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Abstract
Stochastic optimization (SO) attempts to offer optimal
decisions in the presence of uncertainty. Often, the classical
formulation of these problems becomes intractable due to a)
the number of scenarios required to capture the uncertainty
and b) the discrete nature of real-world planning problems.
To overcome these tractability issues, practitioners turn to
decomposition methods that divide the problem into smaller
more tractable sub-problems. The focal decomposition
method of this paper is Benders decomposition (BD), which
decomposes stochastic optimization problems on the basis
of scenario independence. In this paper we propose a
method of accelerating BD with the aid of a surrogate
model in place of an NP-hard integer master problem.
Through the acceleration method we observe 30% faster
average convergence when compared to other accelerated
BD implementations. In a working example, we introduce
an RL agent as a surrogate and solve stochastic inventory
management problems.

Introduction
Optimization is frequently subject to conditions of
uncertainty. If this uncertainty is not sufficiently accounted
for by a solution, even minor perturbations in the
environment can devalue results and lead to catastrophic
outcomes. While uncertainty can often be simulated or
even parameterized, solving over that uncertainty offers
incredible complexity. To make optimal decisions that
consider both the uncertainty and constraints of a system,
the field of SO is often applied. SO considers a distribution
of possible scenarios rather than a deterministic event, and
seeks an optimal outcome across the range of possibilities.

A common challenge for stochastic optimization is
tractability. Generating an optimal decision that considers
its outcome across a large number of scenarios can be
extremely costly. To combat these computational issues, a
common approach is to decompose the problem into simpler
and independent sub-problems that can be combined to
retrieve a global certificate of optimality. In this paper, we
offer an adaptation of the common decomposition method
of Benders decomposition (BD).
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Despite wide usage since its introduction, BD suffers
from two well-known practical limitations. First, in discrete
space BD relies on an NP-hard mixed-integer master
problem (MIMP). This MIMP is responsible for making
global decisions that are homogeneous across scenarios.
Second, with each iteration a set of scenario-specific
sub-problems (SP) generate gradient approximations that
are passed to the MIMP as constraints (or cuts). The result
is a MIMP with complexity that scales linearly with the
number of required iterations as constraints are added.

Given these deficiencies, accelerating BD has become
a compelling research problem. In production routing
applications, Adulyasak et al. (2015) implement
lower-bound lifting inequalities to tighten initial lower
bounds, and exploit scenario grouping to reduce added
complexity at each iteration. Baena et al. (2020) attempt to
localize the loss approximation of BD by restricting each
iteration to a subspace centered around strong past solutions.
Crainic et al. (2016) aid initial iterations by including an
informative subset of scenarios within the MIMP. Lee et
al. (2021) offer a machine learning approach to predicting
constraint importance; retaining only important cuts and
limiting MIMP complexity. Each of these proposals has
shown computational benefits, but remain solely dependent
on the expensive MIMP to generate successive solutions.
In contrast, Poojari and Beasley (2009) replace the MIMP
with a genetic algorithm to produce faster feasible solutions.
Although the heuristic produces fast master problem (MP)
solutions, it is still reliant on SP approximations to
undertstand scenario loss, and offers feasible as opposed to
certifiably optimal solutions.

Our proposal introduces a surrogate model to quickly
generate solutions to the discrete MP rather than relying on
the MIMP. This surrogate generates fast solutions to unseen
problems after learning the loss of decisions in similar
stochastic environments. At varying rates, the MIMP is still
run to retrieve the certificate of optimality offered by BD. In
total, our contributions are:
• A generalized method of accelerating BD that retrieves

optimal solutions to stochastic optimization problems
while drastically reducing run times.

• A solution selection method that uses cuts from BD
sub-problems to inform selection of future surrogate MP
solutions; offering a further unification of the surrogate



MP within the BD framework.
• A worked inventory management problem with detailed

implementation of the acceleration method. We offer an
explicit Benders formulation, and leverage an RL model
as our surrogate MP.

• Experiments showing a 30% reduction in run-time vs
alternative acceleration methods.

