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Abstract

Industries frequently adjust their facilities network by open-
ing new branches in promising areas and closing branches in
areas where they expect low profits. In this paper, we examine
a particular class of facility location problems. Our objective
is to minimize the loss of sales resulting from the removal of
several retail stores. However, estimating sales accurately is
expensive and time-consuming. To overcome this challenge,
we leverage Monte Carlo Tree Search (MCTS) assisted by
a surrogate model that computes evaluations faster. Results
suggest that MCTS supported by a fast surrogate function
can generate solutions faster while maintaining a consistent
solution compared to MCTS that does not benefit from the
surrogate function.

Introduction
As populations shift, market trends change, and customer
demands evolve, many service industries and retail stores
are faced with the decision of adding, removing, relocat-
ing, or consolidating their facility locations. An example is
a 2018 survey that showed the market trends resulting in
some liquor stores becoming obsolete 1. In this paper, we fo-
cus on a particular class of facility location problem that in-
volves closing a fixed number of retail stores in which com-
puting the features of the evaluation function is expensive.
This problem is a Combinatorial Optimization (CO). COs
are often NP-hard and computationally intractable due to
the large state-spaces. Consequently, solving CO problems
often requires designing heuristics or approximation algo-
rithms (Williamson and Shmoys 2011). Furthermore, real-
world optimization problems are often complex, nonlinear,
and may have multiple objectives and constraints that can
be computationally expensive to evaluate. The solutions to
CO often involves the design of heuristics or approximation
algorithms.

Monte Carlo Tree Search (MCTS) (Kocsis and Szepesvári
2006; Coulom 2006) is a popular technique for solving
search problems in large spaces, particularly in the domain
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1https://www.forbes.com/sites/taranurin/2019/11/22/independent-
liquor-stores-will-become-obsolete-believe-nearly-one-out-of-
two-owners/?sh=5eb971f57b9b
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Figure 1: Surrogate assisted Monte Carlo Tree Search (SM-
CTS) where an occasional reevaluation step refines the node
values.

of games. It involves building a search tree of possible ac-
tions and their corresponding outcomes, and using evalu-
ations (simulations) to estimate the value of each action.
MCTS has been applied to a wide range of problems such
as games (Silver et al. 2017; Rubin and Watson 2011),
robotics (Kim et al. 2020), finance (Vittori, Likmeta, and
Restelli 2021) and music (Liebman et al. 2017). Recent
works have used MCTS in CO. One work used Graph Neural
Networks and Reinforcement Learning in order to compute
heuristics for the MCTS-based action selection in schedul-
ing and vehicle routing problems (Oren et al. 2021). MCTS
has also been applied to capacity expansion in a residency
matching problem to find an optimal policy for matching
medical doctors to hospital vacancies (Abe, Komiyama, and
Iwasaki 2022).

Inspired by these successes, we leverage MCTS in the
facility location problem. We propose Surrogate-assisted
MCTS (SMCTS) to solve a combinatorial search problem
where we use a fast surrogate evaluation function in concert
with the slow default evaluation function. The main evalua-
tion function is a regression model that evaluates the current
network profitability but is computationally expensive due
to the varying network-dependent features. The surrogate is
fast to compute but is less accurate. The choice of an effi-
cient surrogate function is its own research problem, and we
simply assume that a surrogate function is available. In this



paper, we focus on how to use the surrogate function jointly
with the main evaluation function, aiming at faster solution
computation. Figure 1 depicts the SMCTS steps where the
selection, expansion, evaluation (by surrogate function), and
backup is complemented by an occasional re-evaluation step
that takes place in order to refine possible inaccurate surro-
gate model evaluations.

We apply this approach to the problem of store closure in
a network of liquor stores with the goal of minimizing the
overall sales loss. Our empirical results show that by using
MCTS with a surrogate function, the overall computation
time is reduced.

