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Abstract

In this paper, we introduce FinRDDL, the first framework for
financial portfolio management problems using a planning
language. FinRDDL uses Relational Dynamic Influence Di-
agram Language (RDDL) to formalize the problems of asset
allocation and optimal trade execution; two canonical quanti-
tative finance problems. We show how the seminal works of
Markowitz (1952) for asset allocation and Almgren and Chriss
(2001) for optimal trade execution can be modelled using
RDDL and provide preliminary results on how the perfor-
mance of various Al actors with different planning strategies
compare against existing methods. Finally, we highlight the
limitations of existing planning algorithms for solving finan-
cial sequential decision making problems and discuss future
research avenues.

1 Introduction

Sequential decision-making problems in finance have at-
tracted significant academic interest from both the quanti-
tative finance and artificial intelligence (AI) communities.
Two canonical problems, in particular, have been the focus of
research: asset allocation and optimal trade execution. Both
problems fall within the context of financial portfolio man-
agement whereby asset allocation deals with the problem of
deciding the weights of the financial assets to include in a
portfolio and optimal trade execution deals with efficiently
placing the corresponding trades in the market.

The primary goal of this paper is to investigate whether
it is possible to formalize asset allocation and optimal trade
execution problems in a planning formalism and utilize Al
planning techniques to solve them. By examining the bene-
fits and limitations of using Al planning methods, we aim
to provide insights into whether this approach can offer an
alternative to current approaches used in quantitative finance.

There are several challenges with using planning in this
field, starting with the fact that the state and action space are
often continuous. Finding optimal plans in such numerical
planning domains is very hard; Helmert (2002) has shown
that such problems are often not event decidable (i.e. it is
not known if a solution exists). Dealing with a continuous
space of possible states and actions can be difficult and com-
putationally expensive to work with. As a result, practical
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approaches with continuous action spaces often require ap-
proximating the optimal policy using techniques such as
function approximation, gradient-based optimization, or rein-
forcement learning.

Another significant challenge for using planning method-
ologies is that the underlying environment the plan is exe-
cuted on is highly dynamic and affected by exogenous events.
This dynamic nature of the environment can make it difficult
to anticipate the long-term consequences of actions. One way
the field of quantitative finance handles this issue is by using
different statistical models to model and predict the variables
of interest such as the asset price evolution (Hu and @ksendal
1998; Hachicha, Jarboui, and Siarry 2011).

Based on these challenges, we believe RDDL (Sanner et al.
2010) is an appropriate planning language for modelling
financial trading problems because (a) it can capture a contin-
uous state and action space, (b) it allows concurrent actions
with possibly conflicting effects, and, (c) various mathemat-
ical models for predicting asset prices can be integrated in
RDDL’s conditional probabilistic state transition functions.

Our Contributions

* We formalize the asset allocation and optimal trade execu-
tion problems using RDDL. To the best of our knowledge,
this is the first application of RDDL to model these two
canonical quantitative finance problems.

* We experimentally evaluate five different acting strategies:
uniform allocation, Greedy Markowitz, Monte Carlo Tree
Search, Mixed-integer quadratic programming, and tf-
plan (Wu, Say, and Sanner 2017) for asset allocation.

* We provide a desiderata for the Al planning commu-
nity highlighting the limitations of current planning ap-
proaches and how they can be improved to solve quantita-
tive finance problems.

The paper is organized as follows: we first provide the
background and related work in section 2 on asset allocation,
optimal trade execution and RDDL. We then describe the
FinRDDL framework, the Al planning techniques explored
and the experimental evaluation for asset allocation in sec-
tion 3 and optimal trade execution in section 4. We provide
a desiderata for the Al planning community in section 5 and
conclude the paper in section 6 with a summary of our work
and suggestions for future research.



2 Background & Related Work

This section provides an overview of the financial terminol-
ogy necessary to understand the asset allocation and optimal
trade execution problems. We examine the relevant literature
pertaining to these two problems. Additionally, we provide
an outline of the fundamental components of RDDL.

2.1 Asset Allocation

Financial portfolio management is a multi-faceted process
that relies on human expertise and historical data analysis for
constructing portfolios of financial assets on behalf of individ-
ual or institutional investors. A key component of portfolio
management is asset allocation. This is the task of optimally
allocating a finite cash budget to a finite set of financial assets
to meet a certain financial objective dictated by the investor.
The objectives vary depending on the investor’s goals, invest-
ment horizon and risk appetite. A portfolio is a collection of
multiple financial assets characterized by its constituents (N
assets) and a portfolio weights vector w; at time ¢ which is
defined as:

N
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where, w; ; represents the ratio of the total budget invested in
asset ¢ at time ¢.

Investors are typically concerned with price changes over
time as opposed to absolute prices since they reflect their
investment’s profit and loss. Let p; ; denote the price of asset
7 at time ¢. The gross return R; ¢, simple return 7; ; and log
return p; ; of an asset ¢ at time ¢ are given by:
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For a portfolio with multiple assets, a linear combination
of each asset return weighted by the portfolio weights vector
yields the portfolio return. For example, the portfolio log
return is defined as:
N
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where, p; = [,01,t, P2ty ,pN7t]T € RV, Translating this
to investments over multi-periods with an investment horizon
H, we obtain the cumulative log return p;_, ;7, an example of
an objective an investor would seek to maximize,
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The first attempt to suggest an optimization approach
for asset allocation in a systematic way was introduced by
Markowitz (1952). The key insight of this approach is that by

combining assets with different expected returns and volatil-
ity, one can decide on a mathematically optimal allocation.
Following this seminal work, the problem of asset alloca-
tion was studied extensively in the literature with a wide
range of approaches investigated. We focus on prior work on
multi-period asset allocation, a sequential decision making
problem, where the portfolio weights are adjusted periodi-
cally (e.g. monthly) to meet the investor’s objectives. This is
in contrast to single-period asset allocation where the opti-
mal portfolio weights are decided once and the portfolio is
maintained over a fixed time period (e.g. 1 year).