Background
A widely used form of stochastic optimization is Sample
Average Approximation (SAA). SAA aims to approximate
loss over the distribution of possible scenarios using
simulation. In SAA, R scenarios are simulated, with each
simulation yielding its own deterministic sub-problem with
a loss function f(x,w,Dr), where x is a set of global
decisions (universal across all scenarios), w is a cost vector,
and Dr is a set of scenario-specific parameters. The total
loss of the problem is then computed as an average of the
loss across all scenarios,

ℓ(x) =
1

R

∑
∀r∈R

f(x,w,Dr) (1)

Despite success in a number of optimal planning domains,
the struggles of scaling SO problems are well documented.
For example, Gendreau et al. (1996) note that when solving
stochastic vehicle routing problems, practitioners commonly
resort to comparing heuristics as exact methods become
intractable. To combat scalability issues, decomposition
methods are commonly employed to solve large-scale SO
problems. Here we introduce the principles of Benders
decomposition. Consider an SAA problem of the form:

min
x,y

cTx+
1

R

∑
∀r∈R

wT yr (2)

subject to
Ax = b (3)

Bx+Dryr = g, ∀r ∈ R (4)

x ∈ Z, yr ∈ Z+, ∀r ∈ R (5)

where x is again our set of global decisions, A, b, and B
are parameters that define constraints on x, c is the cost of
global decisions, Dr and g are scenario-specific parameters,
yr is a set of decisions made independently within each
scenario, and w is a cost applied to each scenario-specific
decision. In this formulation, wT yr is equivalent to (1). The
first step of BD is to separate the global decision variables
x and scenario-specific decision variables yr. This leaves us
with a master problem

{min
x,θ

cTx+
1

R

∑
∀r∈R

θr : Ax = b, x ∈ Z+} (6)

and a collection of R sub-problems, where for each r ∈ R
we have

{min
yr

wT yr : Dryr = g −Bx∗, yr ∈ R+} (7)

The sub-problems accept a fixed x∗ based on the solution
to (6), and are solved to obtain optimal sub-problem
decisions yr. Note that BD introduces a set of auxiliary
variables θr,∀r ∈ R to the master problem (6). This
auxiliary variable, frequently called the recourse variable,
is responsible for tracking an approximation of the
sub-problem loss that has been moved to (7). Let us assume
the sub-problem is always feasible. This is not a necessary
assumption, but simplifies the following description of BD.

Note that integrality on yr has been relaxed in the
sub-problem. This relaxation is necessary for Benders
decomposition, and only possible when a) the sub-problem
variables were not discrete to begin with or b) the
decomposition results in a totally-unimodular sub-problem
structure. Taking the dual of the sub-problem, we get:

{max
qr

qTr (g −Bx∗) : qTr Dr ≤ w} (8)

The dual sub-problem has three essential properties. First,
through strong duality the optimal value of (8) is equivalent
to the optimal value of (7) at x∗. Second, the objective
function (8) is linear with respect to the master problem
decisions x. And lastly, with the optimal dual values of q∗r
we can establish

{minyr
wT yr : Dryr = g −Bx} ≥

q∗Tr (g −Bx),∀x ∈ R,∀w ∈ R (9)

via weak duality. With these traits established, we see that
the optimal dual SP objective q∗Tr (g −Bx) can be included
as a valid constraint on θr in the MIMP. These constraints
serve as a sub-gradient approximations of the SP loss. For
each SP solution, we can update the MIMP with the valid
constraint of θr ≥ q∗Tr (g − Bx) and re-solve for a new
x. This process is repeated until the SP’s do not offer any
strengthening constraints on θr, indicating convergence and
full approximation of SP loss. Figure 1 offers a visual
representation of this process.

Figure 1: Iterative procedure of Benders decomposition,
alternating between a MIMP (6) and SP (8).

Reinforcement Learning
Reinforcement learning (RL) offers a powerful approach to
solving combinatorial problems. Delarue et al. (2020) gives
one such example of RL applied to combinatorial problems,
solving notoriously challenging capacitated vehicle routing
problems using value-based methods. As shown in Delarue



et al., the benefit of RL-based methods is that after learning
the optimal policy they can generate actions in discrete space
very quickly, albeit without a guarantee of optimality.