Related Work
Classes of facility location problems are among the funda-
mental problems in Operations Research. Traditionally, they
have been framed using Operation Research techniques such
as set covering (Namazian and Roghanian 2021; Murray
2016; Miliotis, Dimopoulou, and Giannikos 2002), maxi-
mal covering (Church and ReVelle 1974; Berman and Krass
2002), or p-median problems where the goal is minimiz-
ing the travel distance from customers (Kariv and Hakimi
1979). Facilities could be static such as branches and ware-
houses (Zaikin, Ignatiev, and Marques-Silva 2020) or dy-
namic such as charging stations (Andrenacci, Ragona, and
Valenti 2016; Drezner and Wesolowsky 1991; Wesolowsky
1973).

Most works formulate the problem either as integer pro-
gramming or clustering methods. In the former, various
heuristic techniques such as tabu search, Lagrangian relax-
ation (Santos 2009), greedy interchange (Kuehn and Ham-
burger 1963), branch and bound (Järvinen, Rajala, and
Sinervo 1972; Dupont 2008), primal and dual (Captivo
1991), binomic approach (Maniezzo, Mingozzi, and Bal-
dacci 1998) and gamma heuristics (Rosing, Revelle, and
Schilling 1999) have been used. In the latter, some works
leveraged unsupervised clustering methods to find the de-
mand centroids for charging stations and assign customers
based on distance to the closest centroid (Andrenacci, Rag-
ona, and Valenti 2016; Ip, Fong, and Liu 2010). In some
papers, Analytic Hierarchy Process have been proposed for
banking branch location based on customer demographic
and economic features (Gorener, Dinçer, and Hacioglu
2013; Sharmin and Solaiman 2019).

Most works have used the travel distance and customer
demand as the only features in their objective and constraints
formulation. Zaikin, Ignatiev, and Marques-Silva (2020) set
the customer dissatisfaction minimization as the goal in the
branch closure problem using Max-SAT methods.

Almost all works have considered the solution to the fa-
cility location problem as a one-shot static solution where
the location of multiple facilities are selected all at once. In
practice, firms and industries would decide to alter the ex-
isiting network of facilities. One work considered removing
or addition of existing facilities using integer programming
and approximation techniques (Wang et al. 2003).

In comparison, this paper focuses on a data-driven evalu-
ation function that estimates the overall sales profit based on

numerous features such as the number and the distance of
nearby facilities. In addition, we leverage surrogate evalua-
tions as a fast evaluation for the facility location problems.

Surrogate-assisted optimization Leveraging surrogates
for optimization has already been explored by researchers
in other contexts (Namazi et al. 2020; Gu et al. 2021; Liu,
Zhang, and Gielen 2013). For instance, (Liu, Zhang, and
Gielen 2013) proposed a Gaussian Process-assisted evolu-
tionary algorithm to solve computationally expensive prob-
lems. A surrogate model has been used to prune the solution
search space in the Travelling Thief problem (Namazi et al.
2020).

To the best of our knowledge, this is the first work of
leveraging surrogates in MCTS in CO problems.

Problem Statement
This problem is a class of facility location problem in which
a fixed number of retail stores are going to be closed. There
is a city network of N ∈ N stores. We seek to remove M
stores (M < N ), that result in minimum forgone sales of the
network. Our decision variable is the vector X (|X| = N)
such that:

Xj =

{
1 if store j remains open
0 If store j remains closed

and the objective is expressed as:

Minimize
N∑
j=1

Fm(1N , j)−
N∑
j=1

Fm(X, j)

Subject to ||X||2 = M

where 1N is a vector of 1s and size N . The objective as
mentioned above is to minimize the total loss of sales as a
result of store closures and the constraint states that exactly
M stores will be closed. Fm is an evaluation function that
estimates the sales of store j. It is important to note that the
sales estimated per store depend not only upon the features
of that store, but also on other stores, including whether or
not they are closed.

Next, we describe how we find the solutions to this opti-
mization problem.

Framework
In this section, we explain the surrogate assisted MCTS
framework.

