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Abstract

In today’s competitive financial landscape, understanding and
anticipating customer goals is crucial for institutions to de-
liver a personalized and optimized user experience. This has
given rise to the problem of accurately predicting customer
goals and actions. Focusing on that problem, we use historical
customer traces generated by a realistic simulator and present
two simple models for predicting customer goals and future
actions — an LSTM model and an LSTM model enhanced
with state-space graph embeddings. Our results demonstrate
the effectiveness of these models when it comes to predicting
customer goals and actions.

Introduction

The financial industry has experienced significant transfor-
mation in recent years, driven by rapid technological ad-
vancements, evolving customer expectations, and increased
competition. As customers demand more personalized and
convenient services, financial institutions are under pressure
to develop a deeper understanding of their clients’ needs and
preferences. This has led to a growing interest in leveraging
data-driven approaches to gain insights into customer be-
havior and predict future actions. Accurate goal prediction
can help financial institutions provide targeted incentives,
improve customer satisfaction, and ultimately foster loyalty
and retention in an increasingly competitive landscape.

Planning-based approaches have been widely used for
goal prediction, as they focus on modeling an agent’s
decision-making process and finding optimal sequences of
actions to achieve specific objectives (Ramirez and Geffner
2010; |Sohrabi, Riabov, and Udrea 2016} |Keren, Gal, and
Karpas| 2019} |Wayllace et al.|[2016; Vered and Kaminka
2017). For example, Ramirez and Geftner| (2010) propose a
probabilistic plan recognition approach that utilizes classical
planners to predict goals based on observed actions. Keren,
Gal, and Karpas| (2019) introduced the concept of goal
recognition design, which aims to optimize the planning do-
main to facilitate the goal prediction process.

In this context, the work of Borrajo and Veloso| (2020)
presents an approach to address the challenges associated
with predicting goals in complex real-world domains. In par-
ticular, they introduced a domain-independent simulator for
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generating synthetic customer behavior datasets, which can
be used to model and analyze customer interactions with
a financial institution, such as ATM or mobile app usage.
By leveraging this simulator, they are able to create datasets
that accurately represent the intricacies and dynamics of cus-
tomer traces in a banking environment, providing a valuable
foundation for the development and evaluation of goal pre-
diction models.

Inspired by the work of |Borrajo and Veloso| (2020), we
build upon their domain-independent simulator to generate
synthetic customer behavior datasets. We then use this data
to train two models — an LSTM model and an LSTM model
enhanced with state-space graph embeddings. The LSTM-
based models capitalize on the sequential nature of customer
traces, capturing the intricate patterns present in customer
interactions over time. By incorporating state-space graph
embeddings into the LSTM model, we further enrich the
model’s understanding of the relationships and dependen-
cies among various features within the dataset, which may
lead to improved performance. This combination of LSTM
models and state graph embeddings offers a more scalable
and efficient solution in predicting customer goals and ac-
tions, while maintaining a high level of accuracy and ro-
bustness in the face of real-world complexities. Our results
demonstrate the effectiveness of LSTM models and state
graph embeddings in addressing the challenges faced by fi-
nancial institutions when it comes to predicting customer
goals and actions.

Related Work

Goal prediction (known as goal recognition in the planning
literature) refers to the process of identifying an agent’s ob-
jective among several possibilities, based on the agent’s be-
havior, a model of the environment, and a sequence of ob-
servations. The first approach that explicitly addresses goal
prediction is that of |Baker, Saxe, and Tenenbauml (2009),
who framed the problem as “inverse” planning. Ramirez and
Geftner|(2010) followed up on the work by proposing a gen-
erative approach that uses classical planning algorithms for
inferring probability distributions over a set of possible goals
given some observations. Recent research has extended the
original problem formulation of recognizing plans in var-
ious domain models, such as continuous domain models
and epistemic planning problems (Vered and Kaminka|2017;



Sohrabi, Riabov, and Udreal2016j Kaminka, Vered, and Ag-
mon! 2018} [Shvo et al.|[2020). In similar spirit, Keren, Gal,
and Karpas|(2019) provided an alternate view of goal recog-
nition that focuses on modifying the domain model such that
the goal recognition can be achieved with as few observa-
tions as possible. Extensions of the goal recognition design
problem have been developed over various types of domain
models and settings (Shvo and Mcllraith [2020; [Wayllace
et al.|2016}2020; Wayllace and Yeoh|2022)).

