATION−PERIOD : { n o n − f l u e n t , i n t , d e f a u l t = 60 } ;
16 mean (a s s e t) : { n o n − f l u e n t , r e a l , d e f a u l t = 0 .0001 } ;
17 r i s k (a s s e t) : { n o n − f l u e n t , r e a l , d e f a u l t = 0 .0001 } ;
18
19 / / s c a l i n g f a c t o r s f o r t h e r i s k te rm and t r a n s a c t i o n c o s t s
20 a l p h a r i s k : { n o n − f l u e n t , r e a l , d e f a u l t = 0 . 5 } ;
21 a l p h a t r a n s c o s t : { n o n − f l u e n t , r e a l , d e f a u l t = 0 . 5 } ;
22
23 / / w e i g h t o f a s s e t
24 we i g h t (a s s e t) : { s t a t e − f l u e n t , r e a l , d e f a u l t = 0 } ;
25 / / p r i c e o f t h e a s s e t
26 p r i c e (a s s e t) : { s t a t e − f l u e n t , r e a l , d e f a u l t = 0 } ;
27 day : { s t a t e − f l u e n t , i n t , d e f a u l t = 0 } ; / / c u r r e n t day
28
29 s e t w e i g h t (a s s e t) : { a c t i o n − f l u e n t , r e a l , d e f a u l t = 0 } ;
30 } ;
31
32 c p f s {
33 / / p o r t f o l i o w e i g h t s s h o u l d sum t o 1
34 weight ’ (? a) = i f (mod [d a y , REALLOCATION−PERIOD] == 0)
35 t h e n s e t w e i g h t (? a) / sum {? b : a s s e t } s e t w e i g h t (? b)
36 e l s e w e igh t (? a) ;
37
38 / / p r i c e e v o l u t i o n u s i n g a Geomet r i c Brownian Motion
39 p r i c e ’ (? a) = p r i c e (? a) * exp [mean (? a) + r i s k (? a) * Normal (0 , 1)] ;
40 day ’ = day + 1 ;
41 } ;
42
43 reward = sum {? a : a s s e t } [we i g h t (? a) * (l n [p r i c e ’ (? a) / p r i c e (? a)]
44 − a l p h a r i s k * r i s k (? a)
45 − a l p h a t r a n s c o s t * abs [weight ’ (? a) − we ig h t (? a)])] ;
46
47 s t a t e − i n v a r i a n t s {
48 f o r a l l {? a : a s s e t } (w e ig h t (? a) >= 0 ˆ we i gh t (? a) <= 1) ;
49 f o r a l l {? a : a s s e t } (p r i c e (? a) >= 0) ;
50 } ;
51

45

52 a c t i o n − p r e c o n d i t i o n s {
53 f o r a l l {? a : a s s e t } (s e t w e i g h t (? a) >= 0 ˆ s e t w e i g h t (? a) <= 1) ;
54 } ;
55 }
56 /
57
58 n o n − f l u e n t s a a c o n 0 {
59 domain = a s s e t a l l o c a t i o n c o n t i n u o u s ;
60
61 o b j e c t s { a s s e t : { a 0 , a 1 } ; } ;
62
63 n o n − f l u e n t s {
64 mean (a0) = 0 .0001 ;
65 r i s k (a0) = 0 .0 0 5 ;
66 mean (a1) = 0 .0001 ;
67 r i s k (a1) = 0 .0 0 5 ;
68 } ;
69 }
70 /
71
72 i n s t a n c e i n s t a a c o n {
73 domain = a s s e t a l l o c a t i o n c o n t i n u o u s ;
74
75 n o n − f l u e n t s = a a c o n 0 ;
76
77 i n i t − s t a t e {
78 we i g h t (a0) = 0 . 5 ;
79 we i g h t (a1) = 0 . 5 ;
80 p r i c e (a0) = 10 ;
81 p r i c e (a1) = 50 ;
82
83 } ;
84
85 max−nondef−actions = p o s − i n f ;
86 hor izon = 300 ;
87 d i s c o u n t = 1 . 0 ;
88 }

Asset Allocation (Discretized action space)
Listing 2 is the domain for the asset allocation problem with discretized action space. This model is used by the MCTS actor.

Listing 2: Asset Allocation RDDL domain with a discrete action space
1 /
2 / / A s i m p l e d i s c r e t e s t a t e − a c t i o n MDP f o r t h e a s s e t a l l o c a t i o n problem wi th a c t i o n s

d e s c r i b i n g t h e d i s c r e t e p o r t f o l i o w e i g h t s .
3 /
4
5 domain a s s e t a l l o c a t i o n d i s c r e t e {
6
7 requirements = { } ;
8
9 t y p e s {

