Planning as a Service

Yi Ding, Cam Cunningham, Christian Muise, ' and Nir Lipovetzky >

"' Queen’s University, Kingston, On, Canada
2 The University of Melbourne, VIC, Australia
firsname.lastname @ {unimelb.edu.au,queensu.ca}

Abstract

Planning as a service (PaaS) provides an extendable API to
deploy planners online in local or cloud servers. The service
provides a queue manager to control a set of workers, which
can easily be extended with one of several planners available
in PLANUTILS. PaaS is designed to overcome the limitations
of the existing online solver.planning.domains interface and
widen the adoption of planning technology in education, re-
search, and industry.

Demo: https://nirlipo.github.io/project/paas/

Introduction

Since its inception in 2016, the online solver.planning.
domains (Muise||2016) has been the mainstay remote plan-
ning service for planning researchers, enthusiasts, and stu-
dents alike. With over five million individual solver calls,
the service has remained largely unchanged in its lifetime.
It houses a single solver (a version of LAPKT (Ramirez,
Lipovetzky, and Muise|2015) that runs extremely quickly)
and restricts the solve resources to 10 seconds and 500Mb
only. Further, it operates with a single worker queue and only
allows a single solve at any given time.

The seamless nature of the online solver (in concert with
the other planning.domains initiatives) has proven itself to
be a vital resource for settings such as education (where stu-
dents repeatedly send their partial models for solving) as
well as the wider adoption of planning (we are aware of
several labs that use the online solver in robotic settings).
However, the limitations that come with the existing service
are clear and increasingly recognized as drawbacks worth
addressing.

It is with this motivation that we introduce PaaS —
Planning-as-a-Service. By building on the work of PLANU-
TILS (Muise et al|[2022), an initiative to provide turn-key
terminal access to a growing array of planners and planning
utilities, we developed an entirely new web framework and
computing service capable of several core improvements
over the previous online solver:

1. Planner configuration can be made as part of the API call.
2. Several classical planners and planners for other for-
malisms are now supported.

3. We can seamlessly scale the number of concurrent work-
ers when the service is under high demand.

4. Under an opt-in process, users can contribute their model
data to the initiative for research purposes (planning
model data to be released to the community under a per-
missive license).

Similar to the previous planning service, PaaS is open-
source and freely available:

https://github.com/Al-Planning/planning-as-a-service

Planning as a Service (PaaS)

PaaS consists of a 1) task queue manager to handle plan-
ning requests asynchronously in real-time, spawning new
workers on multiple threads and CPUs as needed, 2) a mes-
sage broker to connect the API with the queue manager,
allowing to monitor the running and completed tasks, 3)
an API to expose the services provided by planutils, along
with their running arguments, and 4) a plugin for the ledi-
tor.planning.domains| (Muise and Lipovetzky|2020).

Getting Started

PaaS has been Dockerized for seamless deployment. Once
the codebase is cloned, the user needs to specify a configu-
ration file with the intended credentials to set up the mon-
itoring system, the memory and time limit of each worker,
and the number of workers. PaaS Dockers’ are started by
first building the latest planutils publicly available image,
and then invoking the API, monitor system, and specified
workers via two commands:

docker build -t planutils:latest .

docker-compose up -d --build

Two endpoints are then exposed: the API through port 5001,
and the monitor service on port 5555.

Adding a Planner

Available planners are added via the Dockerfile specifica-
tion of a worker. The worker uses planutils, allowing the
installation of any planner available in planutils as a pack-
age. E.g., adding the Dual-BFWS planner (Lipovetzky and
Geftner|2017) to the worker, can be accomplished by adding
the following line:

solver.planning.domains
solver.planning.domains
planning.domains
https://github.com/AI-Planning/planning-as-a-service
http://editor.planning.domains
http://editor.planning.domains

RUN planutils install -f -y dual-bfws-ffparser

Planner Arguments and Service

We refer to (Muise et al.|2022) for more information on set-
ting up a planner as a new package in planutils. We’ve ex-
tended the Manifest to expose different services and their
arguments. We provide a template called planner to spec-
ify the solve endpoint service along with the domain and
problem files as arguments. The service will use the com-
mand specified in call, and return all generated filenames
matching the glob expression *plan*.