Boyd et al. (2017) presents a framework for single-period
and multi-period optimization of asset allocation strategies,
balancing expected return, risk, transaction and holding costs.
They employ a convex optimization problem formulation,
under the assumption that cost, risk, trading and holding
functions and constraints are all convex. The method is used
to plan a sequence of trades with future quantities estimated
using predictions, without addressing the critical compo-
nent of forecasting future quantities. Li, Uysal, and Mul-
vey (2022) describes a method for multi-period portfolio
optimization that employs model predictive control with a
risk-parity objective, and provide a successive convex pro-
gramming algorithm that is more computationally efficient
compared to previous methods. Their comprehensive com-
parison of models demonstrates that multi-period models
outperform single-period models in out-of-sample periods
with market impact costs, achieving higher Sharpe ratios
for mean-variance and risk-parity formulations, respectively.
Lastly, Blay et al. (2020) take an analogous approach to ours
and use a simulator to capture market dynamics and compute
a set of weights (allocations) for multi-period asset allocation.
The weights are computed using gradient based optimiza-
tion procedure, and their method computes a fixed allocation
over all periods. This is like computing a static plan for a
dynamic or probabilistic environment. Using RDDL, we can
compute a policy that adapts it’s allocation decisions (actions)
based on the current state which includes prices, and current
allocation amongst others.

2.2 Optimal Trade Execution

The optimal trade execution (OTE) problem is another clas-
sical problem in quantitative finance that refers to the chal-
lenges of buying or selling securities in a manner that mini-
mizes transaction costs and maximizes trading profits. Con-
sider a portfolio manager (PM) who wishes to adjust (rebal-
ance) his/her portfolio by liquidating (selling) a fixed large
block of a given security. The PM would send his order to
a broker who is tasked with executing it in the market (e.g.
on an exchange like NASDAQ). A common practice is to
slice-and-dice the PM’s order into smaller child orders to
be executed within a given time horizon. This then turns the
OTE problem into a sequential decision making problem of
deciding the optimal sequence of child orders to place in the
market to minimize the transaction costs.

The OTE problem is characterized by having an objec-
tive function (minimizing execution costs), a set of possible
actions to take (order types, prices and quantities to place
in the market) and market variables to take into considera-



tion when making the decision at every step of the execution
time horizon. The problem is multi-faceted as there are sev-
eral challenges to consider. At the macroscopic level the PM
needs to decide the time horizon and total quantity to execute.
At the mesoscopic level, the broker faces the order scheduling
problem (OSP) and has to decide how to slice the metaorder
across time and determine the volume to execute for each
slice. Finally, the broker is also faced with the order place-
ment problem (OPP) at the microscopic level where he/she
needs to decide which order type to use and which market
venue to send the order to (Bouchaud et al. 2018). In this
paper, we focus only on the order scheduling problem.

The order scheduling problem has been widely studied in
the literature and was first formalized by Bertsimas and Lo
(1998) in their work on the optimal control of execution costs.
The authors formulate the problem mathematically as a se-
quential decision making problem, define the concept of best
execution and use the implementation shortfall (Perold 1988)
as the cost objective to be minimized. They then use stochas-
tic dynamic programming to solve the problem and derive a
number of closed-form solutions under certain assumptions
around the price dynamics. An important contribution of
the paper is showing that breaking up a large trade into a a
number of smaller trades of equal size is optimal when the
price dynamics follow an arithmetic random walk, the price
impact is linear in the trade size and its effect is permanent
on future prices. Almgren and Chriss (2001) extended this
work using a mean-variance approach similar to that used
in asset allocation to allow for the minimization of the ex-
pected implementation shortfall and the variance (volatility)
of the expected execution costs. Similar to (Bertsimas and Lo
1998), they also derive closed-form solutions of the optimal
schedules under a set of assumptions around the price dynam-
ics and market impact and show that there exists an optimal
solution balancing trade off between the costs of trade execu-
tion and the speed at which the trades are sent to the market.
Following the seminal works of Bertsimas and Lo (1998)
and Almgren and Chriss (2001), optimizing trade execution
became an active research topic for decades with researchers
investigating different forms of price dynamics, market im-
pact and optimal trading strategies (Bouchaud et al. 2018).
See Donnelly (2022) for a recent review on this topic. Given
the importance of this problem, we present a formulation
of this problem in RDDL in section 4 for the planning and
RL research community, and discuss the pertinent dynamics
therein.

2.3 Relational Dynamic Influence Diagram
Language (RDDL)

RDDL (Sanner et al. 2010) is a formal language used to
model dynamic environments for decision-making problems.
It allows for uncertainty in the environment dynamics (proba-
bilistic transitions), and is geared toward planning problems.
Multi period asset allocation and order execution are classic
examples of such problems, and RDDL can be used to model
them.

To model a problem using RDDL, we need to define the
state and action fluents which can change at every discrete
time step. Action fluents represent the decision variables.