10 a s s e t : o b j e c t ;
11 } ;
12
13 p v a r i a b l e s {
14 / / number o f days between a s s e t we igh t u p d a t e s
15 REALLOCATION−PERIOD : { n o n − f l u e n t , i n t , d e f a u l t = 60 } ;
16 mean (a s s e t) : { n o n − f l u e n t , r e a l , d e f a u l t = 0 .0001 } ;
17 r i s k (a s s e t) : { n o n − f l u e n t , r e a l , d e f a u l t = 0 .0001 } ;
18
19 / / s c a l i n g f a c t o r s f o r t h e r i s k te rm and t r a n s a c t i o n c o s t s
20 a l p h a r i s k : { n o n − f l u e n t , r e a l , d e f a u l t = 0 . 5 } ;

46

21 a l p h a t r a n s c o s t : { n o n − f l u e n t , r e a l , d e f a u l t = 0 . 5 } ;
22
23 / / w e i g h t o f a s s e t
24 we i g h t (a s s e t) : { s t a t e − f l u e n t , r e a l , d e f a u l t = 0 } ;
25 / / p r i c e o f t h e a s s e t
26 p r i c e (a s s e t) : { s t a t e − f l u e n t , r e a l , d e f a u l t = 0 } ;
27 day : { s t a t e − f l u e n t , i n t , d e f a u l t = 0 } ; / / c u r r e n t day
28
29 s e t w e i g h t (a s s e t) : { a c t i o n − f l u e n t , i n t , d e f a u l t = 1 } ;
30 } ;
31
32 c p f s {
33 / / p o r t f o l i o w e i g h t s s h o u l d sum t o 1
34 weight ’ (? a) = i f (mod [d a y , REALLOCATION−PERIOD] == 0)
35 t h e n s e t w e i g h t (? a) / sum {? b : a s s e t } s e t w e i g h t (? b)
36 e l s e w e igh t (? a) ;
37
38 / / p r i c e e v o l u t i o n u s i n g a Geomet r i c Brownian Motion
39 p r i c e ’ (? a) = p r i c e (? a) * exp [mean (? a) + r i s k (? a) * Normal (0 , 1)] ;
40 day ’ = day + 1 ;
41 } ;
42
43 reward = sum {? a : a s s e t } [we i g h t (? a) * (l n [p r i c e ’ (? a) / p r i c e (? a)]
44 − a l p h a r i s k * r i s k (? a)
45 − a l p h a t r a n s c o s t * abs [weight ’ (? a) − we ig h t (? a)])] ;
46
47 s t a t e − i n v a r i a n t s {
48 f o r a l l {? a : a s s e t } (w e ig h t (? a) >= 0 ˆ we i gh t (? a) <= 1) ;
49 f o r a l l {? a : a s s e t } (p r i c e (? a) >= 0) ;
50 } ;
51
52 a c t i o n − p r e c o n d i t i o n s {
53 f o r a l l {? a : a s s e t } (s e t w e i g h t (? a) >= 1 ˆ s e t w e i g h t (? a) <= 10) ;
54 } ;
55 }
56 /
57
58 n o n − f l u e n t s a a d i s 0 {
59 domain = a s s e t a l l o c a t i o n d i s c r e t e ;
60
61 o b j e c t s { a s s e t : { a 0 , a 1 } ; } ;
62
63 n o n − f l u e n t s {
64 mean (a0) = 0 .0001 ;
65 r i s k (a0) = 0 .0 0 5 ;
66 mean (a1) = 0 .0001 ;
67 r i s k (a1) = 0 .0 0 5 ;
68 } ;
69 }
70
71 /
72
73 i n s t a n c e i n s t a a d i s {
74 domain = a s s e t a l l o c a t i o n d i s c r e t e ;
75
76 n o n − f l u e n t s = a a d i s 0 ;
77
78 i n i t − s t a t e {
79 we i g h t (a0) = 0 . 5 ;
80 we i g h t (a1) = 0 . 5 ;
81 p r i c e (a0) = 10 ;
82 p r i c e (a1) = 50 ;
83
84 } ;
85

47

86 max−nondef−actions = p o s − i n f ;
87 hor izon = 300 ;
88 d i s c o u n t = 1 . 0 ;
89 }

Order Execution (Discretized action space)
Listing 3 is the domain for the order execution problem based on Almgren and Chriss, 2001. The action is the number of units of
the security to sell at each discrete time step and the goal is to minimize the implementation shortfall (eq 4.4).

Listing 3: Order Execution RDDL domain with a discrete action space
1 /
2 / / A s i m p l e d i s c r e t e s t a t e − a c t i o n MDP f o r t h e o r d e r e x e c u t i o n problem wi th a c t i o n s

d e s c r i b i n g t h e d i s c r e t e number o f s h a r e s t o s e l l .
3 /
4
5 domain o r d e r e x e c u t i o n d i s c r e t e {
6
7 requirements = { c o n t i n u o u s , i n t e g e r − v a l u e d } ;
8
9 t y p e s {

