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Abstract

Any plan for preventing fraud in financial transactions net-
works requires a well specified metric for success. In the in-
dustry, a well-known metric used to benchmark payments
fraud detection algorithms is Value Detection Rate (VDR).
This metric explicitly considers monetary savings due to pre-
vented fraud in contrast to metrics in the academic litera-
ture. In this short note we motivate and introduce this met-
ric via a formal description and show it constitutes a consis-
tent asymptotically unbiased statistical estimator to a relevant
probabilistic query about test data drawn iid from the transac-
tion population. We show via experiments on two publically
available fraud datasets that fraud prevention policies guided
by VDR have smaller financial losses than those guided by
the popular Precision-at-k (P@k) metric. Moreover, we em-
pirically show the VDR estimate converges given a practical
number of samples, recapitulating the limiting case proven
formally.

Introduction
Payments Fraud is a damaging problem across industry,
eroding trust, impacting customer loyalty and employee
morale, alongside financial losses incurred due to the fraud
itself and attendant regulatory action. Indeed the problem is
widespread, with 71% of surveyed organisations being tar-
geted by fraudsters in 2021 according to the study by the As-
sociation for Financial Professionals (2022). In the 2022 sur-
vey by PwC (2022), responding organisations reported total
losses of US$42B.

Fraudsters typically belong to one of several
archetypes (Saporta and Maraney 2022; Association
for Financial Professionals 2022) where often there is a se-
quential component to their actions. For example, a fraudster
may initially attempt several smaller fraudulent transactions
involving a compromised account before attempting a larger
transaction. On the defender’s side, constraints on how
many resources can be used to fight fraud are balanced
against how much fraud can be prevented (Hassanzadeh
et al. 2021).

These characteristics of the payments fraud prevention
problem suggest this problem is well-suited to AI Planning
methods and sequential decision-making algorithms, yet the
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literature is scant. The works by Shen and Kurshan (2021);
Vimal et al. (2021) formulate fraud prevention as an MDP
and use Deep Reinforcement Learning to solve this prob-
lem. Rigter et al. (2022) formulate an online task allocation
problem that applies to fraud prevention as a hybrid MDP
and solve it using a dynamic programming approach with
state abstraction. The paper by Dervovic et al. (2021) con-
siders fraud prevention as a constrained sequential decision-
making problem, solved via a dynamic threshold based pol-
icy. Planning-based techniques are used by Borrajo, Veloso,
and Shah (2021) for the – related, but different – task of
Anti-Money Laundering.

Indeed, the vast majority of literature on applying AI
to fraud detection uses Machine Learning or Data Min-
ing approaches. This literature is too extensive to present
here, so we reference a number of surveys on these ap-
proaches (Bolton and Hand 2002; Phua et al. 2010; Lucas
and Jurgovsky 2020; Ali et al. 2022; Narayan, Madhu Ku-
mar, and Chacko 2023).

In this work we describe the fraud detection problem and
present an important metric, VDR, for evaluating fraud de-
tection policies. Moreover, we show that VDR has several
desirable theoretical and experimental characteristics.

Formulating Fraud Detection
Fraud detection is usually presented as a supervised learn-
ing problem with a large class imbalance. Approaches to
imbalanced learning are extensively surveyed (Abd Elrah-
man and Abraham 2013; Wagle and Manoj Kumar 2023).
Concretely, individual transactions are modelled as samples
drawn from a distribution D over X × Y , where X corre-
sponds to transaction features available to the defender or
decision-maker responsible for detecting fraud. The data la-
bels Y = {0, 1} are binary, with 1 corresponding to a true
fraud and 0 corresponding to a non-fraudulent transaction.
Each sample (X,Y ) ∼ D corresponds to one transaction.
Notably, the fraudulent (Y = 1) population is orders of mag-
nitude smaller than the non-fraudulent population (Y = 0).
The defender has a corpus of training data drawn from D.
Their goal is then to prevent as many fraudulent transactions
as possible at test time – with transactions drawn again from
D. In practise, the training data will be taken before a certain
time period and test from the time period immediately fol-
lowing (Saporta and Maraney 2022; Le Borgne et al. 2022).



This testing procedure is carried out to allow for violations
of the iid assumption on the data distribution, that is, the test
data being drawn from some alternative distribution D′. In
this case the decision-maker wishes to be confident that any
policy trained on data from D still performs well on D′. The
performance in fraud prevention is measured along a num-
ber of different axes in the literature.