"args": [
{
"name": "domain",
"type": "file",
"description": "domain file"
by
{
"name": "problem",
"type": "file",
"description": "problem file"
}
1,
"call": "{package_name} {domain} {problem}",
"return": {
"type": "generic"
"files": "xplanx"

We can then add a service to Dual-BFWS manifest:

"endpoint": {
"services": ({
"solve": {
"template": "planner",
"call":" {package_name} {domain} {problem} plan"

This uses the standard planner template and overwrites the
call property to match the run command for Dual-BFWS
package.

We allow four type of arguments: £ile, int, string,
and categorical. The latter can be used to specify a set
of complex arguments similar to a select option. There are
three types of return files: generic, when the files con-
tain plans following the standard format used in the Interna-
tional Planning Competitions, i.e. one action per line, 1og,
when plans are not compliant, and json, when plans are
specified via a JSON format. This information is used by
the API adaptors, defined for each application that in-
tends to parse and use the returned files in a required for-
mat. Currently, we have implemented an adaptor for the on-
line editor. New adaptors can be added and selected through
our API. Otherwise, the files would be returned as text. The
documentation of a service in the worker can be viewed via
http://localhost:5001/docs/{ package name}.

How to access the service

The API for each service in each package will be
exposed through |http://localhost:5001/package/{package._
name }/{package_service}. Below is a snippet using the ser-
vice via Python.

import requests
import time

from pprint import pprint

regBody = {
"domain":" (define (domain BLOCKS) ...)",
"problem":" (define (problem ...)"

}
ip="http://localhost:5001"

service = "/package/dual-bfws-ffparser/solve"
id=requests.post (ip + service, Jjson=regBody) .json ()
job=requests.post (ip + id['result'])

print ('Computing...")

while job.json() .get ("status","")== 'PENDING':
job=requests.post (ip + id['result'])
time.sleep(0.5)

pprint (job. json())

The id variable contains the link to access the result and
status of the job in the queue. We can then access the result
of the job or use a custom adaptor to parse it. E.g., we can
use the online editor adaptor to get the result from the queue
with the following lines:

adaptor = {"adaptor":"planning_ editor_adaptor"}

job=requests.get (ip + id['result'], json=adaptor)

The PaaS service has already been deployed and inte-
grated into the online editor.planning.domains as a plu-
gin https://github.com/Al-Planning/planning-as-a-service-
plugin, allowing for any planner exposing its services via
planutils to be used within the editor.

Use Cases

The core functionality of PaaS has been incorporated in the
online editor, enabling students to easily solve different sub-
sets of PDDL, as well as testing the capabilities of the di-
verse suite of techniques implemented in existing planners.
To further ease the adoption of planning, preliminary sup-
port also exists for using PaaS in VScode via the existing
PDDL extension, as well as in Planimation (Chen et al.
2020), which would currently allow for plans from different
classical planners to be easily inspected, and in the future to
visualize plans using fragments of PDDL beyond classical
planning. Finally, PaaS can easily be deployed in a local/-
cloud server to provide planning services to other applica-
tions, such as robotic platforms.

Acknowledgments This work has been partially funded
by AlJ to promote Al Research ”Enabling Education of Al
Planning”

http://localhost:5001/docs/{package_name}
http://localhost:5001/package/{package_name}/{package_service}
http://localhost:5001/package/{package_name}/{package_service}
https://github.com/AI-Planning/planning-as-a-service-plugin
https://github.com/AI-Planning/planning-as-a-service-plugin
https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl

References
Chen, G.; Ding, Y.; Edwards, H.; Chau, C. H.; Hou, S.;
Johnson, G.; Sharukh Syed, M.; Tang, H.; Wu, Y.; Yan,
Y.; Gil, T.; and Nir, L. 2020. Planimation. arXiv preprint
arXiv:2008.04600.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In Proc. AAAI
Muise, C. 2016. Planning. domains. ICAPS system demon-
stration.
Muise, C.; and Lipovetzky, N. 2020. KEPS Book: Planning.
Domains. Knowledge Engineering Tools and Techniques for
Al Planning, 91-105.
Muise, C.; Pommerening, F.; Seipp, J.; and Katz, M. 2022.
PLANUTILS: Bringing Planning to the Masses. In ICAPS:
System Demonstrations.
Ramirez, M.; Lipovetzky, N.; and Muise, C. 2015.
Lightweight Automated Planning ToolKiT. http://lapkt.org/.

http://lapkt.org/

	Introduction
	Planning as a Service (PaaS)
	Getting Started
	Adding a Planner
	Planner Arguments and Service
	How to access the service
	Use Cases