10 s e c u r i t y : o b j e c t ;
11 } ;
12
13 p v a r i a b l e s {
14 / / I n i t i a l Sha re P r i c e ($)
15 S 0 (s e c u r i t y) : { n o n − f l u e n t , r e a l , d e f a u l t = 50 } ;
16
17 / / Bid−Ask Spread
18 BAS(s e c u r i t y) : { n o n − f l u e n t , r e a l , d e f a u l t = 0 .125 } ;
19
20 / / Annual V o l a t i l i t y (%)
21 AV(s e c u r i t y) : { n o n − f l u e n t , r e a l , d e f a u l t = 0 . 3 } ;
22
23 / / Median D a i l y T r a d i n g Volume (number o f s h a r e s)
24 MDTV(s e c u r i t y) : { n o n − f l u e n t , r e a l , d e f a u l t = 5000000 } ;
25
26 / / I n i t i a l h o l d i n g s (number o f s h a r e s t o s e l l)
27 X(s e c u r i t y) : { n o n − f l u e n t , i n t , d e f a u l t = 10000000 } ;
28
29 / / Number o f t r a d e s
30 N : { n o n − f l u e n t , i n t , d e f a u l t = 5 } ;
31
32 / / Risk a v e r s i o n p a r a m e t e r
33 lambda : { n o n − f l u e n t , r e a l , d e f a u l t = 0 .000002 } ;
34
35 / / Market p r i c e o f t h e s e c u r i t y
36 m a r k e t p r i c e (s e c u r i t y) : { s t a t e − f l u e n t , r e a l , d e f a u l t = 0 } ;
37
38 / / E x e c u t i o n p r i c e o f t h e s e c u r i t y
39 e x e c p r i c e (s e c u r i t y) : { s t a t e − f l u e n t , r e a l , d e f a u l t = 0 } ;
40
41 / / Time e l a p s e d
42 t : { s t a t e − f l u e n t , i n t , d e f a u l t = 0 } ;
43
44 / / Q u a n t i t y e x e c u t e d
45 x (s e c u r i t y) : { s t a t e − f l u e n t , i n t , d e f a u l t = 0 } ;
46
47 / / Q u a n t i t y t o s e l l (our a c t i o n)
48 n (s e c u r i t y) : { s t a t e − f l u e n t , i n t , d e f a u l t = 0 } ;
49
50 s e t n (s e c u r i t y) : { a c t i o n − f l u e n t , i n t , d e f a u l t = 0 } ;
51 } ;
52

48

53 c p f s {
54 / / Length o f t h e i n t e r v a l
55 t a u = T / N;
56
57 / / D a i l y V o l a t i l i t y
58 dv (? s) = AV(? s) / s q r t [2 5 0] ;
59
60 / / S c a l e d V o l a t i l i t y (($ / s h a r e) / (day) ˆ 0 . 5)
61 sigma (? s) = dv (? s) * S 0 (? s) ;
62
63 / / L i n e a r Permanent Impac t C o n s t a n t ($ / s h a r e) / s h a r e
64 gamma (? s) = BAS(? s) / (0 . 1 * MDTV(? s)) ;
65
66 / / F ixed Cos t o f buy ing / s e l l i n g ($ / s h a r e)
67 e p s i l o n (? s) = BAS(? s) / 2 ;
68
69 / / P r i c e Impac t f o r Each 1% of D a i l y Volume Traded
70 e t a (? s) = BAS(? s) / (0 . 0 1 * MDTV(? s)) ;
71
72 n (? s) = s e t n (? s)
73
74 / / r a t e o f t r a d i n g (e x e c u t i o n speed)
75 v = n (? s) / t a u ;
76
77 / / Permenant Impac t (eq 4 . 3)
78 pe rm impac t (? s) = gamma (? s) * v ;
79
80 / / Temporary Impac t (eq 4 . 3)
81 t e m p i m p a c t (? s) = e p s i l o n (? s) + e t a (? s) * v ;
82
83 / / Market p r i c e e v o l u t i o n (eq 4 . 2)
84 m a r k e t p r i c e ’ (? s) = m a r k e t p r i c e (? s)
85 + sigma (? s) * s q r t [t a u] * Normal (0 , 1)
86 − t a u * pe rm impac t (? s) ;
87
88 / / E x e c u t i o n p r i c e e v o l u t i o n (eq 4 . 3)
89 e x e c p r i c e ’ (? s) = e x e c p r i c e (? s) − t e m p i m p a c t (? s) ;
90 } ;
91
92 / / eq 4 . 4
93 reward = X(? s) * S 0 (? s) − n (? s) * e x e c p r i c e ’ (? s) ;
94
95 s t a t e − i n v a r i a n t s {
96 f o r a l l {? s : s e c u r i t y } (x (? s) <= X(? s) ˆ n (? s) <= X(? s)) ;
97 f o r a l l {? s : s e c u r i t y } (m a r k e t p r i c e (? s) >= 0) ;
98 } ;
99