Actions can occur concurrently. Constants are declared as
non-fluents. Two key components of an RDDL domain are
the transition function and rewards associated with each state-
action pair. The transitions capture the dynamics and uncer-
tainty in the market, such as the probability of different price
movements, while the reward considers the expected return,
risk of the portfolio and transaction costs. The reward func-
tion can be defined to incorporate different investment goals,
such as maximizing return, minimizing risk, or optimizing the
trade-off between the two. We can also incorporate various
constraints, such as transaction costs, liquidity requirements,
and risk tolerance levels. These can be represented as addi-
tional variables or as part of the reward function.

Finally, any RDDL solver that supports continuous state
and action spaces can be used to generate an optimal policy
based on the model defined in this work. In the case of as-
set allocation, the policy provides guidance on the optimal
allocation of assets between the different classes, taking into
account the current market conditions and investment goals.

We have chosen not to use PPDDL (Younes and Littman
2004) due to its lack of support for concurrent actions that
may result in conflicting effects. Given the stochastic nature
of our problem, there is always some probability that such
conflicts may occur. For instance, changing the weight of two
assets in our portfolio may result in related market impacts.
Enumerating the joint actions and their effects would be a
possible solution, but is very difficult to maintain over time.
Additionally, multiple exogenous events that may occur in
a single day cannot affect the same fluent or state variable,
further limiting the applicability of PPDDL.

With respect to planning in RDDL, the Prost planner
(Keller and Eyerich 2012) is a probabilistic planning system
that utilizes the UCT algorithm and several enhancements to
improve its performance in domain-independent probabilis-
tic planning. It has demonstrated significant improvement in
benchmark domains. However, Prost cannot handle continu-
ous state and action spaces (intended for discrete domains).

3 FinRDDL: Asset Allocation

This section builds upon the mathematical terminology es-
tablished in section 2.1 for the asset allocation problem. The
main focus of this section is to present the primary objective
(reward), the RDDL model, and a preliminary experimen-
tal evaluation to compare different planning strategies for
multi-period asset allocation using RDDL.

Objective. For the multi-period asset allocation problem,
the objective is to find the optimal set of portfolio weights
w ¢+ for all assets ¢ over the investment horizon. Formally,
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where, H is the investment time horizon, /N is the number
of available assets and w; ; is the weight of asset 7 at time ¢.



The expression maximizes the sum of the expected returns
and minimizes the risk and transaction costs of all assets
over all periods. The first constraint ensures that the asset
weights at each period sum up to 1 and the second constraint
enforces non-negativity of the weights. The scaling constants
«, and o determine the respective weightings of the three
optimization metrics - return, risk, and transaction costs.

In order to simulate the evolution of asset prices over time,
practitioners often rely on calibrated geometric Brownian
motion models (GBM) (Abidin and Jaffar 2012). The model
assumes that the asset price follows a stochastic process,
where the changes in the asset price are normally distributed
and the drift and volatility are estimated properties. The re-
sulting equation describes a random walk with drift, where
the expected value of the asset price grows over time but with
increasing variability. The equation for geometric Brownian
motion is:

dpy = ppidt + opdWy, (3.2)

where, p; is the asset price at time ¢, y is the drift, or expected
rate of return per unit time, o is the volatility, or standard de-
viation of the asset returns per unit time and dW; is a Wiener
process, representing the random noise or error term. This
stochastic differential equation (SDE) describes the change
in the asset price over an infinitesimal time period dt.

Simulated price paths with the GBM model

0 50 100 150 200 250
Day

Figure 1: Different asset price paths following the Geometric
Brownian Motion (GBM) model with a starting price of $100,
drift (1) of 0.001 and volatility (o) of 0.005.

3.1 RDDL Model

Following the discussion about RDDL from Section 2.3, we
start by defining the objects, followed by the state and action
fluents, state transition function, reward function and the
constraints. Each asset is represented as an object, denoted
by asset or 7a (the ‘?” symbol indicates a variable in RDDL).
A domain instance can include any number of assets.

State variables: Each asset is associated with two state vari-
ables (fluents); one each for its current weight and price. In
addition, there is a variable that tracks the current day (the
timer or step index variable).

w(asset)(real) : current weight of asset (3.3)
p(asset)(real) : current price of asset (3.4)
day(int) : current day 3.5)

Actions: An action-fluent set_w(asset) is defined for each
asset, allowing to change the weight (allocation) of the cor-
responding asset. Notably, RDDL allows concurrent actions
with potentially conflicting effects. This is particularly rele-
vant when rebalancing the portfolio, as we may need to adjust
the weights of multiple assets simultaneously.

State transition function: The weight of an asset 7a is updated
as:

t-w(?a) . )
w'(?a) = % , if period | day, (3.6)
> tbeasser S€1-W(7D)
=w(?a), otherwise, (3.7)

where period is the reallocation period length in days. This
ensures that asset weights are only updated at the reallocation
points. A normalization step divides each asset’s weight up-
date by the total weight of all assets in the portfolio, ensuring
that the asset weights sum up to 1, which is necessary for a
valid portfolio.

The price of an asset 7a is updated following the Geometric
Brownian motion as,

P (2a) = p(a).et @) toCaNOD) (3.8)

where, p(?a) (drift) and o(?a) (volatility) are non-fluents
set for each problem instance and N(0,1) samples from
the standard Normal distribution. The current day simply
progresses as,

day’ = day + 1. (3.9)

Reward. RDDL is limited to having only one objective func-
tion as the reward. Therefore, to incorporate multiple factors
such as log return, portfolio risk, and transaction costs, we
combine them into a single expression and scale them using
hyperparameters. These hyperparameters, which are non-
fluents, are denoted by «a, for risk and as for transaction
costs. Specifically, the reward for a step is computed as the
sum over all assets:

Reward = ?(gmtw(?a){ln };((;5)) —ay0(?a)  (3.10)
—ag |w'(?a) — w(?a)|} (3.11)

State Invariants. We ensure that the asset weights always stay
in the range [0,1] with the constraint,

v’.’a:a.vset(rw(?(l) 2 0OA w(7a) S 1)

The full RDDL domain descriptions and example instances
are included in the appendix.

