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Abstract

Portfolio Management is the process of overseeing a group
of investments, referred to as a portfolio, with the objective
of achieving predetermined investment goals and objectives.
Portfolio Optimization is a key component that involves al-
locating the portfolio assets so as to maximize returns while
minimizing risk taken. Portfolio optimization is typically car-
ried out by financial professionals who use a combination of
quantitative techniques and investment expertise to make de-
cisions about the portfolio allocation.
Recent applications of Deep Reinforcement Learning (DRL)
have shown promising results when used to optimize portfo-
lio allocation by training model-free agents on historical mar-
ket data. Many of these methods compare their results against
basic benchmarks or other state-of-the-art DRL agents but
often fail to compare their performance against traditional
methods used by financial professionals in practical settings.
One of the most commonly used methods for this task is
Mean-Variance Portfolio Optimization (MVO), which uses
historical timeseries information to estimate expected asset
returns and covariances, which are then used to optimize for
an investment objective.
Our work is a thorough comparison between model-free DRL
and MVO for optimal portfolio allocation. We detail the
specifics of how to make DRL for portfolio optimization
work in practice, also noting the comparable tweaks needed
to get MVO operational. Backtest results display strong im-
proved performance of the DRL agent in terms of many per-
formance metrics, including Sharpe ratio, maximum draw-
downs, and absolute returns.

Introduction
Portfolio management is a key issue in the financial ser-
vices domain. It constitutes allocating funds across a diverse
variety of assets, typically to generate uncorrelated returns
while minimizing risk and operational costs. Portfolios can
constitute holdings across asset classes (cash, bonds, equi-
ties, etc.), or can also be optimized within a specific asset
class (e.g., picking the appropriate composition of stocks for
an equity portfolio). Investors may choose to optimize for
various performance criteria, often centered around maxi-
mizing portfolio returns relative to risk taken. Since the ad-
vent of Modern Portfolio Theory (Markowitz 1952), a lot of
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progress has been made in both theoretical and applied as-
pects of portfolio optimization. These range from improve-
ments in the optimization process, to the framing of ad-
ditional constraints that might be desirable to rational in-
vestors (Cornuejols and Tütüncü 2006; Li and Hoi 2014;
Kalayci et al. 2017; Ghahtarani, Saif, and Ghasemi 2022).
Recently, the community has tapped the many advancements
in Machine Learning (ML) to aid with feature selection,
forecasting and estimation of asset means and covariances,
as well as using gradient based methods for optimization.

Concurrently, the past decade has witnessed the success
of Reinforcement Learning (RL) in the fields of gaming,
robotics, natural language processing etc. (Silver et al. 2017;
Nguyen and La 2019; Su et al. 2016). The sequential deci-
sion making nature of Deep RL, along with its success in
applied settings, has captured the attention of the finance
research community. In particular, some of the most pop-
ular areas of focus of the application of DRL in finance have
been on automated stock trading (Yang et al. 2020; Théate
and Ernst 2021; Zhang, Zohren, and Roberts 2020; Wu et al.
2020), risk management through deep hedging (Buehler
et al. 2019; Du et al. 2020; Cao et al. 2021; Benhamou et al.
2020b) and portfolio optimization. In the upcoming section,
we’ll examine the landscape of DRL in portfolio optimiza-
tion and trading problems. While these approaches exhibit
improved performance than previous studies, they do have
some shortcomings. For instance, some generate discrete as-
set trading signals which limit their use in broader portfo-
lio management. Additionally, majority of these approaches
compare results against ML or buy-and-hold baselines, and
don’t consider classical portfolio optimization techniques,
such as Mean-Variance Optimization.

In our work, we aim to compare a simple and robust DRL
framework, that was designed around risk-adjusted returns,
with one of the traditional finance methods for portfolio op-
timization, MVO. We train policy gradient based agents on
a multi asset trading environment that simulates the US Eq-
uities market (using market data replay), and create observa-
tion states derived from the observed asset prices. The agents
optimize for risk-adjusted returns, not dissimilar to the tra-
ditional MVO methods. We compare the performance of the
DRL strategy against MVO through a series of systematic
backtests, and observe improved performance along many
performance metrics, including risk adjusted returns, max



drawdown, and portfolio turnover.