RL is typically based on the Markov Decision Process
(MDP) framework as described by Sutton and Barto (2018).
This can be defined by a tuple ⟨S,A, T ,R⟩ where S is the
set of states, A is the set of actions, T is a set of transition
probabilities from state s to the next state s′, and R is the
reward function. In temporal environments, we can adopt
the notation of st ∈ S, at ∈ A for the state and action of a
given time step t.

In RL, an agent attempts to learn the optimal action in
a given state. Performance is measured by the collective
rewards over future states and actions. The behaviors of
the agent are updated based on prior experience, and can
collectively be defined by a policy, π(s, a). RL algorithms
can be broadly partitioned into two classes: value-based and
policy based. In a value-based implementations, the policy
π(s, a) is selected using value-function approximation
methods, where

Qπ(st, at) =
∑
∀j∈T

Est+1,at+1,...[γtR(st+j , at+j)] (10)

is the expected reward of an action, γt is a discount
rate placed on future reward, and an optimal policy is
deterministically selected based on argmaxπQ

π .
Rather than estimating the value-function Q and

generating policies based on actions that maximize that
approximation, policy-based reinforcement learning aims
to optimize a functional representation of the policy
π(s, a). We define the functional representation of a policy
as πβ(s, a), where β is a set of learned parameters.
Importantly, in policy-based learning the agent optimizes the
parameters β to generate a stochastic policy. This stochastic
policy respects the fact that the cumulative reward for an
action may not be deterministic, and consequentially a single
best action may not exist.

Work from Sutton et al. (1999) introduces an optimization
procedure for policy-based RL that updates the parameter
set β via an estimate of the policy gradient. A powerful
variation of policy-based optimization was introduced by
Schulman et al. (2017) to avoid detrimentally large policy
updates. In their version of policy-based optimization, the
policy changes are regulated by limiting the reward of policy
variation. Their method, titled Proximal Policy Optimization
(PPO), updates the objective function to clip the reward of
policy updates where the ratio |π

new
β (at|st)

πold
β (at|st)

| extends beyond
some ϵ.

Policy-based RL is a more applicable form of RL for
our proposal, as it enables a set of diverse actions to
be generated in a given state. Given a requirement for
non-deterministic actions, our working example implements
a PPO RL algorithm with a multi-layer neural network
serving as our agent. The parameter set of this network, β,
defines our policy πβ.

Accelerating Benders Decomposition
With background on BD and RL provided, we introduce our
proposed method of accelerating Benders decomposition.
First, we will offer specifics on how a surrogate model
is used in place of the MIMP. Then, we will introduce
three possible mechanisms for selecting actions from the
surrogate model. Lastly, we will offer a more thorough
coverage of the theoretical benefits that the surrogate model
provides, and known deficiencies of BD that it addresses.

Surrogate-MP
Recall the iterative procedure outlined in figure 1. The SP’s
can be solved efficiently using any standard LP solver, but
each iteration calls back to a complex MIMP. Not only is
the MIMP NP-hard, but its complexity scales linearly with
the number of iterations as a new constraint is added from
the SP. Given these mechanics, there is a strong desire to
a) increase the speed of each master problem iteration and
b) decrease the total number of calls to the MIMP required.
We achieve both results by periodically introducing a faster
surrogate model in place of the MIMP (figure 2). This
surrogate model can be any model that has learned to map
the stochastic input space to the discrete decision space
with intentions of minimizing the problem loss. Later in the
paper, we introduce an RL agent as our surrogate model to
generate master problem solutions. We call this framework
Surrogate-MP.

Figure 2: Iterative procedure of Surrogate-MP.

Note in this modified schema that with each iteration, the
decision to use the surrogate in place of the MIMP is drawn
from a Bernoulli distribution with a control parameter Γ. If
a value of 1 is returned from the Bernoulli distribution, the
surrogate is used to generate global decisions. Otherwise,
the standard MIMP is run and the optimality gap can be
confirmed. Regardless of whether the MIMP or surrogate
are used, global decisions are passed to the sub-problem and
loss approximating cuts are added.