However, planning-based approaches often struggle to
scale with the size and complexity of real-world domains,
due to factors such as large state spaces, partial observability,
and dynamic environments. In contrast, learning-based ap-
proaches may perform better under these circumstances, es-
pecially when real-time or near-real-time predictions are re-
quired. Most notably, Borrajo, Gopalakrishnan, and Potluru
(2020) illustrated the trade-offs between planning-based and
learning-based approaches for goal recognition in different
(planning) domains. Their results highlight that planning-
based approaches perform better when there is a partial or-
der of actions in plans, whereas learning techniques, such as
LSTMs, can better capture the relationship between actions
and goals if there is a relation not directly associated with
goal achievement. While in this paper we also use a learning-
based approach (e.g., LSTMs) for goal prediction, note that
we focus on the specific task of predicting customer goals
and actions in the context of financial institutions. Finally,
there has been an interest in integrating planning-based ap-
proach with data-driven approaches. For example, [Wilken
et al.| (2023) proposed a hybrid method that captures statis-
tical relations between certain states of the environment and
goals learned from past observations.

While in this paper we focus on goal prediction prob-
lems, i.e., predicting user goals and actions, we explore data-
driven methodologies and focus on a problem related to fi-
nancial industry. In that context, a number of works that
tackle related problems have been investigated. Baeza- Yates
et al.|(2015) presented a method for predicting the next mo-
bile app a user is going to open based on their usage history
and the “wisdom” of the crowd, while several works have
addressed the problem of customer churn in banking with
various machine learning techniques (Yaghini, Zhiyan, and
Fallahi[2011} Bilal Zori¢|2016; [Rahman and Kumar [2020).
While these works and our work in this paper address chal-
lenges in the financial industry, the specific goals and tech-
niques employed are different, i.e., we employ LSTM mod-
els with graph embeddings aimed at understanding customer
behavior and preferences.

Methodology

In this section, we describe the dataset, data preparation, and
models used for predicting customer goals and actions. In
particular, we employ two models — an LSTM model ex-
ploiting a bag-of-words representation, and an LSTM model
enhanced with a state graph embedding. Our approach is un-
derpinned by a comprehensive semi-synthetic dataset, cap-
turing intricate customer interactions with diverse banking
interfaces.

| Dateand Time | Event ]

2022-02-28 18:06:08
2022-02-28 18:10:24

2022-02-28 18:10:24

mobile: login
mobile: enter menu settings
mobile: enter menu
profile-maintenance
mobile: change information
on demographic
mobile: log-off

2022-02-28 18:14:40
2022-02-28 18:18:56

2022-04-30 07:28:32 webs login
2022-04-30 07:28:32 web: enter menu
credit-card

web: get information on
credit-card-transaction-history
web: exit menu
root-section
web: enter menu settings
web: enter menu
alerts-maintenance
web: change information
on alerts-definition
web: log-off

2022-04-30 07:28:32

2022-04-30 07:28:32
2022-04-30 07:32:48
2022-04-30 07:37:04

2022-04-30 07:41:20
2022-04-30 07:45:36

Table 1: Example trajectory of events for an agent of medium
income, low fail behavior, and digital interface.

Customer Behavior Data

We utilize a semi-synthetic dataset of customer behavior
generated via a domain-independent simulator proposed by
Borrajo and Veloso| (2020). The dataset consists of interac-
tions between customers and a multitude of bank interfaces:
bank-website, mobile app, teller counter, or ATM. Each in-
terface offers customers a (potentially unique) set of actions
such as making payments, checking rewards program infor-
mation, modifying personal information, etc. A set of ex-
ample actions are provided in Table |1} where we see a cus-
tomer login to the mobile app and modify their personal in-
formation; the same customer then logs into the website two
months later and checks their credit-card transaction history
as well as modifying their alter settings. Approximately 300
actions are recorded per-customer.