3.2 Planning Strategies

In this section, we discuss four potential planning algorithms
to solve the RDDL formulation of the asset allocation prob-
lem.

Markowitz Mean Variance Optimization (MMVO)
Mean-variance optimization (Markowitz 1952) is a classi-
cal approach for the single period asset allocation problem
that maximize portfolio returns while minimizing portfolio
risk. It uses estimates of the expected returns and covariance



of different assets and then creates a quadratic program with
asset weights as variables to solve for.

For a universe of N assets with associated historical data,
we ﬁrst obtain the empirical estimates of the expected returns
p=Ip1,p2,---sp vae RY and the covariance matrix of the
asset returns 3 € R , where, p; is the sample mean log
return of asset 7 and o;; is the covariance of assets 4 and j.
We then compute the portfolio weights vector w € RM as

max w? por min,, w! Tw
w
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where, w’ Xw represents the portfolio volatility (risk) and
w? p is the portfolio expected return. Equation 3.12 is a
quadratic program that can be solved numerically using
gradient-based algorithms (Boyd, Boyd, and Vandenberghe
2004).

Solving for conflicting objectives gives rise to the efficient
frontier which shows the set of optimal portfolios with the
highest levels of return for a given level of risk and vice versa.
In the context of multi-period asset allocation, this approach
reduces to greedily maximizing the return (or minimizing
risk) at each rebalancing point as it occurs.

Monte Carlo Tree Search (MCTS) MCTS (Kocsis and
Szepesvari 2006) a well known algorithm for decision mak-
ing in stochastic dynamic environments. The general idea is
to incrementally build the search tree by simulating potential
asset price evolution (p;) over time ¢ via an RDDL simulator.
Starting with an initial portfolio and an empty search tree,
each iteration traverses the tree from the root node to a leaf
node using the Upper Confidence Bound (UCB) (Kocsis and
Szepesvari 2006) to select the most promising combination
of assets weights wy at rebalancing point ¢. The selected node
is expanded by adding children representing changes in ws.
Then, a rollout is simulated starting from the newly added
node using randomly chosen changes in w,. The statistics
of all visited nodes are updated based on the outcome of the
simulated evolution of p;. The steps are repeated until ¢t = H
(the investment horizon). The set of optimal weights for each
period, {w; }fL, are selected based on the statistics accumu-
lated during the search, typically by choosing {w; } L, with
the highest expected reward. We have currently discretized
the action space in steps of 0.1 in our implementation to ex-
pand a node. (Mansley, Weinstein, and Littman 2011) and
(Kim et al. 2020) are possible techniques one can adapt to do
MCTS in continuous spaces.

Mixed Integer Quadratic Programming (MIQP) Boyd
et al. (2017) multi-period asset allocation uses a MIQP con-
vex optimization formulation used for optimizing investment
portfolios over multiple time periods at once. The algorithm
determines the optimal allocation of all assets across all re-
allocation periods that maximizes the total expected reward
from Equation 3.1. To estimate returns and volatility, we uti-
lized the RDDL simulator by playing it and obtaining relevant
data. These estimates are fed into the objective expression.

tf-plan. Wu et al. (Wu, Say, and Sanner 2017) developed
the tf-plan algorithm which does symbolic gradient optimiza-
tion on RNNSs to effectively plan in high-dimensional mixed

discrete and continuous nonlinear domains. tf-plan uses Ten-
sorflow with RMSProp optimization and is competitive with
MILP-based optimization on piecewise linear planning do-
mains and outperforms state-of-the-art interior point meth-
ods for nonlinear domains, demonstrating a new frontier for
highly scalable planning in nonlinear hybrid domains. How-
ever, since it does not support In (and other math functions) in
its RDDL domain description, we use a modified step reward
function from Equation 3.11 as:

Reward = Z w(?a){p/(?a)

p(?a)

— ag|w'(7a)

— ay0(?a) (3.13)
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3.3 Experimental Evaluation

With our RDDL model (section 3.1 and potential planning
algorithms (section 3.2) we compare the performance of
the following Al actors for asset allocation using distinct
planning strategies:

* Uniform Actor. Always distributes the total wealth uni-
formly among the different assets.

* Greedy Markowitz Actor. At every rebalancing point, it
ignores the transaction costs and strictly maximizes the
reward for the current period (Markowitz 1952).

* MCTS Actor. Does Monte Carlo Tree Search with a dis-
cretized search space (Kocsis and Szepesvari 2006) to
decide the optimal set of asset weights.

e MIQP Actor. Formulates and solves the reward maximiza-
tion problem across multiple periods as a convex opti-
mization problem (Boyd et al. 2017).

* tf-plan Actor. Follows the recommendation of the tf-plan
algorithm (Wu, Say, and Sanner 2017).