Related Work
There is a lot of recent research interest into the application
of Deep RL in trading and portfolio management problems.
For portfolio optimization, a lot of the research focuses on
defining various policy network configurations and reports
results that outperform various traditional baseline meth-
ods (Wang et al. 2019; Liang et al. 2018; Lu 2017; Jiang
and Liang 2017; Wang et al. 2021; Deng et al. 2016; Cong
et al. 2021). Other work explores frameworks that inject in-
formation in the RL agent’s state by incorporating asset en-
dogenous information such as technical indicators (Liu et al.
2020; Sun et al. 2021; Du and Tanaka-Ishii 2020) as well as
exogenous information such as information extracted from
news data (Ye et al. 2020; Lima Paiva et al. 2021).

The current benchmarks for DRL frameworks typically
involve comparing results against other DRL or ML ap-
proaches, a buy-and-hold baseline, or market/index perfor-
mance. However, these benchmarks may be overly simplis-
tic or provide only a relative comparison. To truly gauge the
effectiveness of a DRL agent, it would be more meaning-
ful to benchmark it against methodologies used by financial
professionals in practice, such as Mean Variance Optimiza-
tion (MVO).

While there are some approaches that compare DRL per-
formance with MVO (Li et al. 2019; Koratamaddi et al.
2021; i Alonso, Srivastava et al. 2020), the comparison sim-
ply serves as another baseline, and the methodology is not
clearly described because an in-depth comparison is not the
primary focus of their study. To our knowledge, there is only
one study that goes into a robust in-depth comparison of
MVO and DRL (Benhamou et al. 2020a). However, across
all these studies, there is usually a discrepancy between the
reward function used to train the RL agent, and the objective
function used for MVO (for e.g., daily returns maximization
vs risk minimization). In order to make a fair comparison, it
is crucial that both approaches optimize for the same goal.
Additionally, some of these approaches provide exogenous
information (e.g., signals from news data) to the DRL agent,
which makes for a biased comparison with MVO. Addition-
ally, none of these works provide implementation details for
the MVO frameworks they used for their comparison. We
aim to address these issues by conducting a robust compar-
ison of Deep RL and Mean-Variance Optimization for the
Portfolio Allocation problem.

Background
The goal of portfolio optimization is to continuously diver-
sify and reallocate funds across assets with the objective of
maximizing realized rewards while simultaneously restrain-
ing the risk. In practice, portfolio management often aims to
not only maximize risk-adjusted returns but also to perform
as consistently as possible over a given time interval (e.g. on
a quarterly or yearly basis).

Markowitz introduced the modern portfolio theory (MPT)
(Markowitz 1952), a framework that allows an investor to
mathematically balance risk tolerance and return expecta-

tions to obtain efficiently diversified portfolios. This frame-
work relies on the assumption that a rational investor will
prefer a portfolio with less risk for a specified level of re-
turn and concludes that risk can be reduced by diversifying
a portfolio. In this section, we will introduce Mean Variance
Optimization (MVO) – one of the main techniques of the
MPT – which we later compare to the performance of our
DRL framework. Additionally, we introduce RL preliminar-
ies, describing the technique independent of portfolio opti-
mization.

Mean-Variance Portfolio Optimization
Mean-Variance Optimization (MVO) is the mathematical
process of allocating capital across a portfolio of assets (op-
timizing portfolio weights) to achieve a desired investment
goal, usually: 1. Maximize returns for a given level of risk,
2. Achieve a desired rate of return while minimizing risk, or
3. Maximize returns generated per unit risk. Risk is usually
measured by the volatility of a portfolio (or asset), which is
the variance of its rate of return. For a given set of assets,
this process requires as inputs the rates of returns for each
asset, along with their covariances. As the true asset returns
are unknown, in practice, these are estimated or forecasted
using various techniques that leverage historical data.

This task is then framed as an optimization problem, sin-
gle or multi-objective, which can be solved in a variety of
ways (Cornuejols and Tütüncü 2006; Kalayci et al. 2017;
Ghahtarani, Saif, and Ghasemi 2022).