Node representation: In our search tree, a node is identi-
fied by the set of candidate stores for removal according to
the path from the root. The root node represents no store re-
moval and the tree depth is M where M is the total number
of stores to be removed from the network. In other words,
the nodes at depth M are terminal nodes. Each node keeps
duplicate attributes V ′

s and N ′
s for its value and the number

of visits in case it goes through the re-evaluation step. SM-
CTS has five components:



• Selection: Starting at the root node, the tree policy, in
our case UCB1 (Kocsis and Szepesvári 2006), is used
to select the next node based on its value, as described
below:

argmax

{
vs + C

√
Np/Ns

}
where vs is the value of the node s, Ns the number of
times node s is visited, Np is the number of times the
parent node has been visited. The choice of C affect the
ratio of exploration versus exploitation in the search.2

• Evaluate: A node can be evaluated using functions Fm

and Fs. Fm is the main evaluation function that is costly
to compute. Fs is an approximate surrogate function that
is faster to compute but less accurate compared to Fm.

• Backup: The return generated by the main or surrogate
evaluation function is backed up to update the values.

• Expand: A node is expanded to its children by remov-
ing any of the remaining stores from the network. The
number of children expanded is equal to the remaining
number of stores in the network. Removing a store can
be denoted as taking action ai ∈ A meaning the removal
of the ith store.

• Re-evaluation: A node’s children are re-evaluated if
their values are within the estimation error of the neigh-
boring nodes in the same tier.

Next, we briefly explain the SMCTS algorithm.

Algorithm: Algorithm 1 requires a surrogate function Fs

with the error bound σs, (in our case, σs is the difference be-
tween the Root Mean Squared Error (RMSE) of the Fs and
Fm) and a main evaluation function is Fm. Node s is initial-
ized with the root node s0. The selection is done using the
UCB1 algorithm where it suggests the best action a denot-
ing the next best store for removal (Lines 4-5). Once the next
node is selected, it expands into new children. (Lines 6 -7).
The value of the node is estimated by the surrogate function
Fs and backed up to the parent nodes recursively (Lines 9-
10). The novelty of SMCTS is in the re-evaluate step where
an occasional refinement of node values is done in order to
reduce value errors. The re-evaluation step is presented in
Algorithm 2. This algorithm is called when all the children
of node s are visited an equal number of times. In that case,
Algorithm 2 sorts the values of all children in the subtree
(sharing same parent node). We name the values of two ad-
jacent sorted nodes Vsi and Vsi+1 . These values may not be
accurate as they have been evaluated using Fs, therefore if
Vsi+1

−σs is less than Vsi +σs, then these node values need
to be updated with Fm. The number of times that re-evaluate
is called would depend on σs and the distribution of node
values.

Experiments
This section details the conducted experimental evaluation,
analysing the performance of SMCTS in different problem
settings. Our evaluation aimed at studying the following hy-
pothesis:

2We use v′s, N ′
p, N ′

s instead, after the node is reevaluated.

Algorithm 1: Surrogate-assisted MCTS
Input: Surrogate function Fs, evaluation function Fm,
action set A, root node s0, error bound σs

1: while Computational budget do
2: s← s0
3: while s.terminal is False do
4: a← Select(s,A)
5: s← s.children[a]
6: if s.leaf is True then
7: Expand(s)
8: end if
9: v ← Evaluate(s, Fs)

10: Backup(s, v)
11: if s.leaf is False and s.children equally visited

then
12: Re− evaluate(s, Fm, σs)
13: end if
14: end while
15: end while
16: return Node with the highest value

Algorithm 2: Re-evaluate nodes
Input: Node s, Fm, σs error bound

1: Sort children of s based on value
2: for i in [0, s.children.length− 1] do
3: vsi ← s.children[i].value
4: vsi+1 ← s.children[i+ 1].value
5: if vsi+1 − σs < vsi + σs then
6: v′si+1

← Evaluate(s.children[i+ 1], Fm)

7: v′si ← Evaluate(s.children[i], Fm)
8: Backup(si, v

′
si)

9: Backup(si+1, v
′
si+1

)
10: end if
11: end for

1. In scenarios with higher scale (large number of total
stores or large number of removals), SMCTS tends to
leverage surrogate function more than the evaluation
function.

2. The number of surrogate evaluations depends on the
surrogate quality. The higher error it has, the more re-
evaluation steps are needed.

3. With an efficient choice of a surrogate function, SMCTS
maintains a solution consistent with unassisted MCTS.

Next we explain the dataset and the evaluation functions.