While our RDDL model is general enough for IV assets,
we do our preliminary tests on a synthetic universe consist-
ing of two assets (Table 1). Each asset follows a Geometric
Brownian Motion (Figure 1) of prices with a specific return
(mean) and risk (variance). We assume that the investment
horizon H is known in advance and we set it to 300 days. The
horizon consists of five re-balancing opportunities, at an in-
terval of 60 days. By doing a set of exploratory experiments,
we set the values of the two hyperparameters, o, = 0.1 (for
risk), and as = 0.001 (for transaction costs). We ran our
experiments on a c4.8xlarge Amazon EC2 instance with 36
vCPUs, 60 GiB RAM and a maximum timeout of 10 mins
for plan computation. We use pyRDDLGym (Taitler et al.
2022) to create a gym (Brockman et al. 2016) environment
from the RDDL file. We test the strategies of the Al actors on
the gym environment to track the step rewards and the total
cumulative rewards.

Table 1: Synthetic Asset Data Configuration for our experi-
mental evaluation.

Asset Price at{ = 0 | Drift 1o | Volatility o
Asset 1 10 0.001 0.010
Asset 2 50 0.001 0.005
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Figure 2: The top plots show the observed daily step reward for Al actors with different planning strategies. The bottom plot
shows the total cumulative reward upto that day. Higher rewards indicate better performance. The plots on the right show the step
and cumulative rewards for the tf-plan actor. tf-plan uses gross return instead of log returns in its reward function due its lack of

support for the RDDL In function.

To measure the performance of the different actors, we
observe three parameters, (1) the step reward every day (we
simply call it reward), (2) the total cumulative reward from
the beginning until day ¢, and (3) how the weights of assets
change with time.

Reward. The step reward for a specific day is determined
by evaluating the reward function (Equation 3.11) for that
particular day. In Figure 2 (top-left), the step rewards are
displayed for all actors except for tf-plan. This is due to
the fact that the return component of the reward function
contains a natural logarithm function, which is not supported
by the version of RDDL used by tf-plan. Consequently, we
computed the step reward for the tf-plan actor (Figure 2 top-
right) by using the gross return in the reward expression,
which resulted in more spread out values compared to the
other actors.

Total Cumulative Reward. To determine the overall per-
formance of each actor, we computed the total cumulative
reward, which is the sum of all step rewards accumulated
up to that point. The comparison of the actors in terms of
cumulative rewards earned is shown in Figure 2 (bottom).
It is evident that the Greedy Markowitz actor experiences a
significant dip at the rebalancing periods, as it completely dis-
regards transaction costs. In contrast, all other actors outper-
form the uniform strategy. Notably, the MIQP actor exhibits
the best performance overall. However, it is worth noting that
a true comparison of the tf-plan actor with other actors can
only be made using normalized reward functions. Figure 2
(bottom-right) displays the promising performance of the tf-
plan actor, but normalization is required for fair comparison
with the other actors.

Asset weight in portfolio
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Figure 3: This plot shows how the weight (ratio of the total
wealth) of a single portfolio asset changes with time. Please
note that the transitions in weights are sharp jumps but they
are smoothed out for improved readability.

Asset Weights In Figure 3, we observe how the weight of a
specific portfolio asset changes over time. The plot compares
the performance of different actors in terms of minimizing
jumps in it’s share of the portfolio over time. The solid lines
show the average weights. The MCTS actor’s strategy ap-
pears to result in more gradual changes in asset weight over
time, which may lead to a more stable and consistent perfor-
mance in asset allocation. In contrast, the other actors exhibit
more significant and abrupt changes in asset weight over
time, which may result in a higher degree of volatility and
unpredictability in performance.

Discussion In the context of asset allocation, the perfor-
mance of different actors is highly dependent on various
hyperparameters. For the MCTS actor, the discretization step
is a critical hyperparameter that significantly impacts the



quality of the solution. Additionally, the number of loops and
rollouts are other key parameters that need to be tuned care-
fully for optimal performance. tf-plan presented limitations
in terms of the lack of support for the modulus and natural
logarithmic function and the inability to set a reallocation
period in the domain. In this case, actions are applicable at
every step, and state invariants and action preconditions are
not directly honored from the RDDL.

The choice of reward hyperparameters significantly im-
pacts the overall performance of each actor. As next steps,
we plan to evaluate the performance of different actors with
varying numbers of assets, horizon sizes, and rebalancing
window sizes. Additionally, we will conduct experiments
using real stock exchange data to evaluate the practical utility
of the various actors. Finally, we plan to conduct a computa-
tion time analysis of each approach to evaluate their practical
feasibility.

4 FinRDDL: Optimal Trade Execution

Once the asset weights are decided in the portfolio, if changes
are needed from the previous state, then a trade has to be
placed in the market and executed to implement the desired
portfolio rebalancing changes.

Consider an investor that wishes to liquidate (sell) X units
of a security between times ¢ = 0 and ¢ = 7. The execution
time horizon T is divided into NV intervals of length 7 = T'/N
to define the discrete times ¢, = k7 for k = 0,..., N. At
time ty, the market price of the security is denoted by Sk,
the execution price of the broker’s order is Sj.. The number
of units we plan to hold at time ¢ is denoted by x; and
the number of units to sell is ny. Finally, the rate of trading
(execution speed) during the interval ¢;_; to ¢ is given by
v ="ng/T.