Controlling Surrogate Usage
The surrogate model usage can be controlled in a variety of
ways, and we offer three forms of control. These variants
are aimed at answering 1) How frequently should we



use the surrogate? 2) How can we be sure the surrogate
solutions are useful for convergence? 3) If surrogate
actions are non-deterministic, how can we decide which
action are best to use? The three methods we implement
are a greedy selection, weighted selection, and informed
selection. Each of these methods assume the surrogate has
generated a non-deterministic batch of actions for the given
environment.

Greedy Selection The greedy selection process first
evaluates every surrogate solution in a batch against
expectations over the horizon to estimate solution
performance. At each iteration, the decision to use the
surrogate is made with some probability. If the surrogate is
used, we select the top performing solution from the batch
and use it as our MP solution. The solution is then removed
from the batch and the process is continued.

Weighted Selection Rather than deterministically
selecting actions based on their performance against an
expectation, we can perform weighted random sampling.
We again use the calculated loss of action i evaluated against
an expected outcome, which we call ℓi. However, instead of
selecting argmini(ℓi) as in the greedy method, we create

a probability vector, where p(i) =
1
ℓi∑

∀i∈I
1
ℓi

. Using this

probability vector, we perform weighted sampling from the
batch of actions each time the surrogate is called.

Informed The final proposal is observed to be strongest
in our experiments, and incorporates feedback from the BD
sub-problems. With informed selection, surrogate solutions
are selected using the constraint set currently placed on
θr. The benefit of utilizing the constraint matrix to select
surrogate solutions is that these constraints inherently
motivate exploration to either a) minimal or b) poorly
approximated regions of the convex loss. Given final
convergence is defined by a binding subset of these
constraints, it is necessary to explore these minimal or
poorly approximated regions.

To describe the method, we introduce a constraint
matrix Ar ∈ RI×N which contains the sub-gradient
approximations imposed on θr, and a row vector of constant
values cr ∈ RI that is added to each sub-gradient
approximation. I refers to the iteration number of BD, N
refers to the number of MP decision variables, and r refers
to the scenario.

Note each iteration generates a new set of sub-gradient
approximations that are added to the matrix. As mentioned,
these are the same sub-gradients that are applied to θr
in the master problem, and are generated using our dual
sub-problem. On a given iteration, we have a batch of
M solutions that have been generated by the surrogate.
Decisions for this batch are represented by matrix D ∈
ZN×M . We begin by computing the loss approximations of
each gradient, for each of the M solutions. This is given as
TCAr ∈ RI×M .

TCAr = Ar ·O + (cr · 11×I)T (11)

The TCAr matrix contains approximations of the

sub-problem loss for each of the M solutions, generated
by each of the I constraints currently placed on θr. We
can now take the maximum value for each column M as
the approximated cost of solution m. In LP terms, this
maximum value relates to the binding constraint on θr in
the MIMP, and is thus our true approximation of SP cost at
that point. We represent this approximation (ℓmr) as:

ℓm,r = max
∀i∈I

(TCAr)im (12)

Now we fully approximate the expected loss for each of
the M solutions by taking an average across all R scenarios,
and adding the fixed loss of that decision (denoted fm).

ℓm =
1

R

∑
∀r∈R

ℓm,r + fm (13)

the surrogate solution that minimizes the problem

argminmℓm (14)

is then taken as our MP solution, and passed to the
sub-problem for constraint generation.

Benefits of Surrogate-MP
The benefits of using a surrogate model with learned actions
in place of the MIMP is based on two central principles.

1. The time required to generate solutions from a
pre-trained surrogate model is negligible compared to the
time required to solve a large scale MIP.

2. The surrogate model has learned its actions from
past exposure to the stochastic environment. As a
result, sub-problem loss is expressed in surrogate model
solutions regardless of how well θr approximates SP loss.
This means that even early iterations of the surrogate
model will be highly reflective of sub-problem loss.