Dataset: We use the Iowa Liquor Dataset 3 that contains
the daily purchase information of various liquors in each
store in the state of Iowa. The dataset has the information
of the stores such as the store name, address, coordinates,
zip code with 978 unique values, and the city name with 476

3https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-
Sales/m3tr-qhgy
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Figure 2: SMCTS where an occasional reevaluation step
refines the node values. The horizontal axis represents the
number of stores that need to be removed.
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Figure 3: SMCTS with various surrogate errors. The verti-
cal axis is the ratio of surrogate function Fs evaluations to
the total evaluations. The horizontal axis represent surrogate
functions with increasing normalized RMSEs.

cities and the type and amount of the liquor they have sold
at each day. We preprocess the data by calculating the total
sales of all liquors at each store in a year and by defining
some new features such as the number of stores in 0.5 miles
proximity. These additional features are network dependent
and require to be recomputed for every node in the tree, re-
sulting in Fm to be costly.

Evaluation Functions: Our main evaluation function Fm

is an XGBoost regression model that estimates the sales
amount for a store. Given a store removal, some features in
the dataset need to be recalculated, resulting in a costly eval-
uation. To create a surrogate function Fs, we use a subset of
the features of the dataset and train another XGBoost regres-
sion model. Fs is less accurate on sales estimation compared
to Fm. In our case, Fs has a normalized RMSE of 0.27 and
Fm has the RMSE of 0.16 (both on the test set). We use
SMCTS for liquor store removals for a given county with
varying counts of store to remove. Figure 2 shows the aver-
age ratio of the number of times Fs has been called versus
Fm for ten counties (randomly sampled) where the number
of stores in those counties ranged from 17 to 64, represent-
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Figure 4: Evaluation of the consistency of stores selected by
SMCTS vs. MCTS. The vertical axis shows the number of
the selected stores by SMCTS being different from MCTS.
The results are the average of 10 counties that are randomly
selected.

ing 70 store removal problems. We observe that with the in-
crease in the number of removed branches, the relative num-
ber of times the surrogate function is called increases, facil-
itating reduction of the overall evaluation burden. Figure 3
shows the ratio of surrogate evaluation to the total evaluation
using various surrogates with various error bound. With the
increase in the error of the surrogate, we observe an increase
in the re-evaluation step. Such increase is valuable as long as
SMCTS is consistent with MCTS store selection. Figure 4
presents the consistency comparison of the two approaches
for various store removals. We use the Sørensen–Dice co-
efficient to measure the similarity of the results of the two
methods. The values are the average of ten counties, ran-
domly sampled from the dataset. We observe that in most
cases, SMCTS output is consistent with MCTS. There is a
bit of inconsistency for 3 and 4 branch removals, such incon-
sistencies are due to the weaker estimations of FS in outlier
counties.

Conclusion & Future Work
In this work, we proposed MCTS search with surrogate
functions for combinatorial optimization. We demonstrated
that by using less accurate but faster surrogate function, we
can solve optimization problems more efficiently. We ap-
plied our approach to a store closure problem in which the
goal is to minimize the total sales loss of a retail store.

In this paper, we assumed the surrogate function is pro-
vided while this is not the case in practice. For future work,
we propose to investigate ways to implement and design the
surrogate function and the criteria for it to improve the SM-
CTS. In addition, we will explore the applicability of SM-
CTS with other datasets and domains with stochasticity in
the action space.

Disclaimer. This paper was prepared for informational pur-
poses by the Artificial Intelligence Research group of JPMorgan
Chase & Co. and its affiliates (“JP Morgan”), and is not a prod-
uct of the Research Department of JP Morgan. JP Morgan makes
no representation and warranty whatsoever and disclaims all liabil-



ity, for the completeness, accuracy or reliability of the information
contained herein. This document is not intended as investment re-
search or investment advice, or a recommendation, offer or solici-
tation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evalu-
ating the merits of participating in any transaction, and shall not
constitute a solicitation under any jurisdiction or to any person, if
such solicitation under such jurisdiction or to such person would
be unlawful.
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2020. Monte carlo tree search in continuous spaces using voronoi
optimistic optimization with regret bounds. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, 9916–9924.
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