The scheduling problem is then formulated as the problem
of finding the optimal sequence {nk}i}’:o that maximizes the
revenue obtained from selling X with N orders:

max E

N ~
Skn
(e}, kz::l g ’“] (4.1)
S.t. ng ng =X

We follow the formulation of the price dynamics in (Alm-
gren and Chriss 2001) where the market price evolves accord-
ing to two factors; volatility and market impact. The volatility
of the security price is a manifestation of market forces that
occur randomly and are not affected by our trading. The mar-
ket impact, on the other hand, is the component that accounts
for the change in the market price S and the execution price
Sy, which is impacted by our trading. Assuming that the se-
curity price evolves according to a the discrete arithmetic
random walk, we define .S}, and S &, as:

S = Sk—1+0VTE —Tg(v), Sk = Sk_1—h(v) (4.2)

where, o is a constant representing the volatility of the asset,
&}, are draws from independent random variables each with
zero mean and unit variance, ¢(v) is the permanent impact
function that represents the change in the market price S
caused by our trading and h(v) is the temporary impact

function that we use to obtain the actual execution price.
Assuming that we are selling and both impact functions to be
linear in the rate of trading v = ny /7, we get:

g(v) =yv, h(v) =eng +nv 4.3)

where + is the linear permanent impact constant, € is a con-
stant defining the fixed cost of selling and 7 is the linear
temporary impact constant.

To be able to measure the quality (and optimality) of the
sequence of orders in the generated schedule, a reference
price such as Si at t = 0 is typically used. A common
measure for transaction costs is the implementation shortfall
(Perold 1988) which is the difference between the revenue
if we were sell X at a given price (e.g. Sp) and the actual
revenue obtained with the sequence of orders {n; }2_.

N
C=XSo— Y nSk
k=1
N N
= XSy — Z (ov/T& — Tyv) T)p — ank + gnz
k=1 k=1

(4.4)

The unconstrained quadratic optimization problem with a
Lagrange multiplier A representing risk aversion is:

min  (E[C]+ AV [C)]) 4.5)

{nk}g:()

The closed-form solutions for this problem with linear
price impact are equations 17 and 18 in (Almgren and Chriss
2001). The optimal solutions with different values of A and 7
are shown in figure 4.

The RDDL domain file developed for the optimal trade
execution problem is detailed in listing 3 in the appendix. The
state is defined to be a combination of the agent and market
variables and includes the time elapsed ¢, quantity executed
x, market price Sy and the execution price S. The action at
a given state is the number of shares to sell ny. The transition
functions and the reward are given by equations 4.2 and 4.4
respectively.

5 Desiderata for AI Planning for Quantitative
Finance Problems

Through this study, we gained valuable insights into the po-
tentials and limitations of Al planning for financial trading
problems. Based on our analysis, we have identified the main
areas where Al planning can be improved:

Support for multi-dimensional rewards. In our formu-
lation for asset allocation, we combined risk, returns, and
transaction costs into a single reward expression. However,
the hyperparameters o, and o need to be set effectively,
making it a sensitive task. Multi-objective planning algo-
rithms (Zhang et al. 2022; Do and Kambhampati 2003; Yu,
Kirley, and Buyya 2007) can be particularly helpful in this
regard. To the best of our knowledge, RDDL or pyRDDLgym
do not support multi-objective rewards as of yet.
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Figure 4: Trade trajectories and schedules with different risk-aversion values A (top) and trading speed 7 (bottom). Our RDDL

domain which can simulate this behavior is provided in listing

Challenges and opportunities of planners with continuous
state-action spaces in dynamic environments. While the
RDDL language supports continuous state and action spaces,
most planners assume the search space to be discrete. For
instance, the popular probabilistic planning system, Prost
planner (Keller and Eyerich 2012), uses a discretization ap-
proach to represent continuous state spaces as a finite set of
discrete states by default. To address this limitation, Prost pro-
vides advanced features that allow users to model continuous
state spaces more accurately, which can be explored. Planners
that support PDDL+ such as DiNo (Piotrowski et al. 2016)
can support continuous state and action spaces (albeit they
discretize it during solving). However, they do not support
handling concurrent actions with conflicting effects.

Improving the MCTS actor. The current MCTS actor can
be enhanced in several ways to improve its performance. One
way is to modify the reward function to include risk metrics
such as Value at Risk or Expected Shortfall and optimize the
Pareto frontier of risk and return. Another way is to paral-
lelize the rollouts to reduce the computational time required
for rollouts, particularly in applications with large search
spaces. Additionally, incorporating continuous and/or state
and action space through techniques such as (Mansley, Wein-
stein, and Littman 2011; Yee et al. 2016) can make MCTS
more flexible and applicable to a wider range of problems.

Bridging the gap between simulation and reality. While
the current RDDL formulation poses a challenging planning
problem, real-world trading problems involve even more

3 in the appendix.

complex features that are often overlooked in the model.
For instance, the total wealth is a critical parameter that can
significantly impact the asset weights. Additionally, illiquid
assets may have trade restrictions that need to be taken into
account. Order execution happens in continuous time with
durative actions. It may be beneficial to address asset alloca-
tion and order execution as an integrated planning and acting
problem, rather than solving them separately. The investment
horizon can be unknown and multiple orders may need to be
scheduled and executed together.

6 Conclusion

In this study, we formulated the asset allocation and optimal
trade execution as planning problems using the RDDL do-
main modelling language. We tested several Al actors with
different planning strategies on the developed RDDL instance
for asset allocation. Finally, we critically analyzed the cur-
rent limitations of automated planning for financial trading
problems, and how they can be addressed. By combining
RDDL modeling with planning, we have the potential to gen-
erate strong trading policies that are tailored to the specific
needs and objectives of the investor. The use of RDDL for
modelling asset allocation represents an important research
avenue in portfolio management that allows for more so-
phisticated and effective decision-making in a complex and
dynamically evolving market environment.
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Appendix: FinRDDL

In this appendix, we present comprehensive RDDL descriptions along with an example instance for both the asset allocation and
order execution problems. For asset allocation, we provide two distinct models: one with continuous action space and another
with a discretized action space.