Customer Goals: In addition to customer actions, a di-
verse set of goals can be induced from the dataset, such as:

* check information: The customer wants to get some in-
formation about their account (e.g., balance).

* change information: The customer wants to change the
value of some data point (e.g., address).

* operational goals: The customer wants to perform some
banking operations, such as deposit-cash, withdrawal,
exchange, deposit-check, pay-bill, make-payment, and
SO on.

These goals correspond to the customers purpose for inter-
acting with any of the bank interfaces. Customers can pos-
sess multiple goals; for example, the customer in Table [I]
seeks to both check and change information while using the
website (second interaction in the table).



Customer Types: The dataset also features labels for the
type of customer, characterized by three attributes:

e Income: income level of the customer (high, medium,
low, standard).

e Fail behavior: how frequently the customer’s action cor-
respond to errors (rarely, often, no-failure).

* Digital behavior: customers preferred interface type (tra-
ditional, digital, mixed).

These attributes represent the probabilities of using different
channels (web, mobile app, ATM, banker, and teller), the
failure rate of operations, and types of goals. For instance,
a student might be categorized as low-rarely-digital, while a
medium-class worker could be medium-rarely-mixed.

Data Preparation

Next we discuss our approach to data preprocessing. The
predictive features X are the customer’s historical actions
(e.g. Table[T). The target features y are the customer’s future
actions, the customer’s goal, or the customer’s type.

Handcrafted Features: To increase the predictive effi-
cacy of the data we first introduce several handcrafted fea-
tures, and then discuss how both the handcrafted, and orig-
inal features, are represented. The predictive features X are
provided as Time (an integer) and Action (a string). We
break the Event string into more meaningful features which
are listed in Table [2| The Event string contains an indica-
tor of which interface the customer is interacting with (web,
mobile, teller, ATM), which we refer to as the primary loca-
tion feature.

Moreover, the Event string contains information indicat-
ing when the customer navigates through the interface, e.g.,
in Table 1| the customer has Event string “web: enter menu
credit-card”, which indicates that the customer has left the
web home-page (which they arrived at when logging in) and
navigated to a menu of credit-card options. We refer to these
features as secondary location features.

Defining secondary locations allows the model to more
effectively learn which actions are available to customers at
any given time, e.g., customers cannot modify their credit-
card information without having first entered the credit-card
menu. The combination of the primary and secondary lo-
cation features can be interpreted as the customer’s current
state.

In addition to the state features, we also define cor-
responding action features that fall into three categories:
transitioning-actions that indicate the customer chang-
ing primary (or secondary) locations (e.g., “web: enter
menu credit-card”); information-gaining-actions that indi-
cate the customer obtaining new information (e.g. “web:
get information on credit-card-transaction-history”); and
modification-actions that indicate the customer modifying
their information (e.g. “web: change information on alerts-
definition”). Full details on the state-action features are pro-
vided in Table 2] The predictive features X are thus repre-
sented in terms of these state-action pairs and a customer
trajectory consists are a list of state-action pairs.

[ Feature Name || Possible Values \

Primary location web, mobile, teller, banker, ATM
Secondary location || credit-card, credit-score, offers, rewards, operations, settings,
(web and alerts-maintenance, contact-us, account-documents,
mobile menus) profile-maintenance
Transitioning login, log-off, enter
actions enter-menu, exit, exit-menu
alerts-definition, alerts-history, atm-branches, balance,
benefits, demographic, documents, faq, help-call, help-email,
offers, credit-card-trans-history, credit-card-trans-summary,

Information-

iigl:rllg limit-credit-card, grgdit-svore-history, )
messages, rewards-activity, rewards-use-points,
credit-score-summary, trans-history, trans-summary
Modification demographic, password, user-id,
actions limit-credit-card, alerts-definition

Table 2: List of handcrafted features.

Graph Representation: In addition to a bag-of-word rep-
resentation (Harris||[1954), we also utilize a state graph em-
bedding that will allow for better learning of each of our
objectives.