A typical procedure is to solve it as a convex optimization
problem and generate an efficient frontier of portfolios such
that no portfolio can be improved without sacrificing some
measure of performance (e.g., returns, risk). Let w be the
weight vector for a set of assets, µ be the expected returns,
the portfolio risk can be described as wTΣw, for covariance
matrix Σ. To achieve a desired rate of return µ∗, we can solve
the portfolio optimization problem:

minimize
w

wTΣw

subject to wTµ ≥ µ∗,

wi ≥ 0,∑
wi = 1

Varying µ∗ gives us the aforementioned efficient frontier.
Another common objective is the Sharpe Ratio (Sharpe

1998; Chen, He, and Zhang 2011), which measures the re-
turn per unit risk. Formally, for portfolio p, the Sharpe Ratio
is defined as:

Sharpe Ratiop =
E[Rp −Rf ]

σp

where Rp are the returns of the portfolio, σp is the stan-
dard deviation of these returns, and Rf is a constant risk-free
rate (e.g., US Treasuries, approximated by 0.0% in recent
history). Although tricky to solve in its direct form –

max
w

µTw −Rf

(wTΣw)1/2



– it can be framed as a convex optimization problem through
the use of a variable substitution (Cornuejols and Tütüncü
2006). We choose the Sharpe Ratio as our desired objective
function for this study as we can optimize for risk-adjusted
returns without having to specify explicit figures for mini-
mum expected returns or maximum risk tolerance.

Reinforcement Learning
Reinforcement Learning (RL) is a sub-field of machine
learning that refers to a class of techniques that involve
learning by optimizing long-term reward sequences obtained
by interactions with an environment (Sutton and Barto
2018). An environment is typically formalized by means of
a Markov Decision Process (MDP). An MDP consists of a a
5-tuple (S,A, Pa, Ra, γ), where:
• S is a set of states
• A is a set of actions
• Pa(s, s

′) = Pr(st+1 = s′ | st = s, at = a) is the
probability that action a in state s at time t will lead to
state s′ at time t+ 1

• Ra(s, s
′) is the immediate reward received after transi-

tioning from state s to state s′, due to action a

• γ is a discount factor between [0, 1] that represents the
difference in importance between present and future re-
wards

A solution to an MDP is a policy π that specifies the action
π(s) that the decision maker will choose when in state s.
The objective is to choose a policy π that will maximize
the expected discounted sum of rewards over a potentially
infinite horizon:

E

[ ∞∑
t=0

γtRat
(st, st+1)

]
The field of Deep Reinforcement Learning (DRL) lever-

ages the advancements in Deep Learning by using Neu-
ral Networks as function approximators to estimate state-
action value functions, or to learn policy mappings π. These
techniques have seen tremendous success in game-playing,
robotics, continuous control, and finance (Mnih et al. 2013;
Berner et al. 2019; Nguyen and La 2019; Hambly, Xu, and
Yang 2021; Charpentier, Elie, and Remlinger 2021).

RL for Portfolio Allocation Given its success in stochas-
tic control problems, RL extends nicely to the problem of
portfolio optimization. Therefore, it is not surprising that the
use of DRL to perform tasks such as trading and portfolio
optimization has received a lot of attention lately. Recent
methods focus on learning deep features and state represen-
tations, for example, through the use of embedding features
derived from deep neural networks such as autoencoders and
LSTM models. These embeddings capture price related fea-
tures which can range from technical indicators (Wang et al.
2019; Soleymani and Paquet 2020; Wang et al. 2021), to in-
formation extracted from news in order to account for price
fluctuations (Ye et al. 2020). Other proposed features use
attention networks or graph structures (Wang et al. 2021,
2019) to perform cross-asset interrelationship feature extrac-
tion.

Problem Setup
We frame the portfolio optimization problem in the RL set-
ting. As described in the Background section, RL entails
learning in a framework with interactions between an agent
and an environment. For the portfolio optimization setting,
we create an environment that simulates the US Equities
market (using market data replay), and create observation
states derived from the observed asset prices. The agent’s
actions output a set of a portfolio weights, which are used to
rebalance the portfolio at each timestep.