100 a c t i o n − p r e c o n d i t i o n s {
101 f o r a l l {? s : s e c u r i t y } (x (? s) <= X(? s) ˆ s e t n (? s) <= X(? s)) ;
102 } ;
103
104 t e r m i n a t i o n {
105 f o r a l l {? s : s e c u r i t y } (x (? s) >= X(? s)) ;
106 } ;
107 }
108 /
109
110 n o n − f l u e n t s o e d i s 0 {
111 domain = o r d e r e x e c u t i o n d i s c r e t e ;
112
113 o b j e c t s { s e c u r i t y : { s0} ; } ;
114
115 n o n − f l u e n t s {
116 S 0 (s0) = 50 ;
117 BAS(s0) = 0 . 12 5 ;

49

118 AV(s0) = 0 . 3 ;
119 MDTV(s0) = 5000000 ;
120 X(s0) = 10000000 ;
121 N = 5 ;
122 lambda = 0 .000002 ;
123 } ;
124 }
125
126 /
127
128 i n s t a n c e i n s t o e d i s {
129 domain = o r d e r e x e c u t i o n d i s c r e t e ;
130
131 n o n − f l u e n t s = o e d i s 0 ;
132
133 i n i t − s t a t e {
134 m a r k e t p r i c e (s0) = S 0 (s0) ;
135 e x e c p r i c e (s0) = S 0 (s0) ;
136 t = 0 ;
137 x (s0) = 0 ;
138 n (s0) = 0 ;
139 } ;
140
141 max−nondef−actions = p o s − i n f ;
142 hor izon = 5 ; / / E x e c u t i o n t i m e h o r i z o n (number o f t i m e p e r i o d s)
143 d i s c o u n t = 1 . 0 ;
144 }

50

Can LLMs be Good Financial Advisors?: An Initial Study in Personal Decision
Making for Optimized Outcomes

Kausik Lakkaraju, Sai Krishna Revanth Vuruma, Vishal Pallagani,
Bharath Muppasani, Biplav Srivastava

University of South Carolina

Abstract

Increasingly powerful Large Language Model (LLM) based
chatbots, like ChatGPT and Bard, are becoming available to
users that have the potential to revolutionize the quality of
decision-making achieved by the public. In this context, we
set out to investigate how such systems perform in the per-
sonal finance domain, where financial inclusion has been an
overarching stated aim of banks for decades. We asked 13
questions representing banking products in personal finance:
bank account, credit card and certificate of deposits and their
inter-product interactions, and decisions related to high-value
purchases, payment of bank dues, and investment advice, and
in different dialects and languages (English, African Ameri-
can Vernacular English, and Telugu). We find that although
the outputs of the chatbots are fluent and plausible, there are
still critical gaps in providing accurate and reliable financial
information using LLM-based chatbots.

Introduction
Consider a freshman that has just started making personal
financial decisions. They open a bank account to save up
money and get their first credit card. They are given some
seed money by their family and they also start earning by
working on campus. The student is encouraged by their sup-
port system to start thinking about saving into products like
Certificate of Deposits (CDs) that earn higher interest. As
the student makes a series of decisions in their academic and
subsequent professional life, they need to make sound finan-
cial decisions and may look for resources online to assist
them. An optimal decision needs to consider how the bank-
ing products interact with each other along with the chang-
ing needs of the student.

For users like this student, increasingly powerful LLM-
based chatbots that have the potential to revolutionize the
quality of decision for personal finance are becoming avail-
able. LLMs have demonstrated tremendous potential across
diverse domains (Zhao et al. 2023), such as natural lan-
guage processing (Min et al. 2021) and protein structure (Hu
et al. 2022), and have been claimed to show sparks of arti-
ficial general intelligence (Bubeck et al. 2023). These mod-
els have been implemented in several applications, ranging
from mental health assistants (Xiao et al. 2023) to finan-
cial advisement (Yue and Au 2023). In the finance domain,
LLMs have been used to develop applications such as fraud

detection, risk management, and financial forecasting (Al-
berto Pozanco 2022). They have been used to analyze fi-
nancial data, predict stock prices, and generate automated
reports. However, with the advent of recent models such
as OpenAI’s ChatGPT, Google’s Bard, and BloombergGPT
(Wu et al. 2023), a comparative chatbot study is needed to
evaluate their ability to be financial advisors. In this paper,
we present an initial study of ChatGPT and Bard in provid-
ing personal decision-making for optimized outcomes.

It is widely known that LLMs based systems have unique
limitations. For example, they may struggle with common-
sense reasoning tasks (Li et al. 2022), encounter challenges
when handling symbols (Frieder et al. 2023), and are sus-
ceptible to hallucinations (Bang et al. 2023).

With this work, we make the following contributions:
• identify a personal financial planning scenario involving

a series of tasks (plans) and optimization of decisions.
• show how leading LLM-based chatbots perform in them

and analyze their behavior.
• lay out challenges that future chatbots in this area should

overcome to provide trusted financial recommendations.
We thus highlight the potential and limitations of current

LLM-based systems - ChatGPT and Bard - in their role as
financial advisors. We included all the queries posed and re-
sponses from both ChatGPT and Bard in our GitHub reposi-
tory1 along with a few snapshots of the actual conversations.