Existing Performance Metrics
The fraud detection problem is usually stated in terms of
unbalanced supervised classification, so most metrics are
based on the test-set confusion matrix based on a fixed
threshold, or threshold free methods such as Receiver Oper-
ator Characteristic (ROC) and Precision-Recall (PR) curves,
with the latter being more popular (Boyd, Eng, and Page
2013; Saito and Rehmsmeier 2015). The work by Davis and
Goadrich (2006) discusses the relationship between PR and
ROC curves with respect to imbalanced classification. Has-
sanzadeh et al. (2021) explicitly consider tradeoffs in these
metrics when there are constraints on the number of posi-
tive label assignments the defender can give – as is often
the case in practise. The framework of Cost-sensitive learn-
ing (Elkan 2001) seeks to minimise the misclassification
cost between positive and negative examples, even on an
example-by-example basis (Bahnsen, Aouada, and Ottersten
2014), but often the methods are tuned to a specific classi-
fication algorithm. The Precision-@-k metric (Fan and Zhu
2011), or P@k, selects the transactions with top-k highest
predicted fraud probability by a model and evaluates the pre-
cision on this set of data. Currently there is no consensus on
the best metric to use for evaluating fraud detection poli-
cies (Le Borgne et al. 2022), but instead one must decide on
the tradeoffs one is willing to make.

That being said, what is missing from these evaluation
metrics is considerations of monetary costs incurred by un-
detected fraudulent transactions. The Value Detection Rate
(VDR) is a metric used in industry that explicitly consid-
ers this. Namely, maximising VDR corresponds to minimis-
ing monetary costs. In this brief note we formally intro-
duce VDR. We proceed to show some theoretical and ex-
perimental properties of the VDR metric, namely its estima-
tor is asymptotically unnbiased and consistent. We empir-
ically validate these theoretical bounds on public payments
fraud datasets. Furthermore, we show that an inspection pol-
icy that is based on VDR minimises financial costs due to
missed fraudulent transactions in contrast to existing fraud
detection metrics.

Value Detection Rate
Value Detection Rate (VDR) is a quantity taking values in
[0, 1] designed to capture the financial damage prevented by
a plan or policy. Normalising to [0, 1] allows a fair perfor-
mance comparison of the same policy across different data
slices.

We assume that there is a trained classifier ŷ : X → [0, 1],
where the output ŷ(x) is interpreted as the classifier’s sub-
jective probability that the transaction x ∈ X is fraudulent.
For brevity we define the function r : X → R++ that de-
notes the monetary value of a transaction.

The classifier subjective probability and transaction value
allow us to define a scoring function, Ψ : X → R++,

Ψ(x) = ŷ(x) · r(x), (1)

that is, the scoring function is the monetary value of the
transaction weighted by the classifier’s subjective probabil-
ity that the transaction is fraudulent. Suppose we have a val-
idation set,Dn = {(xj , yj)}nj=1, drawn iid from D. We fix a
proportion of transactions that are to be inspected ϵ ∈ (0, 1)
and define the inspection function, ψϵ : X → {0, 1},

ψϵ(x) = 1{Ψ(x) ≥ Ψϵ} , (2)

where

Ψϵ :=

min

{
Ψ(xj)

∣∣∣∣∣ j ∈ argmax
S⊂{1,...,n}

{∑
i∈S

Ψ(xi)

∣∣∣∣ |S| ≤ ϵn

}}
.

(3)

The score threshold Ψϵ represents the score needed to be in-
cluded in the top ϵ-scoring fraction of the validation set Dn.
The inspection function is the classifier that marks transac-
tions for inspection (ψϵ = 1) that exceed the score threshold
Ψϵ. We note that while the mathematical formula is com-
plicated, this is easy to implement – solving the inner opti-
misation problem by sorting Ψ(xi) in descending order and
choosing the top ⌊ϵn⌋ transactions is sufficient.

Given an inspection function ψϵ we want to know how
effective this inspection function is at surfacing fraud, pri-
oritising the most valuable transactions. Let (X,Y ) ∼ D be
the random variable corresponding to a transaction, along
with its fraud label. The monetary value of a transaction, as-
suming it is fraudulent, is given by E[r(X) | Y = 1]. The
expected fraudulent value captured by our inspection func-
tion ψϵ is given by E[ψϵ(X) ·r(X) | Y = 1]. We construct a
dimensionless quantity that summarises the effectiveness of
an inspection function ψϵ, the Value Detection Rate (VDR),
VDRϵ.
Definition 1 (Value Detection Rate). Let ψ : X → {0, 1}
be a fraud classifier. Then the Value Detection Rate (VDR)
of ψ over D is defined as

VDR(ψ) =
E(X,Y )∼D[ψ(X) · r(X) | Y = 1]

E(X,Y )∼D[r(X) | Y = 1]
,

where for brevity we denote the VDR of an inspection func-
tion ψϵ as defined in Eq. (2) by VDRϵ ≡ VDR(ψϵ).