Actions
For portfolio allocation over N assets, an agent selects port-
folio weights w = [w1, . . . , wn] such that

∑N
i=1 wi = 1,

where 0 ≤ wi ≤ 1. An asset weight of 0 indicates zero hold-
ings of a particular asset in a portfolio, whereas a weight of
1 means the entire portfolio is concentrated in said asset. In
extensions of this framework, wi < 0 would allow for short-
ing an asset, whereas wi > 1 indicates a leveraged position.
However, for our case, we restrict actions to non-leveraged
long-only positions. These constraints can be enforced by
applying the softmax function to an agent’s continuous ac-
tions.

States
An asset’s price at time t is denoted by Pt. The one-period
simple return is defined as Rt =

Pt−Pt−1

Pt−1
. Consequently, the

one-period gross return can be defined as Pt

Pt−1
= Rt + 1.

Further, we can define the one-period log return as rt =
log( Pt

Pt−1
) = log(Rt + 1). For our setting, we choose the

time period to be daily, and therefore calculate daily log
returns using end-of-day close prices. An asset’s log re-
turns over a lookback period T can then be captured as
rt = [rt−1, rt−2, . . . , rt−T+1]. In our case, the lookback
period is T = 60 days.

For a selection of n + 1 assets - n securities and cash
(denoted by c) - we form the agent’s observation state at
time t, St as a [(n+ 1)× T ] matrix:

St =


w1 r1,t−1 . . . r1,t−T+1

w2 r2,t−1 . . . r2,t−T+1

...
. . .

...
wn rn,t−1 . . . rn,t−T+1

wc vol20
vol20
vol60

VIXt . . .


The first column is the agent’s portfolio allocation vec-

tor w as it enters timestep t. This might differ slightly from
the portfolio weights it chooses at the timestep before, as
we convert the continuous weights into an actual allocation
(whole shares only), and rebalance the allocation such that
it sums to 1.

For each non-cash asset, we include the log re-
turns over T . These are represented by the vector
[rn,t−1, . . . , rn,t−T+1] for asset n in the state matrix above.
Additionally, in the last row, we include three market volatil-
ity indicators at time t: vol20, vol20

vol60
, VIX, which we describe

in detail in the Experiments section.



Reward
Rather than maximizing returns, most modern portfolio
managers attempt to maximize risk-adjusted returns. Since
we wish to utilize DRL for portfolio allocation, we want a
reward function that helps optimize for risk-adjust returns.
The Sharpe ratio is the most widely-used measure for this,
however, it is inappropriate for online learning settings as it
is defined over a period of time T . To combat this, we use
the Differential Sharpe Ratio Dt (Moody et al. 1998) which
represents the risk-adjusted returns at each timestep t and
has been found yield more consistent returns than maximiz-
ing profit (Moody and Saffell 2001; Dempster and Leemans
2006). Therefore, an agent that aims to maximize its future
Differential Sharpe rewards learns how to optimize for risk
adjusted returns.

We can define the Sharpe Ratio over a period of t returns
Rt, in terms of estimates of the first and second moments of
the returns’ distributions:

St =
At

Kt(Bt −A2
t )

1/2

with

At =
1

t

t∑
i=1

Ri and Bt =
1

t

t∑
i=1

R2
i , Kt = (

t

t− 1
)1/2

where Kt is a normalizing factor.
A and B can be recursively estimated as exponential mov-

ing averages of the returns and standard deviation of returns
on time scale η−1. We can obtain a differential Sharpe ratio
Dt by expanding St to first order in η:

St ≈ St−1 + ηDt|η=0 +O(η2)

Where Differential Sharpe Ratio Dt:

Dt ≡
∂St

∂η
=

Bt−1∆At − 1
2At−1∆Bt

(Bt−1 −A2
t−1)

3/2

with

At = At−1 + η∆At

Bt = Bt−1 + η∆Bt

∆At = Rt −At−1

∆Bt = R2
t −Bt−1

initialized with A0 = B0 = 0. We pick η ≈ 1
252 (a year has

approximately 252 trading days).