The first benefit is fairly self-explanatory; we desire faster
MP solutions, and the surrogate provides them. The second
benefit is more nuanced and worth expanding. We recall the
general form MIMP (6), where θr offers an approximation
of sub-problem loss that is refined through linear constraints
generated by (8). It is well observed that this approximation
can converge quickly if global decisions are localized to
the optimal region, but it can also be very slow if global
decisions are far from the optimal region or the cuts poorly
approximate the loss (Crainic et al. (2016), Baena et al.
(2020)). At initialization, θr has not received any feedback
from the SP, and is instead bound by some heuristic or
known lower bound (commonly θr ≥ 0 for non-negative
loss). Given the lack of information initially imparted on
θr, the MP generates global solutions that lack consideration
of SP loss and can be very distant from the optimal region.
Similar to a gradient based algorithm with a miss-specified
learning rate, this can lead BD to oscillate around the
minimal region or converge slowly, wasting compute and
adding complexity with minimal benefit to the final solution
(Baena et al. (2020)).

The surrogate mitigates this major issue by generating
global decisions that reflect an understanding of



their associated SP loss without requiring strong loss
approximations on θr. As a result, initial global decisions
generated by the surrogate are localized to the minimal
region and cuts can quickly approximate the minimum
of the convex loss. These two fundamental benefits are
the basis for a 30% reduction in run-times, observed in
experiments with the working example that follows.

Working Example
Let us introduce an inventory management problem (IMP)
as a working example. In the proposed IMP, we assume
the required solutions must a) choose a delivery schedule
from a finite set, b) decide an order-up-to amount (order
= order-up-to - current inventory) for each order day, and
c) place costly emergency orders if demand cannot be
met with current inventory. For simplicity we consider a
single-item, single-location ordering problem where there
is a requirement to satisfy all demand using either planned
schedules, or more costly just-in-time emergency orders.
The demand estimate is generated using a forecast model
with an error term from an unknown probability distribution.

Adaptations of the general form IMP are applied
in industries ranging from financial services, to
brick-and-mortar retail. In e-commerce, vendors make
decisions to either assume the holding costs associated
with stocking inventory near demand locations, or use more
costly fulfillment options to meet consumer needs (Arslan
et al. (2021)). In commercial banking, cash must be held at
physical locations and made available to customers when
needed, with a compounding cost of capital being applied to
any unused cash (Ghodrati et al. (2013)). Or in commodities
trading, physical assets may need to be purchased and held
until a desired strike price is realized in the future (Goel et
al. (2011)).

SO Formulation and Decomposition

To model the IMP as a SO mixed-integer problem we
introduce the following notation: let T be set of days t, R
be set of scenarios r, and S define a finite set of schedules
s. Holding cost of an item (per unit-of-measure, per day) is
h, the cost of emergency services (per unit) is e, the penalty
applied to over-stocking (per unit over-stocked) is q, and fs
is the fixed cost of a schedule. Capacity is defined by m and
starting inventory by y. The parameter wst indicates whether
schedule s orders on day t. Demand on day t under scenario
r is ntr.

The decision space is defined by seven sets of variables.
The decision to use schedule s is made using variable
us ∈ {0, 1}. The order-up-to amount is decided by
at ∈ Z+, and ktr ∈ Z is the required order quantity to meet
the order-up-to amount. Inventory on hand is monitored
by dtr ∈ Z+, the units of holding space required to stock
the inventory is ptr ∈ Z+, the required emergency order
quantity is otr ∈ Z+, and vtr ∈ Z+ is the number of units
that inventory is over-filled by (all defined ∀t ∈ T, ∀r ∈ R).
The formulation of our IMP is

min
∑
∀s∈S

(usfs) +
1

R

∑
∀r∈R

∑
∀t∈T

(ptrh+ otre+ vtrq) (15)

subject to:

dtr = y − ntr + ktr − vtr + otr, t = 0,∀r ∈ R (16)

dtr = dt−1,r+ktr−ntr+otr−vtr,∀t ∈ {1, ..., T},∀r ∈ R
(17)

ptr ≥ y + ktr − vtr, t = 0,∀r ∈ R (18)
ptr ≥ at,∀t ∈ {1, ..., T},∀r ∈ R (19)

ptr ≥ pt−1,r − at,∀t ∈ {1, ..., T},∀r ∈ R (20)
y + ktr − vtr ≤ m, t = 0,∀r ∈ R (21)