Intuitively, VDR encompasses the notion that we want
any fraud prevention scheme to capture as much of the
fraudulent monetary value as possible given a randomly
sampled transaction. Note that a perfect classifier ψ will
achieve VDR(ψ) = 1. Moreover, the trivial classifier ψ :
x 7→ 1 also has a perfect VDR score – it is the restriction
on inspecting only an ϵ-fraction of transactions while also
measuring fraudulent value captured that renders VDRϵ an
effective metric for measuring performance.

We note that there is an additional metric used in the in-
dustry, Total Detection Rate (TDR), corresponding to the



special case where we impose r : x 7→ 1. TDR is very
similar to Precision@k, where the sole difference is k is a
constant number of transactions to inspect vs a fraction ϵ,
indeed the metrics are identical when k = ⌈ϵn⌉.

Estimating VDR
Let us now assume we have test data Dm = {(xj , yj)}mj=1
drawn iid from D. How can we estimate VDRϵ using Dm.
An estimator that immediately springs to mind is the follow-
ing one.

V̂DRϵ :=

∑m
i=1 ψϵ(xi)r(xi)yi∑m

i=1 r(xi)yi
(4)

We shall see that this estimator is the appropriate one to
use, as it is asymptotically unbiased and consistent. We first
state a lemma that will greatly help in proving these propo-
sitions.
Lemma 2. (Cochran 1977, Theorem 6.4) Suppose we have
random variables U, V with finite variances S2

u, S2
v , cor-

relation coefficient ρu,v , and finite means µU , µV such
that µV ̸= 0. The limiting distribution of µ̂u/µ̂v :=∑n

i=1 ui/
∑n

i=1 vi, from random samples of size n from an
infinite population, is normal N (µ, σ2) with

µ =
µU

µV
, σ2 =

1

n

µ2
U

µ2
V

[
S2
u

µ2
U

− 2ρu,vSuSv

µUµV
+
S2
v

µ2
V

]
.

We can now show asymptotic unbiasedness and consis-
tency. Note in the following we assume that the distribution
r(X) has a finite mean and variance.
Proposition 3 (VDR Asymptotic Unbiasedness). The esti-
mator V̂DRϵ is asymptotically unbiased, that is

E
[
V̂DRϵ −VDRϵ

]
→ 0 as m→ 0.

Proof. The estimator V̂DRϵ is a ratio. Consider first the ex-
pectation of the numerator of (4),

E[
∑m

i=1 ψϵ(xi)r(xi)yi] =
∑m

i=1 E[ψϵ(xi)r(xi)yi], (5)
by linearity of expectations

= E[ψϵ(xi)r(xi)1{yi = 1}] (6)
collecting terms in the sum and rephrasing the yi variables

= E[ψϵ(X)r(X) | Y = 1]P(Y = 1). (7)
Similarly, for the denominator of (4) we have

E[
∑m

i=1 r(xi)yi] = mE[r(X) | Y = 1]P(Y = 1). (8)
Thus the ratio of expectations of the numerator and denom-
inator of (4) is E[ψϵ(X)r(X) | Y = 1]/E[r(X) | Y = 1] =
VDRϵ. Indeed, from Lemma 2 we have for large m that the
expectation of the ratio is the ratio of the expectations and
so V̂DRϵ constitutes an unbiased estimator of VDRϵ for a
sufficiently large test set Dm.

Proposition 4 (VDR Consistency). The estimator V̂DRϵ is
consistent, that is for all ε > 0

lim
m→∞

P
[∣∣∣V̂DRϵ −VDRϵ

∣∣∣ > ε
]
= 0.

Proof. From the proof of Proposition 3 and Lemma 2 we
have that V̂DRϵ follows a normal distribution for large m,
with mean VDRϵ. Notice that the variance is O(1/m), from
which consistency immediately follows.
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Figure 1: Plot of size of test set Dm against VDRϵ

showing convergence for large number of samples on
datasets creditcardfraud (top two panels) and
ieee-cis (bottom panel). These give a practical estimate
for the rates of convergence of Propositions 3 and 4. Re-
ported error bars are standard deviation over 20 samples.