Learning Algorithm
RL algorithms can be mainly divided into two categories,
model-based and model-free, depending whether the agent
has access to or has to learn a model of the environment.
Model-free algorithms seek to learn the outcomes of their
actions through collecting experience via algorithms such as
Policy Gradient, Q-Learning, etc. Such an algorithm will try
an action multiple times and adjust its policy (its strategy)
based on the outcomes of its action in order optimize re-
wards.

Policy Optimization Policy optimization methods are
centered around the policy πθ(a|s) which is the function
that maps the agent’s state s to the distribution of its next
action a. These methods optimize the parameters θ either by
gradient ascent on the performance objective J(πθ) or by
maximizing local approximations of J(πθ). This optimiza-
tion is almost always performed on-policy since the experi-
ences are collected using the latest learned policy, and then
using that experience to improve the policy. Some exam-
ples of popular policy optimization methods are A2C/A3C
(Mnih et al. 2016) and PPO (Schulman et al. 2017). For our
experiments we use PPO.

RL Environment Specifics
The environment serves as a wrapper for the market, sliding
over historical data in an approach called market replay. It
also serves as a broker and exchange; at every timestep, it
processes the agents’ actions and rebalances the portfolio
using the latest prices and the given allocation. As the day
shifts and new prices are received, it communicates these to
the agent as observations, along with the Differential Sharpe
reward. For the purposes of this study, we assume that there
are no transaction costs in the environment, and we allow for
immediate rebalancing of the portfolio.

At the beginning of each timestep t, the environment cal-
culates the current portfolio value:

port valt =
∑

Pi,t ∗ sharesi,t−1 + ct−1

In the above expression, Pi is the price of index i at day
t, sharesi,t−1 are the index shares at t − 1, and ct−1 is the
amount of cash at t− 1.

In order to calculate sharesi,t and ct, the environment al-
locates port valt to the indices and cash according to the
new weights wi. Next, it rebalances the portfolio weights wi

to wi reb by multiplying wi with the current portfolio value,
rounding down the number of shares and converting the re-
maining shares into cash.

After rebalancing, the environment creates the next state
St+1 and proceeds to the next timestep t+1. It calculates the
new portfolio value based on Pt+1 and computes the reward
Rt = Dt which it returns to the agent.

Experiments
Data & Features
For our experiments, we use daily adjusted close price data
of the S&P500 sector indices as shown in Figure 1, the VIX
index and the S&P500 index between 2006 and 2021 (inclu-
sive), extracted from Yahoo Finance. The price data is used
to compute log returns, as described in a previous section.

To capture market regime, we compute three volatility
metrics from the S&P500 index. The first one, vol20, is
the 20-day rolling window standard deviation of the daily
S&P500 index returns, the second, vol60, is the 60-day
rolling window standard deviation of the daily S&P500 in-
dex returns and the third is the ratio of these two vol20

vol60
. This

ratio indicates the short-term versus the long-term volatil-
ity trend. If vol20

vol60
> 1, that indicates that the past 20-day



Figure 1: S&P500 and its 11 sector indices between 2006
and 2021.

daily returns of the S&P500 have been more volatile than
the past 60-day daily returns, which might indicate a move-
ment from lower volatility to a higher volatility regime (and
vice versa). We use the first and third metrics in the obser-
vation matrix, along with the value of the VIX index. These
values are standardized by subtracting the mean and dividing
by the standard deviation, where the mean and standard de-
viation are estimated using an expanding lookback window
to prevent information leakage.

Deep RL Approach
Training Process Although financial data is notoriously
scarce (atleast on the daily scale), we want to test the DRL
framework across multiple years (backtests). Additionally,
financial timeseries exhibit non-stationarity (Cont 2001);
this can be tackled by retraining or fine-tuning models by
utilizing the most recently available data. In light of these
stylized facts, we devise our experiment framework as fol-
lows:

The data is split into 10 sliding window groups (shifted
by 1-year). Each group contains 7 years worth of data, the
first 5 years are used for training, the next 1 year is a burn
year used for training validation, and the last year is kept
out-of-sample for backtesting.

During the first round of training, we initialize 5 agents
(different seeds) with the hyperparameters described in the
following section. All five agents start training on data from
[2006 − 2011) and their performance is periodically evalu-
ated using the validation period 2011. At the end of the first
round of training, we save the best performing agent (based
on highest mean episode validation reward). The final year
(2012) is kept held-out for backtesting.