1https://github.com/ai4society/LLM-
CaseStudies/tree/main/Finance

51

Product Inter-
actions

Query
Iden-
tifier

Queries Variables with their values Constraints

CC

Q1

I am making a purchase of $1000 using my credit card. My
billing cycle is from March 25th to April 24th. Today is
March 31st, and I have a due of $2000 on my account. My
total credit line is $2,800. Would you recommend I make
the purchase now or later in the future?

xPA = 1000, xBC = (March 25th - April 24th), xDA =
2000, xCL = 2800

xDA + xPA < xCL (1)

Q2

I am making a purchase of $1000 using my credit card. My
billing cycle is from March 25th to April 24th. Today is
March 31st, and I have a due of $2000 on my account. My
total credit line is $3,800. Would you recommend I make
the purchase now or later in the future?

xPA = 1000, xBC = (March 25th - April 24th), xDA =
2000, xCL = 3800

Q3

I get 5% cashback if I buy furniture using my credit card.
I am buying furniture worth $1000 using my credit card.
My billing cycle is from March 25th to April 24th. Today
is March 31st, and I have a due of $2000 on my account. My
total credit line is $2,800. Would you recommend I make the
purchase now or later in the future?

xCP = 5%, xPA = 1000, xBC = (March 25th - April
24th), xDA = 2000, xCL = 2800

Q4

I get 5% cashback if I buy furniture using my credit card.
I am buying furniture worth $1000 using my credit card.
My billing cycle is from March 25th to April 24th. Today
is March 31st, and I have a due of $2000 on my account. My
total credit line is $3,800. Would you recommend I make the
purchase now or later in the future?

xCP = 5%, xPA = 1000, xBC = (March 25th - April
24th), xDA = 2000, xCL = 3800

CC (AAVE) Q5

I be makin’ a purchase of $1000 usin’ i’s credit card. I’s
billin’ cycle be from march 25th to april 24th. Today be
march 31ts, and i done a due of $2000 on i’s account. I’s
total credit line be $2,800. Would you recommend i make
de purchase now o lateh in de future?

xPA = 1000, xBC = (March 25th - April 24th), xDA =
2000, xCL = 2800

CC (Telugu) Q6 xPA = 1000, xBC = (March 25th - April 24th), xDA =
2000, xCL = 2800

Q7 xPA = 1000, xBC = (March 25th - April 24th), xDA =
2000, xCL = 3800

CC and AB Q8

I am making a purchase of $1000 using my credit card. My
billing cycle is from March 25th to April 24th. Today is
March 31st, and I have a due of $2000 on my account. My
total credit line is $3,800. I have $10,000 in my bank which
I can use to pay my credit card balance any time. Would you
recommend I make the purchase now or later in the future?

xPA = 1000, xBC = (March 25th - April 24th), xDA =
2000, xCL = 3800, xAB = 10000 Constraint (1) must be satisfied. In

addition, if the user chooses to pay the due
immediately, the following constraints
must also hold true.

xDA < xAB (2)

, xPA < xCL (3)Q9

I get 5% cashback if I buy furniture using my credit card.
I am buying furniture worth $1000 using my credit card.
My billing cycle is from March 25th to April 24th. Today
is March 31st, and I have a due of $2000 on my account. My
total credit line is $3,800. I have $10,000 in my bank which
I can use to pay my credit card balance any time. Would you
recommend I make the purchase now or later in the future?

xCP = 5%, xPA = 1000, xBC = (March 25th - April
24th), xDA = 2000, xCL = 3800, xAB = 10000

CC and CD Q10

I have a credit card due of $2800. The total credit line is
$2800. If I don’t pay a minimum of $100 by the end of
billing cycle, my APR would be 27%. If I pay the minimum
amount by the end of billing cycle, APR will be 25%. My
billing cycle is from March 25th to April 24th. Today is
March 31st. If I choose to deposit some amount as certificate
of deposit (CD), I will get an interest of 6% on the amount
deposited. Do you recommend I pay the full credit card due
or do a certificate of deposit or pay my due and deposit the
rest?

xAPR = 27% (with late fee) and 25% without late fee,
xMD = 100, xBC = (March 25th - April 24th), xDA =
2800, xCL = 2800, xCDP = 6% xDA < xCL (4)

AB was not provided in this query. So we
cannot specify any additional constraints in
this case from the given data.