dt−1,r + ktr − vtr ≤ m,∀t ∈ {1, ..., T},∀r ∈ R (22)

ktr = at − y
∑
∀s∈S

uswst (23)

ktr ≥ at − dt−1,r,∀t ∈ {1, ..., T},∀r ∈ R (24)

ktr ≤ at−dt−1,r+(1−
∑
∀s∈S

uswst)m,∀t ∈ {1, ..., T},∀r ∈ R

(25)
ktr ≤ at,∀t ∈ T, ∀r ∈ R (26)

ktr ≥ −
∑
∀s∈S

uswst ×m,∀t ∈ T, ∀r ∈ R (27)

vtr ≤ at,∀t ∈ T, ∀r ∈ R (28)

at ≤
∑
∀s∈S

uswst ×m,∀t ∈ T (29)

∑
∀s∈S

us = 1 (30)

The objective (15) minimizes the sum of planned schedule
costs and the average of holding costs, emergency order
costs, and over-fill costs across the R scenarios. Flow
constraints (16) and (17) balance inflow and outflow of
inventory through demand and deliveries. The holding cost
is enforced by constraints (18), (19), and (20). Constraints
(21) and (22) mandate that inventory cannot be filled beyond
its capacity. Lastly, constraints (23), (24), (25), (26), (27),
(28), and (29) ensure an order exactly fills the inventory
to the optimal order-up-to-amount, and that orders are only
placed on scheduled days. (30) guarantees exactly one
schedule is selected.

For BD, we note that a and u are schedule and order-up-to
decisions that must be made the same across all scenarios.
As a result, a, u, (29), and (30) are contained in the MIMP
while the remaining decision variables and constraints
are delegated to the scenario specific sub-problems. For
brevity, we omit the primal sub-problem formulation and
directly introduce the cut-generating dual sub-problem
formulation. We define the dual variables in line with their
related constraints: α ∈ R [(16), (17)], γ ∈ R+ [(18), (19)],
ω ∈ R+ (20), ϕ ∈ R+ [(21),(22)], ξ0 ∈ R (23), ξlb ∈ R+

(24), ξub ∈ R− (25), σ ∈ R− (26), π ∈ R+ (27), β ∈ R−

(28).



Master Problem

min
a,u,θ

∑
∀s∈S

(us × fs) +
1

R

∑
∀r∈R

θr (31)

s.t.
at ≤

∑
∀s∈S

uswst ×m,∀t ∈ T (32)∑
∀s∈S

us = 1 (33)

θr ≥ 0,∀r ∈ R (34)
Dual Sub-problem (solved independently for each

scenario r)

max
α,ϕ,ξ0,ξlb,ξub,σ,π

α0r(y − n0r)+

γ0ry+

ξ0r (a0 − y ×
∑
∀s∈S

usws0)+

ϕ0r(m− y)+

T∑
t=1

(−αtrntr + γtrat − ωtrat + ϕtrm+

ξlbtratr + ξubtr (atr + (1−
∑
∀s∈S

uswst)m))+∑
∀t∈T

(βtrat + σtrat − πtr(
∑
∀s∈S

uswst ×m)) (35)

s.t.
αtr ≤ 0, t = T (36)

αtr−αt+1,r+ϕt+1,r+ξubt+1,r+ξlbt+1,r ≤ 0,∀t ∈ {0, ..., T−1}
(37)

γtr − ωt+1,r ≤ h, t = 0 (38)
γtr + ωtr ≤ h, t = T (39)

γtr − ωt+1,r + ωtr ≤ h,∀t ∈ {1, ..., T − 1} (40)
αtr + βtr − ϕtr + γtr ≤ q, t = 0 (41)

αtr + βtr − ϕtr ≤ q,∀t ∈ {1, ..., T} (42)
−αtr ≤ p,∀t ∈ T (43)

ξ0r − γtr + ϕtr − αtr + σtr + πtr = 0, t = 0 (44)
ξlbtr+ξubtr +ϕtr−αtr+σtr+πtr = 0,∀t ∈ {1, ..., T} (45)