This agent is used as a seed policy for the next group of
5 agents in the following training window [2007 − 2012),
validation year 2012 and testing year 2013, where this ex-
periment is repeated. This process continues till we reach
the final validation period of 2020, generating a total of 50

training timesteps 7.5M
n envs 10
n steps 756
batch size 1260
n epochs 16
gamma 0.9
gae lambda 0.9
clip range 0.25
learning rate 3e-4 annealed to 1e-5

Table 1: Hyperparameters used for PPO.

agents (10 periods x 5 agents), and 10 corresponding back-
tests (described in a following section).

PPO Implementation & Hyperparameters We use the
StableBaselines3 (Raffin et al. 2021) implementation of
PPO, and report the hyperparameters used in Table 1. These
were picked based on empirical studies (Henderson et al.
2018; Engstrom et al. 2019; Rao et al. 2020), as well as a
coarse grid search over held-out validation data.

Additionally, we make use of the Vectorized Sub-
ProcVecEnv environment wrappers provided by StableBase-
lines3 to collect experience rollouts through multiprocessing
across independent instances of our environment. Therefore,
instead of training the DRL agent on one environment per
step, we trained our model on n envs = 10 environments
per step in order to gain more diverse experience and speed
up training.

Each round of training lasted a total 7.5M timesteps
so as to have approximately 600 episodes per round per
environment: (252 trading days per yr × 5 yrs per round)×
(10 environments)×(600 episodes) ≈ 7.5M timesteps. The
rollout buffer size was set to n steps = 252×3×n envs so
as to collect sufficient experiences across environments. We
set up the learning rate as a decaying function of the current
progress remaining, starting from 3e− 4, annealed to a final
value of 1e−5. We used a batch size of 1260 = (252×5),
set the number of epochs when optimizing the surrogate loss
to n epochs = 16, picked the discount factor γ = 0.9,
set the bias-variance trade-off factor for Generalized Advan-
tage Estimator gae lambda = 0.9 and clip range = 0.25.
Additionally, we use a [64, 64] fully-connected architecture
with tanh activations, and intiailize the policy with a log
standard deviation log std init = −1.

Mean-Variance Optimization Approach
As we wish to compare the model-free DRL approach with
MVO, we equalize the training and operational conditions.
For training, the MVO approach uses a 60-day lookback pe-
riod (same as DRL) to estimate the means and covariances
of assets. Asset means are simply the sample means over the
lookback period. However, we do not directly use the sam-
ple covariance, as this has been shown to be subject to esti-
mation error that is incompatible with MVO. To tackle this,
we make use of the Ledoit-Wolf Shrinkage operator (Ledoit
and Wolf 2004). Additionally, we enforce non-singular and
positive-semi-definite conditions on the covariance matri-



Metric DRL MVO
Annual return 0.1211 0.0653

Cumulative returns 0.1195 0.0650
Annual volatility 0.1249 0.1460

Sharpe ratio 1.1662 0.6776
Calmar ratio 2.3133 1.1608

Stability 0.6234 0.4841
Max drawdown -0.3296 -0.3303

Omega ratio 1.2360 1.1315
Sortino ratio 1.7208 1.0060

Skew -0.4063 -0.3328
Kurtosis 2.7054 2.6801
Tail ratio 1.0423 0.9448

Daily value at risk -0.0152 -0.0181

Table 2: Statistics for the DRL and MVO approaches. All
metrics are averaged across 10 backtests (backtesting pe-
riod: [2012 − 2021]), except Max Drawdown which is re-
ported as the maximum seen in any period.

ces, setting negative eigenvalues to 0, and then rebuilding
the non-compliant matrices.

Given the estimated means and covariances for a look-
back period, we then optimize for the Sharpe Maximization
problem and obtain the weights at every timestep. We use
the implementation in PyPortfolioOpt (Martin 2021) to aid
us with this process.