Q11

I have a credit card due of $2800. The total credit line is
$3800. If I don’t pay a minimum of $100 by the end of
billing cycle, my APR would be 27%. If I pay the minimum
amount by the end of billing cycle, APR will be 25%. My
billing cycle is from March 25th to April 24th. Today is
March 31st. If I choose to deposit some amount as certificate
of deposit (CD), I will get an interest of 6% on the amount
deposited. Do you recommend I pay the full credit card due
or do a certificate of deposit or pay my due and deposit the
rest?

xAPR = 27% (with late fee) and 25% without late fee,
xMD = 100, xBC = (March 25th - April 24th), xDA =
2800, xCL = 3800, xCDP = 6%

CC, CD and
AB

Q12

I have a credit card due of $2800. The total credit line is
$2800. If I don’t pay a minimum of $100 by the end of
billing cycle, my APR would be 27%. If I pay the mini-
mum amount by the end of billing cycle, APR will be 25%.
My billing cycle is from March 25th to April 24th. To-
day is March 31st. I currently have $2,800 in my personal
checking account. If I choose to deposit some amount as
certificate of deposit (CD), I will get an interest of 6% on
the amount deposited. Do you recommend I pay the full
credit card due with my personal account balance or do a
certificate of deposit or pay my due and deposit the rest?

xAPR = 27% (with late fee) and 25% without late fee,
xMD = 100, xBC = (March 25th - April 24th), xDA =
2800, xCL = 2800, xCDP = 6%, xAB = 2800

[(xDA − xMD) ∗ xAPR ≤
(xAB − xMD) ∗ xCDP]

(5)

, [(xAB − xDA) > 0] (6)

Q13

I have a credit card due of $2800. The total credit line is
$2800. If I don’t pay a minimum of $100 by the end of
billing cycle, my APR would be 27%. If I pay the mini-
mum amount by the end of billing cycle, APR will be 25%.
My billing cycle is from March 25th to April 24th. To-
day is March 31st. I currently have $3,800 in my personal
checking account. If I choose to deposit some amount as
certificate of deposit (CD), I will get an interest of 6% on
the amount deposited. Do you recommend I pay the full
credit card due with my personal account balance or do a
certificate deposit or pay my due and deposit the rest?

xAPR = 27% (with late fee) and 25% without late fee,
xMD = 100, xBC = (March 25th - April 24th), xDA =
2800, xCL = 2800, xCDP = 6%, xAB = 3800

Table 1: Table showing different product interaction categories considered, query identifiers, the queries posed to the chatbots
under each category, variables used in each query with their corresponding chosen values and constraints the chatbots need to
consider while answering the user queries.

52

Personal Finance Use Case
Setup: Tools and Procedure
Chatbots Tested
1. ChatGPT: ChatGPT (OpenAI 2023) is an LLM-based

chatbot created by OpenAI that was trained on large
amount of text data from the internet, including books
and articles. ChatGPT is capable of answering questions,
generating text and converse with users in a natural way.
It can also learn from users and adapt to new information.

2. Bard: Bard (Google 2023) is an LLM-based chatbot cre-
ated by Google that was trained on large amount of text
data and is capable of generating human-like text in re-
sponse to user prompts and queries. Like ChatGPT, it is
also capable of conversing with users about wide variety
of topics in a natural way and adapt to new information.

Product Interaction Categories Product interaction
refers to interaction between different products like Credit
Card (CC), Certificate of Deposit (CD) and Account
Balance (AB). Each product has different quantitative
properties. For example, credit card due, limit line and
billing cycle are some of the properties that would provide
credit card information (not private information) of the user.
Different properties pertaining to these products are:

• Purchase Amount (PA): It is the amount spent by the
user on purchase of a product.

• Billing Cycle (BC): It is the billing cycle of user’s credit
card.

• Due Amount (DA): The amount that is due on the user’s
credit card for the specified billing cycle.

• Credit Line (CL): The maximum amount that user could
spend using their credit card. If the amount spent exceeds
this value, the credit card company could charge addi-
tional interest.

• Cashback Percentage (CP): The % of amount which
will be returned to the user in the form of cashback on
buying furniture using their credit card.

• Account Balance (AB): The amount of cash present in
user’s personal bank account.

• Annual Percentage Rate (APR): The APR is charged if
there is due on the credit card after the due date. Some fi-
nancial institutions choose to charge a late fee if the min-
imum due (MD) is not paid. It is calculated by the for-
mula, Daily Period Rate (DPR) x Billing Cycle (in days)
x Average Daily Balance (ADB).

• Certificate of Deposit Percentage (CDP): The % of in-
terest accumulated on the cash deposited by the user in
the form of CD.

Based on different combinations of these products, we clas-
sified the queries into 4 categories. These four categories
along with the queries posed under each category, the vari-
ables used in each query and the constraints the chatbot has
to take into consideration to make a sound recommendation
are shown in Table 1. In the CC category, we considered
a different dialect of English called African American Ver-
nacular English (AAVE) and Telugu, one of the well-known

S.No. Bard ChatGPT

1.
Bard gives accurate results if the ques-
tion is asked directly (for ex., $2,250
x 0.0006849 x 30 = $46.23075.)

ChatGPT gives inaccurate results if
the question is asked directly ($2,250
x 0.0006849 x 30 = $46.90 (rounded
to the nearest cent))

2.
Bard does not utilize the information
the user provides completely and cal-
culates CUR less often than ChatGPT.

ChatGPT calculates CUR and reasons
using the computed CUR more often
than Bard

3.