In the graph embedding, nodes correspond to state fea-
tures (i.e., primary and secondary location features). Nodes
are connected by an edge if there exists a transition (i.e., an
action that allows a customer to move between the two cor-
responding states). In addition to neighbor information, the
node features of the graph are given as four binary indica-
tors: the customer has visited this node in the past, the cus-
tomer is currently at this node, the customer performed an
information-gaining-action at this node, the customer per-
formed a modification-action at this node. These indicators
are refereed to respectively as (past-nodes, ego-node, info-
gain, modification).

The intuition behind the advantage of this graph embed-
ding is that it allows the model to have a less myopic under-
standing of the way in which actions affect the customer’s
location in each interface, which in turn allows the model to
have a less myopic understanding of which actions will be
available to the customer at the future time-steps as well as
possible paths to nodes which may achieve the customer’s
goal.

Predictive Models

To capture the temporal patterns in customer interactions
and learn the intricate relationships between actions and
goals over time, we utilized the architecture of LSTM net-
works (Hochreiter and Schmidhuber|1997). Specifically, we
used a bag-of-words and one-hot encoding to represent the
events as well as constructed a state graph to use as a GNN
embedding in the LSTM model. The graph was constructed
by examining all customer trajectories in the training dataset
and defining nodes and edges as any state or transition ac-
tion which appeared in more than 10 times. We found 10
to be the best frequency threshold when defining the graph
as this value provided an effective balance between includ-
ing irrelevant states and edges (which the model would then
need to learn to ignore) and excluding important states and
edges that will increase the myopicness of model predic-
tions. Figure [T] shows an example of bag-of-words repre-
sentation and state-space graph representation, respectively,
generated from the datasets.



id time is_digital is_traditional atm mobile web teller banker login Ioogf; enter

0 2 1677088680 0 1 1 0 0 0 0 1 0 0

1 2 1677088920 0 1 1 0 0 0 0 0 1 0
3000 16 1677167640 1 0 0 1 0 0 0 1 0 0
3001 16 1677167760 1 0 0 1 0 0 0 0 0 0
3002 16 1677168000 1 0 0 1 0 0 0 0 1 0

cha

account:

documents_menu

Figure 1: An example of bag-of-words and one-hot encoding representation, and a state-space graph representation.

Predictive Objective: Our primary focus will be on the
following predictive tasks:

* Goal Prediction: Given ny historical actions, what goal
does the customer have?

* Type Prediction: Given n g historical actions, what is the
customer’s type?

* Trajectory Prediction: Given n historical actions, what
are the customer’s next n g future actions?

Experimental Results

In this section, we present the experimental results of our
two proposed models — LSTM and GNN+LSTM. Our ex-
perimental setup consisted of the semi-synthetic dataset with
12 thousand customer interactions, split into 70% training,
15% validation, and 15% test sets. Each data point in our
dataset represents a sequence of a customer’s previous 20
events. The LSTM and GNN+LSTM models were trained
using the Adam optimizer (Kingma and Ba|[2014), with a
learning rate of 0.01, over 5000 epochs with early stopping
based on the validation set performance. The primary met-
rics used for comparison were prediction accuracy for cus-
tomer goals, agent types, and future events.

Goal Prediction: Table [3| shows the accuracy for each ap-
proach when predicting the goal of the customer. We see that
both the LSTM and GNN+LSTM models are capable of ac-
curately predicting customer goals, however neither method

Accuracy
Model Check Info | Change Info
LSTM 71% 68%
GNN+LSTM 77% 75%

Table 3: Accuracy for each approach when predicting agent
type. LSTM corresponds to the LSTM approach with a bag-
of-words embedding and GNN+LSTM corresponds to the
LSTM approach with the graph representation and GNN en-
coding layer . For each prediction, the model views the cus-
tomer’s most recent 20 events.

achieves greater than 80% accuracy. With that said, graph
embedding does offer a significant improvement to model
efficacy when compared to the bag-of-words embedding.