Evaluation & Backtesting
We evaluate the performance of both techniques through 10
independent backtests [2012 − 2021]. Both strategies start
each backtest period with an all cash portfolio allocation of
$100, 000. Then, the strategies trade daily using the portfo-
lio weights obtained by each method, enforcing for weight
constraints

∑
w = 1, 0 ≤ wi ≤ 1, and ensuring only whole

number of shares are purchased. By doing so, we can obtain
daily portfolio values (and returns), which we subsequently
use to compute the statistics we will discuss in the Results
section. These are computed with the aid of the Python li-
brary Pyfolio.

DRL Agent: We evaluate the trained PPO agents in de-
terministic mode. For each backtest, the agent used has a
gap burn year between the last day seen in training and the
backtest period. For example, a DRL backtest carried out in
2012 would use an agent trained in [2006−2011), with 2011
being the burn year.

MVO: As the MVO approach does not require any train-
ing, it simply uses the past 60-day lookback period before
any given day to calculate portfolio weights. For example,
a MVO backtest starting January 2012 will use data starting
October 2011 (this 60-day window shifts with each day).

Results
Figure 2 illustrates the performance metrics obtained by
applying the aforementioned backtest process on all test-

ing periods [2012-2021]. The DRL agent outperforms the
MVO portfolio by exhibiting higher Sharpe and lower yearly
maximum drawdowns in virtually every year throughout the
backtest period (see Figure 1). It also outperforms the MVO
portfolio in terms of having marginally lower maximum
drawdown.

To compare overall performance on the entire backtest pe-
riod between the two methods, we compute the average per-
formance across all 10 backtest periods. For DRL, we aver-
age the performance across the 5 agents (each trained on a
different seed) for each year and then average performance
across all backtest periods. Similarly, for MVO, we average
its performance across all 10 years. By looking at Table 2 we
observe that DRL annual returns and Sharpe ratio are 1.85x
higher than those of the MVO portfolio. The DRL strategy’s
Sharpe throughout the whole backtest period is 1.16x com-
pared to 0.66x for MVO.

Figure 3a) and Figure 4a) plot the monthly returns over all
backtest periods for the two methods. It is evident that DRL
is experiencing more steady returns month-to-month than
MVO. On the other hand, MVO swings between periods of
high returns to periods of low returns a lot more frequently
without a steady positive return trajectory. Similarly, in Fig-
ure 3b) and Figure 3b), we plot the annual returns for the
two methods. The vertical dashed line indicates the average
annual return across the 10 backtests. For DRL we observe
positive returns for almost all backtest years which is a lot
more consistent than the behavior of MVO’s annual returns.
Figure 3c) and Figure 3c) plot the distribution of monthly re-
turns averaged across all months. The DRL monthly returns
distribution has a lower standard deviation and and spread
than MVO and a positive mean.

Further, we compute the daily portfolio change for each
strategy by measuring the change in its portfolio weights.
∆pw is the absolute value of the element-wise difference
between two allocations (ignoring the cash component). As
buying and selling are treated as individual transactions,
∆pw ∈ [0.0, 2.0]. For example, take a case where the port-
folio at time t−1 is concentrated in non-cash asset A, and at
time t is entirely concentrated in non-cash asset B. This re-
quires selling all holdings of A, and acquiring the equivalent
shares in B, leading to ∆pw = 2.0.

Using metric ∆pw, we observe that the Reinforcement
Learning strategy has less frequent changes to its portfolio.
In practice, this would result in lower average transaction
costs. In particular, the average change in portfolio composi-
tion is nearly double for Mean-Variance portfolio compared
to the DRL strategy during market downturn in March 2020,
as shown in Figure 2, when trading conditions were partic-
ularly challenging (i.e. significantly lower market liquidity
and elevated bid/ask spreads). Finally, the DRL strategy’s
performance is derived from the average of five individual
agents initialized with different seeds, providing additional
regularization which is likely to result in a more stable out-
of-sample strategy compared to the MVO strategy.

Conclusion
We highlight our key contributions as follows:



Figure 2: Backtest Results: MVO vs DRL Portfolio Allocation.

Figure 3: a) DRL Monthly Returns b) DRL Annual Returns c) DRL Monthly Distribution of Returns.