Bard usually does not give personal-
ized suggestions (especially, when the
(Due + purchase amount) > Credit
line).

ChatGPT gives personalized sugges-
tions more often than Bard.

4.

As a response to one of the queries,
Bard gave a recommendation by mak-
ing use of a table with different op-
tions that user could choose from as
shown in Figure 1.

ChatGPT did not use any kind of vi-
sual aids.

4.

Bard gave biased recommendation
i.e., biased towards recommending
the user to make the purchase imme-
diately (in one case, it gave only pros
for buying the furniture immediately
even though it has serious cons).

ChatGPT never gave biased recom-
mendations (it never encourages the
user to buy the furniture immediately
unless there is no risk involved).

5.
Bard gives 3 different drafts (with
some changes in the response) for the
same query.

ChatGPT does not provide different
drafts.

6.

With each query posed, the content
(calculations) of Bard is not improv-
ing as much as ChatGPT. It is not
learning from its mistakes immedi-
ately.

ChatGPT corrects its errors more of-
ten than Bard

7.

Bard understood African-American
Vernacular English (AAVE) dialect
and gave a reasonable response to the
query

When query was posed in AAVE di-
alect, ChatGPT did not understand
it immediately. When we posed the
same query again in the same dialect,
it understood the query and gave a
reasonable recommendation .

8. Bard was not trained to understand
Telugu language.

Though ChatGPT can understand Tel-
ugu language and responds in Telugu
if the user query is in Telugu, the re-
sponse it generated was incomplete
and had a lot of grammatical errors
which made the response very hard to
understand.

Table 2: Differences between the responses generated by
Bard and ChatGPT when queries related to finance domain
were posed.

languages from India, to observe how the chatbots handle
queries in a different language or dialect.

Findings
In this subsection, we present the findings from the interest-
ing (and sometimes insightful) conversations we had with
Bard and ChatGPT.

Differences Between the Chatbots Table 2 shows the dif-
ferences that were identified between Bard and ChatGPT
when queries listed out in Table 1 were asked. We compare
these models on various criteria related to their performance
in answering queries. The criteria include accuracy, utiliza-
tion of user information, personalized suggestions, use of
visual aids, bias in recommendations, provision of multiple
response drafts, learning from mistakes, and understanding
of different dialects and languages.

Error Categories We identified some limitations / errors
in the responses generated by both the chatbots and classi-
fied them into the following categories:

• Lack of Personalized Recommendations: When the
agent makes a generalized recommendation without us-
ing all the information provided by the user, we consider
this as lack of personalized recommendation.

53

Figure 1: Bard Response (Q11-AB11).

Figure 2: ChatGPT Response (Q11-AC11).

• Mathematical Errors: We consider errors like rounding
errors, calculation errors, etc. as mathematical errors.

• Perceptual Errors: When the agent misinterprets infor-
mation given by the user or makes assumptions on un-

54

known data, we consider these as perceptual errors.

• Grammatical Errors: We consider typos, grammatical
errors, etc. as grammatical errors (we encountered these
errors only in Telugu text generated by ChatGPT).

• Lack of Visual Aids: When the agent doesn’t use visual
aids like tables, graphs, etc. in its response, we consider
these as lack of visual aids.

Table 3 shows the percentage of queries for which the chat-
bots exhibited each of these errors. We also list out the in-
dividual query identifiers. Qi denotes the query identifier as
previously defined (and also shown in Table 1). ABi and ACi
refer to the corresponding Bard and ChatGPT responses re-
spectively. ’i’ denotes the identifier (number). Figures 1 and
2 show the response generated by Bard and ChatGPT chat-
bots respectively. For this one query, Bard made use of a
table (though it misinterpreted user information) and Chat-
GPT did not.

Error Category Queries % of Bard
Queries

% of
ChatGPT
Queries

Lack of Per-
sonalized Rec-
ommendations

Q1-AB1, Q3-
AB3, Q3-AC3,
Q4-AB4, Q5-
AB5, Q6-AC6,
Q7-AC7, Q8-
AB8, Q9-AB9,
Q10-AC10,
Q11-AC11,
Q12-AB12,
Q12-AC12, Q13-
AB13

53.84% 46.15%

Mathematical
Errors

Q2-AB2, Q9-
AC9, Q10-AB10 15.38% 7.69%

Perceptual Er-
rors

Q8-AC8, Q10-
AB10, Q11-
AB11

15.38% 7.69%

Grammatical
Errors

Q6-AC6, Q7-
AC7 0% 15.38%∗

Lack of Visual
Aids

All except Q11-
AB11 92.30% 100%

Table 3: Table showing % of queries for which the chat-
bots exhibited different errors along with individual query-
response identifiers. ‘Qi’ denotes the query identifier, ‘ABi’
and ‘ACi’ represent the corresponding Bard and ChatGPT
responses respectively where ‘i’ is the identifier.