Asset Allocation (Continuous)

Listing 1 is the domain for the asset allocation problem with continuous action space. This model is utilized by various actors,
including the uniform actor, Greedy Markowitz actor, and the MIQP actor. The tf-plan actor employs a slightly modified version
of this domain that excludes the use of the log function when computing the rewards.

Listing 1: Asset Allocation RDDL domain with a continuous action space

I NN NNy

2 |/l A simple continuous state—action MDP for the asset allocation problem with actions
describing the continuous portfolio weights.

R NN NNy

4

5 |domain asset_allocation_continuous {

6

7 requirements = { continuous, integer—valued };

8

9 types {

10 asset : object;

11 }s

12

13 pvariables {

14 // number of days between asset weight updates

15 REALLOCATION-PERIOD : { non-fluent, int, default = 60 };

16 mean(asset) : { non-—fluent, real, default = 0.0001 };

17 risk (asset) : { non-—fluent, real, default = 0.0001 };

18

19 /1 scaling factors for the risk term and transaction costs

20 alpha_risk : { non-fluent, real, default = 0.5 };

21 alpha_trans_cost : { non-fluent, real, default = 0.5 };

22

23 /1l weight of asset

24 weight(asset) : { state—fluent, real, default = 0 };

25 /!l price of the asset

26 price (asset) : { state—fluent, real, default = 0 };

27 day : { state—fluent, int, default = 0 }; // current day

28

29 set_weight(asset) : { action—fluent, real, default = 0 };

30 +s

31

32 cpfs {

33 /!l portfolio weights should sum to 1

34 weight >(?a) = if (mod[day, REALLOCATION-PERIOD| == 0)

35 then set_weight(?a) / sum_{?b: asset} set_-weight(?b)

36 else weight(?a);

37

38 /!l price evolution using a Geometric Brownian Motion

39 price '(?a) = price(?a) * exp[mean(?a) + risk(?a) % Normal(0, 1)];

40 day’ = day + 1;

41 b

42

43 reward = sum_{?a: asset} [weight(?a) = (In[price '(?a)/price(?a)]

44 — alpha_risk * risk(?a)

45 — alpha_trans_cost % abs[weight’(?a) — weight(?a)])],

46

47 state—invariants {

48 forall_{?a : asset} (weight(?a) >= 0 ~ weight(?a) <= 1);

49 forall_{?a : asset} (price(?a) >= 0);

50 +s

51




action-preconditions {
forall_{?a : asset} (set_weight(?a) >= 0 "~ set_weight(?a) <= 1);
y
JHTTLTEP i r i i i rirrrrrrry

non-fluents aa_con_0 {
domain = asset_allocation_continuous;

objects {asset : {a0,al};},

non-fluents {

mean(a0) = 0.0001
risk(a0) = 0.005;
mean(al) = 0.0001;,
risk (al) = 0.005;

y B
J111 100100l rrrrr il

instance inst_aa_con {
domain = asset_allocation_continuous

non-fluents = aa_con_0;

init-state {
weight(a0)
weight(al)
price (a0)
price (al)

1
5

I

max-nondef-actions = pos—inf;
horizon = 300/
discount = 1.0;

}

Asset Allocation (Discretized action space)

Listing 2 is the domain for the asset allocation problem with discretized action space. This model is used by the MCTS actor.

Listing 2: Asset Allocation RDDL domain with a discrete action space

N NN NNy

/A simple discrete state—action MDP for the asset allocation problem with actions
describing the discrete portfolio weights.

TIPIELTL i i i i i i i b i i i i i i i i rrrrgg

domain asset_allocation_discrete {

requirements = { };
types {

asset : object;
3

pvariables {
// number of days between asset weight updates
REALLOCATION-PERIOD : { non-fluent, int, default = 60 };
mean(asset) : { non-fluent, real, default = 0.0001 };
risk (asset) : { non-fluent, real, default = 0.0001 };

/1 scaling factors for the risk term and transaction costs
alpha_risk : { non-fluent, real, default = 0.5 };




alpha_trans_cost : { non-fluent, real, default = 0.5 };

/1 weight of asset

weight(asset) : { state—fluent, real, default = 0 };

/!l price of the asset

price(asset) : { state—fluent, real, default = 0 };

day : { state—fluent, int, default = 0 }; // current day

set_weight(asset) : { action—fluent, int, default =1 };

I
cpfs {
/!l portfolio weights should sum to 1
weight (?a) = if (mod[day, REALLOCATION-PERIOD] == 0)
then set_weight(?a) / sum_{?b: asset} set_-weight(?b)
else weight(?a);
// price evolution using a Geometric Brownian Motion
price '(?a) = price(?a) = exp[mean(?a) + risk(?a) % Normal(0, 1)];
day’ = day + 1;
};

reward = sum_{?a: asset} [weight(?a) % (In[price (?a)/price(?a)]
— alpha_risk = risk(?a)
— alpha_trans_cost % abs[weight’(?a) — weight(?a)])],

state—invariants {
forall_{?a : asset} (weight(?a) >= 0 ~ weight(?a) <= 1);
forall_{?a : asset} (price(?a) >= 0);

b
action-preconditions {
forall_{?a : asset} (set_weight(?a) >= 1 "~ set_weight(?a) <= 10);
y
JHTLTLTEE i i rrr i rirrrrrrry

non-fluents aa_dis_0 {
domain = asset_allocation_discrete ;

objects {asset : {a0,al};};

non-fluents {

mean(a0) = 0.0001;
risk (a0) = 0.005;
mean(al) = 0.0001;
risk (al) = 0.005;