Figure 4: a) MVO Monthly Returns b) MVO Annual Returns c) MVO Monthly Distribution of Returns.



• We have designed a simple environment that serves as
a wrapper for the market, sliding over historical data us-
ing market replay. The environment can allocate multiple
assets and can be easily modified to reflect transaction
costs.

• We compare our framework’s performance during ten
backtest experiments over different periods for the US
Equities Market using S&P500 Sector indices. Our ex-
periments demonstrate the improved performance of
the deep reinforcement learning framework over Mean-
Variance portfolio optimization.

• The profitability of the framework surpasses MVO in
terms of Annual Returns, Sharpe ratio and Maximum
Drawdown. Additionally, we observe that DRL strategy
leads to more consistent returns and more stable port-
folios with decreased turnover. This has implications for
live-deployment, where transaction costs and slippage af-
fect P&L.

Future Work
In our future work, we would like to model transaction costs
and slippage either by explicitly calculating them during as-
set reallocation or as a penalty term to our reward. Moreover,
we would like to explore adding a drawdown minimization
component to our reward that will potentially help the agent
learn a more consistent trading strategy.

Another area of exploration is training a regime switching
model which will balance its funds amongst two agents de-
pending on market volatility (low vs high). One of them will
be a low-volatility trained agent and the other a high volatil-
ity trained agent. We would like to compare performance
between our current implicit regime parametrization and an
explicit one. Further exploration of these research directions
may produce significant insights into practical trading be-
havior.

Disclaimer: This paper was prepared for information
purposes by the Artificial Intelligence Research group of
J. P. Morgan Chase & Co. and its affiliates (“J. P. Morgan”),
and is not a product of the Research Department of J. P. Mor-
gan. J. P. Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness,
accuracy or reliability of the information contained herein.
This document is not intended as investment research or in-
vestment advice, or a recommendation, offer or solicitation
for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for
evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to
any person, if such solicitation under such jurisdiction or to
such person would be unlawful.
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Cornuejols, G.; and Tütüncü, R. 2006. Optimization meth-
ods in finance, volume 5. Cambridge University Press.
Dempster, M. A.; and Leemans, V. 2006. An automated FX
trading system using adaptive reinforcement learning. Ex-
pert Systems with Applications, 30(3): 543–552.
Deng, Y.; Bao, F.; Kong, Y.; Ren, Z.; and Dai, Q. 2016. Deep
direct reinforcement learning for financial signal representa-
tion and trading. IEEE transactions on neural networks and
learning systems, 28(3): 653–664.
Du, J.; Jin, M.; Kolm, P. N.; Ritter, G.; Wang, Y.; and Zhang,
B. 2020. Deep reinforcement learning for option replication
and hedging. The Journal of Financial Data Science, 2(4):
44–57.
Du, X.; and Tanaka-Ishii, K. 2020. Stock embeddings ac-
quired from news articles and price history, and an appli-
cation to portfolio optimization. In Proceedings of the 58th
annual meeting of the association for computational linguis-
tics, 3353–3363.
Engstrom, L.; Ilyas, A.; Santurkar, S.; Tsipras, D.; Janoos,
F.; Rudolph, L.; and Madry, A. 2019. Implementation mat-
ters in deep rl: A case study on ppo and trpo. In International
conference on learning representations.
Ghahtarani, A.; Saif, A.; and Ghasemi, A. 2022. Robust
portfolio selection problems: a comprehensive review. Op-
erational Research, 1–62.
Hambly, B.; Xu, R.; and Yang, H. 2021. Recent ad-
vances in reinforcement learning in finance. arXiv preprint
arXiv:2112.04553.
Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup,
D.; and Meger, D. 2018. Deep reinforcement learning that
matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32.



i Alonso, M. N.; Srivastava, S.; et al. 2020. Deep reinforce-
ment learning for asset allocation in us equities. Technical
report.
Jiang, Z.; and Liang, J. 2017. Cryptocurrency portfolio man-
agement with deep reinforcement learning. In 2017 Intelli-
gent Systems Conference (IntelliSys), 905–913. IEEE.
Kalayci, C.; Ertenlice, O.; Akyer, H.; and Aygören, H. 2017.
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