Let us refer to the polyhedron defined by MP constraints
at iteration i as Pi. The master problem generates optimal
decisions a∗ and u∗ given the current approximation of
sub-problem costs on θ. The objective function of the
dual sub-problem (referred to as L(a,u, r), where r is the
scenario) is updated with a∗ and u∗, and the sub-problem is
solved. Recalling the mechanics of BD, the optimal solution
to the dual sub-problem has two valuable properties: a) as
a numeric value it defines the true scenario specific costs,
and b) as a function it offers a sub-gradient on θr. The
master problem polyhedron is then updated to Pi+1 = Pi ∩
{u,a,θ : θr ≥ L∗(a,u, r)}, where L∗(a,u, r) refers to the
optimized loss function of the sub-problem iteration. This
process is repeated until convergence, with each iteration of
the MP being solved over a more refined approximation of
sub-problem costs.

RL Surrogate - Formulation
We leverage an RL agent as the surrogate model in our
Surrogate-MP implementation. The state of our IMP is
represented by the tuple st = ⟨d, h, e, q,m, µ, σ,w,o, r⟩ ∈
S, where t is a time step over the horizon T . Parameters d,
h, e, q, w, and m directly follow the definitions introduced
in the SO Formulation and Decomposition section (page
5). Additional state parameters include µ as the expected
demand, and σ as the estimated standard deviation of
demand. A vector o tracks orders over the time horizon T .
All future orders are set to zero, and past orders are taken
from actions as they are performed. Similarly, a vector r
tracks the forecast errors from past observations. All future
error observations are set to zero, and events are populated
as they are observed by the state.

The actions are represented by ⟨kt,ut⟩ ∈ A which
denotes (a) the quantity to order, and (b) the schedule to
adhere to, at time t respectively. Note that the schedule must
be determined at the beginning of the horizon, and thus only
ut=0 is relevant. This is enforced through action masking
and for simplicity we will refer to ut=0 as u. The reward is
negative cost, as defined by the objective (15).

As previously mentioned, we use PPO to optimize a
multi-layer neural network as our agent. The network is a
feed-forward neural network with two hidden layers and
two linear output layers. The linear output layers return
the log-odds that define our stochastic action space. We
standardize the network inputs (the state) to be mean
centered with unit variance, and generate kt and ut

sequentially ∀t ∈ T .
The agent is presented with an initial state s0 and must

select a scheduling action to take. This scheduling action, u,
relates to a binary vector w ∈ {0, 1}T that defines whether
an order is possible on day t. If wt = 1, an order can
be placed, otherwise the agent cannot order. This schedule
becomes part of the state, over-writing the initial zero vector
w.

With the schedule defined, the agent must generate a
second action for state s0; this time selecting an order
amount. The repeated visitation of state s0 is necessary as
the selected schedule w has now become part of the state.
While we have not temporally shifted, the state has changed.

After a second visitation of s0, the agent sequentially
traverses the horizon T . With each time step, an ordering
decision is made and either accepted or masked depending
on the schedule vector w. Updates to the state include
population of order quantities, residual updates, and an
update of the inventory on hand based on observed demand
and order amounts. If an order is scheduled, we retrieve the
order-up-to amounts, denoted as a in the SO Formulation
section, by adding inventory on hand at the end of t − 1 to
the ordering decision kt. If an order is not scheduled the
order-up-to amount is 0. After traversing the full horizon
T , the agent will have selected a schedule u ∈ {0, 1}S
and have a vector of order-up-to quantities a ∈ ZT

≥0
from the agent. These two decision vectors, u and a are
the essential ingredients required by the BD sub-problem.
With these vectors, we can solve (35), generate sub-gradient
approximations on θr, and further refine our approximation



of true, stochastic, sub-problem cost.

Experiments

To evaluate the Surrogate-MP method, we implement
our IMP formulation across 153 independent cases using
real-world data. Each experiment was performed with a
sample size of 500 scenarios (R = 500), a horizon of 28
days (T = 28), and 169 possible schedules (S = 169). The
resultant problem has a high dimensional discrete decision
space, consisting of scheduling and ordering decisions. In
total, the decision space is Z70,197. Experiments were run
on a 36 CPU, 72 GB RAM c5.9xlarge AWS instance. For
solving the integer master problem and linear sub-problems,
we leveraged the CPLEX commercial solver with default
settings, allowing for distribution across the 36 CPU
machine. We experimented with all three surrogate solution
selection methods: greedy, random, and informed. For every
implementation of Surrogate-MP, we deactivate calls to the
surrogate after the optimality gap is ≤ 5%. The intuition
behind deactivating the surrogate model is that as the gap
percent shrinks, the MIMP must be used to retrieve the
certificate of optimality.