I
I

LELEETEEL i rr i i b i rr i r i i i i rr i i i rr i rr i rr i rr i rr i rrrirrry

instance inst_aa_dis {
domain = asset_allocation_discrete;

non—fluents = aa_dis_0;

init-state {
weight (a0)
weight(al)
price (a0)
price (al)




86 max-nondef-actions = pos—inf;
87 horizon = 300;

88 discount = 1.0;

89 |}

Order Execution (Discretized action space)

Listing 3 is the domain for the order execution problem based on Almgren and Chriss, 2001. The action is the number of units of
the security to sell at each discrete time step and the goal is to minimize the implementation shortfall (eq 4.4).

Listing 3: Order Execution RDDL domain with a discrete action space

I NN NNy

2 |// A simple discrete state—action MDP for the order execution problem with actions
describing the discrete number of shares to sell.

K NN

4

5 |domain order_execution_discrete {

6

7 requirements = { continuous, integer—valued };

8

9 types {

10 security : object;

11 I

12

13 pvariables {

14 // Initial Share Price ($)

15 S O(security) : { non-fluent, real, default = 50 };

16

17 // Bid—Ask Spread

18 BAS(security) : { non-fluent, real, default = 0.125 };

19

20 /!l Annual Volatility (%)

21 AV(security) : { non-fluent, real, default = 0.3 };

22

23 // Median Daily Trading Volume (number of shares)

24 MDIV(security) : { non-fluent, real, default = 5000000 };

25

26 // Initial holdings (number of shares to sell)

27 X(security) : { non-fluent, int, default = 10000000 };

28

29 // Number of trades

30 N : { non-fluent, int, default =5 };

31

32 /!l Risk aversion parameter

33 lambda : { non-fluent, real, default = 0.000002 };

34

35 // Market price of the security

36 market_price(security) : { state—fluent, real, default = 0 };

37

38 /!l Execution price of the security

39 exec_price(security) : { state—fluent, real, default = 0 };

40

41 /!l Time elapsed

42 t : { state—fluent, int, default = 0 };

43

44 /!l Quantity executed

45 x(security) : { state—fluent, int, default = 0 };

46

47 /! Quantity to sell (our action)

48 n(security) : { state—fluent, int, default = 0 };

49

50 set_n(security) : { action—fluent, int, default = 0 };

51 +s

52




53 cpfs {

54 // Length of the interval

55 tau = T / N;

56

57 // Daily Volatility

58 dv(?s) = AV(?s) / sqrt[250];

59

60 /! Scaled Volatility ( ($ / share) / (day)~0.5 )
61 sigma(?s) = dv(?s) = S_.0(?s);

62

63 // Linear Permanent Impact Constant ($/share)/share
64 gamma(?s) = BAS(?s) / (0.1 % MDIV(?s));

65

66 // Fixed Cost of buying/selling ($/share)

67 epsilon(?s) = BAS(?s) / 2;

68

69 /!l Price Impact for Each 1% of Daily Volume Traded
70 eta(?s) = BAS(?s) / (0.01 %= MDIV(?s));

71

72 n(?s) = set_n(?s)

73

74 // rate of trading (execution speed)

75 v = n(?s) / tau;

76

77 /! Permenant Impact (eq 4.3)

78 perm_impact(?s) = gamma(?s) % v;

79

80 // Temporary Impact (eq 4.3)

81 temp_impact(?s) = epsilon(?s) + eta(?s) = v;

82

83 /!l Market price evolution (eq 4.2)

84 market_price '(?s) = market_price(?s)

85 + sigma(?s) * sqrt[tau] % Normal(0, 1)
86 — tau % perm-impact(?s);

87

88 /!l Execution price evolution (eq 4.3)

89 exec_price (?s) = exec_price(?s) — temp_impact(?s);
90 +s

91

92 /]l eq 4.4

93 reward = X(?s) % S_.0(?s) — n(?s) = exec_price "(?s);

94

95 state—invariants {

96 forall_{?s : security} (x(?s) <= X(?s) " n(?s) <= X(?s));
97 forall_{?s : security} (market_price(?s) >= 0);

98 +s

99

100 action-preconditions {

101 forall_{?s : security} (x(?s) <= X(?s) "~ set_.n(?s) <= X(?s));
102 +s

103

104 termination {

105 forall_{?s : security} (x(?s) >= X(?s));

106 }s

107 |}

V08 | /11111111 E it i rririr
109

110 | non—fluents oe_dis_-0 {

111 domain = order_execution_discrete

112

113 objects {security : {sO};};

114

115 non-fluents {

116 S 0(s0) = 50,

117 BAS(s0) = 0.125;




118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

AV(s0) = 0.3,
MDIV(s0) = 5000000;
X(s0) = 10000000;
N=25;

lambda = 0.000002 ;
I5
}

I NN

instance inst_oe_dis {

domain = order_execution_

non-fluents = oe_dis_0;

init-state {

discrete ;

market_price(s0) = S_0(s0);
exec_price(s0) = S_0(s0);
t =0,
x(s0) = 0;
n(s0) = 0;
}’.
max-nondef-actions = pos—inf;

horizon = 5; // Execution
discount = 1.0

time horizon (number of time periods)