Type Prediction: In Table[d we see the accuracy when pre-
dicting customer typeﬂ Both LSTM and GNN+LSTM have
high efficacy (roughly 90% or more) when predicting both
the agents failure rate type and preferred interface. In the
case of preferred interface, customers tend to exclusively
use their preferred interface, meaning that this predictive
task becomes significantly easier once observing historical
events from each customer.

Trajectory Prediction: In Table [5] we see the accuracy

!The ground truths for each customer type (income, fail behav-
ior, digital behavior) were stated in the dataset.



Accuracy
Model Income | Fail Behavior | Digital Behavior
LSTM 63% 89% 97%
GNN+LSTM 70% 90% 97%

Table 4: Accuracy for each approach when predicting cus-
tomer type. For each prediction, the model views the cus-
tomer’s most recent 20 events.

Accuracy
Model length 1 | length 5 | length 15
LSTM 52% 40% 33%
GNN+LSTM 67% 62% 49%

Table 5: Accuracy for approach when predicting the next 1,
5, and 15 customer events. For each prediction, the model
views the customer’s most recent 20 events.

when predicting the future events of customers. While the
accuracy on this task are notably lower than the other tasks,
the space of possible predictions (i.e., the space of possible
events) is far greater in trajectory prediction than in those
other tasks. As is expected we see that as the model is re-
quired to forecast customer events farther into the future, its
predictive efficacy decreases. However, we again see a large
improvement in predictive efficacy when using the graph
embedding over the bag-of-word embedding.

When examining the bag-of-words approach with an
LSTM model and the graph approach with a combination
of a GNN and LSTM, we observe consistent and signifi-
cant improvement with the graph embedding. This is due
in part to the non-myopic nature of the graph embedding
in that it explicitly encodes all possible paths customers can
take through each of the interfaces; as such the model to rea-
son more efficiently about the ways in which current, or past
events, influence future events. This is also visible in Fig-
ure 2] where we plot the loss functions of the LSTM and
GNN+LSTM models.

Conclusions

We have provided a pipeline for predicting customer behav-
ior, type, and objective, from observations of customers in-
teracting with multiple bank interfaces (web, mobile, teller,
ATM). This pipeline is comprised of both a feature extrac-
tion procedure which takes reordered customer “events’ and
builds a state-action graph as well as where states and ac-
tions are the result of hand-crafted features (Table[2)). Second
we use a combined GNN and LSTM architecture to make
use of both the temporal and structural nature of customer
interactions. We found this approach to be effective at each
of the three predictive tasks, and to have consistent improve-
ment over both baselines.

Future Work: Currently we are exploring extensions of
our graph based approach to not only predict customer be-
havior, but also to modify customer behavior. For example,
the bank may desire to migrate customers towards digital
interfaces, rather than in-person interfaces, i.e., modifying

Model Accuracy for Predicting Next Actions

0.7
0.6
0.5
0.4+
©
3 0.3
<
0.2
0.1 — LSTM-1 —— LSTM-15 —— GNN+LSTM-5
001 LSTM-5 —— GNN+LSTM-1  —— GNN+LSTM-15
0 50 100 150 200 250

lteration x 102

Figure 2: Loss function of LSTM and GNN+LSTM ap-
proaches when predicting the next 1, 5, and 15 actions of
the customer when viewing the customer’s last 20 actions.

customer type. To modify the behavior of customers which
prefer in-person interfaces, we can first learn a state-action
graph for those customers, which in turn allows us to sur-
mise the perceived cost that those individuals have for us-
ing digital interfaces (unfamiliarity with mobile apps may
increase and individual’s perceived cost of taking actions
within the bank’s mobile app). With these perceived costs,
the bank can then use targeted rewards (e.g., cash rewards
for using the mobile app) to incentivize customers to use the
mobile app. After using the mobile app several times, in-
dividuals would become more familiar with app and would
thus have a lower perceived cost of using the mobile app
compared to in-person interfaces. Banks could then use this
reward shaping technique to help migrate customers to a de-
sired interface with greater precision than simply offering
blind rewards to all individuals. Behavior prediction, which
is the current focus of this paper, is an essential first-step in
modifying behavior as the ability to efficiently shape behav-
ior is directly tied to the ability to predict that behavior.
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