Experiments
In this section we conduct two experiments: Experiment
1. VDR Convergence; and Experiment 2. VDR Effec-
tiveness. Our domain is fraud in financial transactions
– there are few public datasets with realistic exemplars
of this data (Le Borgne et al. 2022). We choose the
creditcardfraud (Dal Pozzolo et al. 2015) and
ieee-cis (IEEE-CIS 2019) datasets as they are based
on real data, provide realistic features and explicit monetary
values for transactions. Dataset preparation was identical to
that in (Dervovic et al. 2021) and the model used was XG-
Boost (Chen and Guestrin 2016) with default hyperparame-
ters.

In Experiment 1 (Figure 1) we vary the size of the test
set Dm used to estimate VDRϵ for ϵ ∈ {0.01, 0.1}, with
m varying from 5000 to the size of the respective vali-
dation sets. There are 20 replicates sampled without re-
placement for each value of m, of which there were 100
linearly spaced values. From Figure 1 we see for both
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Figure 2: Curves of Fraudulent US$ captured against
outsort rate ϵ ∈ (0, 1) using two different policies:
Total Detection Rate (equiv. to P@k) and VDR. Top
panel is creditcardfraud dataset and bottom panel
is ieee-cis . Notice that using an outsorting policy in-
formed by VDR captures more fraudulent value over a wide
range of outsort rates. The x-axis is log-scaled showing this
effect persists over multiple orders of magnitude.

creditcardfraud and ieee-cis that the VDRϵ es-
timates are converging to approximately normal after a rea-
sonable number of samples m, as evidenced by the stabili-
sation in the size of the error bars. This empirically validates
the theoretical asymptotic bounds established in Proposi-
tions 3 and 4.

In Experiment 2 we consider fraud prevention via static
threshold policies, namely for a given threshold τ , there are
two policies:

VDR policy := Inspect x iff Ψ(x) ≥ τ,

TDR policy := Inspect x iff ŷ(x) ≥ τ.
(9)

If a truly fraudulent transaction is inspected its monetary
value is said to be captured and if it is not inspected the
money is assumed to be lost by the decision maker. The
VDR policy is implictly optimising VDR as we are thresh-
olding based on the value-weighted model score, whereas

the TDR policy is thresholding solely on model score. The
TDR policy stands in for optimising existing fraud detection
metrics such as P@k.

For the VDR policy we take τ (VDR)
ϵ = Ψϵ as defined in

Eq. (3) and for the TDR policy we assume τ (TDR)
ϵ takes the

form

τ (TDR)
ϵ :=

min

{
ŷ(xj)

∣∣∣∣∣ j ∈ argmax
S⊂{1,...,n}

{∑
i∈S

ŷ(xi)

∣∣∣∣ |S| ≤ ϵn

}}
.

(10)

Both thresholds τ (VDR)
ϵ and τ

(TDR)
ϵ are computed with re-

spect to the model training data.
In Figure 2 we plot the fraudulent value captured in the

test set using the VDR and TDR informed policies, over a
range of ϵ values in (0, 1) covering several orders of magni-
tude. For the ieee-cis dataset we see that the VDR pol-
icy strictly dominates the TDR policy for all ϵ and dominates
for the creditcardfraud dataset. This confirms that us-
ing VDR to inform a fraud prevention policy gives superior
monetary savings due to avoided fraud than existing metrics.

Conclusion
In this short paper we formally introduce a metric used for
fraud detection in industry, VDR, and motivate its use in pre-
vention plans and policies. VDR is shown to have several de-
sirable statistical properties. We encourage the use of VDR
in works by the academic community on planning for fraud
detection and prevention.

Disclaimer. This paper was prepared for informational pur-
poses by the Artificial Intelligence Research group of JPMorgan
Chase & Co. and its affiliates (“JP Morgan”), and is not a prod-
uct of the Research Department of JP Morgan. JP Morgan makes
no representation and warranty whatsoever and disclaims all liabil-
ity, for the completeness, accuracy or reliability of the information
contained herein. This document is not intended as investment re-
search or investment advice, or a recommendation, offer or solici-
tation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evalu-
ating the merits of participating in any transaction, and shall not
constitute a solicitation under any jurisdiction or to any person, if
such solicitation under such jurisdiction or to such person would
be unlawful.
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