As a benchmark, we evaluate our method against
a baseline implementation of Benders decomposition.
Accelerations implemented in the baseline include
scenario group cuts (Adulyasak et al. (2015)) and partial
decomposition (Crainic et al. (2016)). We did not compare
against a generic implementation of Benders decomposition
due to tractability issues.

Results

All three implementations (greedy, random, and informed)
produced faster convergence than the benchmark BD
implementation. Random implementation performed
14.96% (104.51s average run-time) faster than the baseline,
greedy implementation achieved 19.43% (99.92s average
run-time) faster performance, and the informed surrogate
implementation performed 30.45% faster (85.47s average
run-time). The convergence rates are displayed in figure 3.

Method Avg Run-time (seconds)
No Surrogate 122.90

Random Surrogate 104.51
Greedy Surrogate 99.92

Informed Surrogate 85.47

In addition to acheiving faster average convergence,
Surrogate-MP outperformed the baseline BD
implementation across the majority of instances.
Surrogate-MP with informed selection achieved better
convergence rates on 135 of the 153 instances (88.24%,
figure 4).

Figure 3: Convergence rates of a baseline BD, and
Surrogate-MP with three selection methods (greedy,
random, informed).

Figure 4: Count of instances with faster convergence
between Surrogate-MP and a baseline BD implementation.

Acknowledging the strong performance of Surrogate-MP
with informed selection, we continued our experiments
by testing different frequencies of surrogate model usage.
We leveraged three different rate parameters Γ that
control whether to use the surrogate model during each
iteration ([0, 1] ∼ Bernoulli(Γ)). We experimented with
Γ = 0.25, 0.50, and 0.75. For every value of Γ we use
Surrogate-MP with informed selection. We observe in
figures 5 and 6 that more frequent surrogate model usage
results in improved convergence, with optimal convergence
rates being generated by Γ = 0.75.



Figure 5: Convergence rates for different levels of informed
surrogate usage. The dotted line indicates a gap of 5% (the
point at which we deactivate the Surrogate-MP).

Figure 6: Convergence instances of BD accelerated by an
informed Surrogate-MP, with different surrogate usages.

Conclusion & Future Work
In conclusion, by inserting a surrogate model in place of
the MIMP we achieve a drastic reduction in convergence
time. The proposed method is generalizable to any BD
implementation, retreives certificates of optimality, and any
surrogate capable of generating MP solutions can be used.
We leverage an RL agent as our surrogate, and display
results showing superiority in 88.24% of instances with a
30% reduction in average run time.

Observing the performance of our method, a promising
extension of this work would be to design stronger
integration between the surrogate model, SP, and MP. We
took steps toward integration with the informed method of
selecting surrogate solutions, and realized promising results.
Some opportunities for integration we leave unexplored
would be to directly inform the surrogate model on the

strength of past solutions, offer sub-gradient information
as a feature, or redesign the surrogate objective function
to focus on weakly approximated areas of the SP loss
as opposed to mirroring the BD objective directly. We
are additionally eager to observe the performance of
Surrogate-MP on other discrete SO problems.

Disclaimer. This paper was prepared for informational
purposes by the Artificial Intelligence Research group of
JPMorgan Chase & Co. and its affiliates (“JP Morgan”),
and is not a product of the Research Department of JP
Morgan. JP Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness,
accuracy or reliability of the information contained herein.
This document is not intended as investment research
or investment advice, or a recommendation, offer or
solicitation for the purchase or sale of any security, financial
instrument, financial product or service, or to be used in
any way for evaluating the merits of participating in any
transaction, and shall not constitute a solicitation under any
jurisdiction or to any person, if such solicitation under such
jurisdiction or to such person would be unlawful.
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