Discussion and Conclusion
The application of language models in the finance industry
has witnessed a surge in recent times due to their ability to
process vast volumes of unstructured data and extract valu-
able insights. This paper delves into the performance of two
prominent language models, Bard and ChatGPT, within the
finance domain.

We also find the following challenges in evaluating LLM-
based systems for finance domains:

• C1: Changing nature of answers for the same question.
How does one create reference test cases since the an-
swers change over time?

• C2: Inability of the chatbots to do numeric reasoning
• C3: Presenting results with easy to follow graphics.
• C4: Support for languages used by customers from differ-

ent population groups. We considered AAVE - (African
American Vernacular English) and Telugu, an Indian lan-
guage spoken by nearly 100m people world-wide.

• C5: Evaluation the response of users from a diverse set of
background. We only considered college students in this
study.

C1 can be mitigated by carefully cataloging questions and
system answers by identifiers that account for changing be-
havior over time. For C2, integration with numeric solvers
like Wolfram may help (Wolfram 2023) although this makes
the systems non-learnable over time. For C3, different data
presentation strategies need to be tried. For C4, the LLM
models or the chatbots need to be enhanced. For C5, more
experiments are needed with inputs carefully modeling the
characteristics of the different user groups. These are just
preliminary challenges and we expect them to grow as more
researchers will try LLM-based systems in complex and di-
verse application scenarios.

While our study only comprised thirteen queries, we
meticulously selected them to cover various categories of
credit card finance. However, there exists ample scope for
more extensive testing of these chatbots by expanding the
number of queries under each category or including addi-
tional categories like student loans and stock purchases. By
doing so, we can gain a better understanding of the efficacy
of language models in different financial domains and im-
prove their functionality in real-world scenarios.

55

References
Alberto Pozanco, D. B., Kassiani Papasotiriou. 2022. PFPT:
a Personal Finance Planning Tool by means of Heuristic
Search and Automated Planning.
Bang, Y.; Cahyawijaya, S.; Lee, N.; Dai, W.; Su, D.; Wilie,
B.; Lovenia, H.; Ji, Z.; Yu, T.; Chung, W.; et al. 2023. A
multitask, multilingual, multimodal evaluation of chatgpt on
reasoning, hallucination, and interactivity. arXiv preprint
arXiv:2302.04023.
Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.;
Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y. T.; Li, Y.; Lundberg,
S.; et al. 2023. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712.
Frieder, S.; Pinchetti, L.; Griffiths, R.-R.; Salvatori, T.;
Lukasiewicz, T.; Petersen, P. C.; Chevalier, A.; and Berner,
J. 2023. Mathematical capabilities of chatgpt. arXiv preprint
arXiv:2301.13867.
Google, . 2023. Google BARD. In https://bard.google.com/.
Hu, B.; Xia, J.; Zheng, J.; Tan, C.; Huang, Y.; Xu, Y.;
and Li, S. Z. 2022. Protein Language Models and Struc-
ture Prediction: Connection and Progression. arXiv preprint
arXiv:2211.16742.
Li, X. L.; Kuncoro, A.; Hoffmann, J.; de Masson d’Autume,
C.; Blunsom, P.; and Nematzadeh, A. 2022. A systematic
investigation of commonsense knowledge in large language
models. In Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Processing, 11838–
11855.
Min, B.; Ross, H.; Sulem, E.; Veyseh, A. P. B.; Nguyen,
T. H.; Sainz, O.; Agirre, E.; Heinz, I.; and Roth, D. 2021.
Recent advances in natural language processing via large
pre-trained language models: A survey. arXiv preprint
arXiv:2111.01243.
OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774.
Wolfram, S. 2023. ChatGPT
Gets Its “Wolfram Superpowers”!
https://writings.stephenwolfram.com/2023/03/chatgpt-
gets-its-wolfram-superpowers/.
Wu, S.; Irsoy, O.; Lu, S.; Dabravolski, V.; Dredze, M.;
Gehrmann, S.; Kambadur, P.; Rosenberg, D.; and Mann, G.
2023. BloombergGPT: A Large Language Model for Fi-
nance. arXiv:2303.17564.
Xiao, Z.; Liao, Q. V.; Zhou, M.; Grandison, T.; and Li, Y.
2023. Powering an AI Chatbot with Expert Sourcing to Sup-
port Credible Health Information Access. In Proceedings of
the 28th International Conference on Intelligent User Inter-
faces, 2–18.
Yue, T.; and Au, C. C. 2023. GPTQuant’s Conversational
AI: Simplifying Investment Research for All. Available at
SSRN 4380516.
Zhao, W. X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.;
Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; Du, Y.; Yang, C.;
Chen, Y.; Chen, Z.; Jiang, J.; Ren, R.; Li, Y.; Tang, X.; Liu,
Z.; Liu, P.; Nie, J.-Y.; and Wen, J.-R. 2023. A Survey of
Large Language Models. arXiv:2303.18223.

56

