
Authoring of and Interacting with Scheduling Constraints in PDDL and in a Rich
Web Interface

Jan Dolejsi, Derek Long and Michal Stolba
SLB, UK

Introduction
Planning (especially temporal) and Scheduling are closely
related problems and from our experience, most industrial
problems contain both elements. In planning, the number of
actions required to solve a problem is not specified in the
problem itself. Instead, the problem is specified as a condi-
tion to be achieved. In (job-) scheduling, the typical problem
is a set of jobs that must be done and solving the problem
involves deciding start times and assigning resources to the
jobs. In both cases, key choices to be resolved are the timing
of actions and the allocation of resources, while observing
a variety of constraints and optimizing the choices using a
cost function. Both planning and scheduling work with or-
dering constraints between actions/jobs, although these are
typically determined in planning problems by the relation-
ship between the preconditions of actions and their achiev-
ers, while in scheduling problems these constraints are more
often specified as explicit ordering constraints on pairs of
job start/end-points.

Modeling Planning-scheduling domains
Attempts to encode job shop scheduling problems in
PDDL (Fox and Long 2003) lead to verbose mod-
els prone to coding errors. A job, if modeled as stan-
dard :durative-action, needs a parameter for the
location, where the job takes place and besides other
auxiliary parameters, it needs one or more parameters to de-
note type(s) of resource(s) the job requires. Objects of
the location and resource types need a way of spec-
ifying their (un-)availability over time. Consider a simpli-
fied version of the wall-decorator planning domain intro-
duced by Long and Fox (2001), reduced to a purer schedul-
ing problem, where painters and cleaners perform painting
and clean-up jobs in residential two story houses. Both the
paint and clean-up jobs have the house parameter
and painter or cleaner resource parameter. In plain
PDDL (Fox and Long 2003), the durative action needs to de-
clare conditions and effects asserting the availability of the
location and the resource(s), collocation, or correctly tog-
gling the busy ?r - resource predicate, etc...

In this system demo, we show how can this repetitive
boiler plate PDDL code be alleviated by the introduction of
the :job-scheduling requirement, which brings the job
scheduling ontology to PDDL and triggers code injection/-

compilation in parsers, planners and editors that decide to
support it.

For example, the Figure 1 shows the automatically gen-
erated PDDL (highlighted) within the original PDDL code,
which could concentrate on the logic, that is specific to each
job. The demo will show that the auto-generated compila-
tions are done on the fly, so the VAL1 domain/problem/plan
validation and evaluation toolbox works as-is, while plan-
ners that decide to embrace the :job-scheduling re-
quirement can take advantage of the syntax to directly trans-
late the :jobs to their internal scheduling data structures
without having to infer it from the combination of conditions
and effects and/or expecting the modeler to follow a naming
convention for types and predicates/functions if plain PDDL
2.1 was used as the input.

Blending AI-driven Decisions with Human
Preferences in a Rich User Experience
Both planning and scheduling problems are encoded with
hard constraints (e.g. action ordering, candidate resource ap-
plicability). Within those hard constraints, many valid so-
lutions may be found. To nudge the solver to a solution
that is not just valid, but also preferred, PDDL language of-
fers two syntax elements: :metric and :preferences.
However, we observed that the exact balance of the coeffi-
cients in the metric expression, or the exact preferences are
not known at time of PDDL modeling. They emerge during
the user interaction with the schedule. As scheduling prob-
lems typically apply to slower-moving processes, where the
human scheduler participates in the process to validate the
schedule and possibly adjust it to their liking.

Analogously to deploying AI planning to autonomous
systems, where the plan is not dispatched blindly, step by
step at predefined time points, but rather carefully validating
the pre-conditions and continuously monitoring the over-all
conditions, the demo will show how we take the output of
the composite planning-scheduling solver and visualize it
in an interactive web-based interface, while preserving the
predecessor-successor and other temporal constraints that
were part of the input, or inferred by the solver. The user
may modify the shape of the schedule by intuitive mouse/-
touch gestures dragging jobs along the timeline, or chang-

1https://github.com/KCL-Planning/VAL

https://github.com/KCL-Planning/VAL


Figure 1: Example of auto-generated PDDL scheduling structure. Highlighted content is automatically inserted as a decoration
by the editor and compiled-in by/for the solver, while the darker font content is written by the modeller.

ing the resource assignment by dragging the job between
resource swim-lanes. All such modifications are sent back
to the solver, which validates the new version of the sched-
ule and re-calculate the score. The solver behind the user
interface is a descendant of the POPF (Coles et al. 2010)
temporal-numeric solver, coupled with a scheduling solver
comprising of an initial greedy allocation algorithm fol-
lowed by an implementation of tabu search enhanced by
scheduling-specific large neighborhood operators.

The Figure 2 shows a static snapshot of the otherwise very
interactive user interface showing a schedule for the house
painting problem.

Conclusion
The demonstrated combination of PDDL notation tailored
for job-scheduling and the intuitive web interface for the
human to interact with the schedule within the bounds of
the constraints, helps pushing the boundary of modeling
and then automating a wider range of operational decision-
making problems that combine both planning and schedul-
ing paradigms and for which the pure job scheduling ap-
proach would lead to over-simplification, while the PDDL-
based modeling approach would yield models that would be
verbose, repetitive and tedious to maintain.

A 10 minute version of the demo may be found here:
https://www.youtube.com/watch?v=YvK3QGtZJU

References
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Proc. International

Conf. on Automated Planning and Scheduling.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelliigence Research, 20: 61–124.
Long, D.; and Fox, M. 2001. Multi-Processor Scheduling
Problems in Planning. In Proc. Int. Conf. on AI.



Figure 2: Screenshot of the web-based interactive schedule display showing with pale green background the time periods, where
houses are available for the painters and cleaners to perform the paint and clean-up jobs.


	Introduction
	Modeling Planning-scheduling domains
	Blending AI-driven Decisions with Human Preferences in a Rich User Experience

	Conclusion

