
PDDL Domain Repair: Fixing Domains with Incomplete Action Effects

Alba Gragera, Raquel Fuentetaja, Ángel Garcı́a-Olaya, Fernando Fernández
Computer Science and Engineering Department, Universidad Carlos III de Madrid, Spain

agragera@pa.uc3m.es, {rfuentet, agolaya, ffernand}@inf.uc3m.es

Abstract

Automated planning is a problem solving technique for a
wide range of scenarios and goals, which typically involves
the creation of domain and problem files in formal languages.
However, producing complete model descriptions can be
challenging and time-consuming, and errors such as incom-
plete specification of the initial state or the set of actions of-
ten result in unsolvable tasks for planners. Explaining the ab-
sence of a solution in such cases is essential to support hu-
mans in the development of automated planning tasks. In this
paper, we present an tool to repair planning models where the
effects of some actions are incomplete. The received input is
compiled to a new extended planning task, in which actions
are permitted to insert possible missing effects. The solution
is a plan that achieves the goals of the original problem while
also alerting users of the modifications made.

Introduction
Automated planning tasks are typically defined by a domain
description, which specifies all available actions and predi-
cates, and a problem description that contains the initial state
and goals. However, modeling a planning task is not always
trivial, and there may be scenarios where the completeness
of the planning task specification cannot be ensured (Kamb-
hampati 2007; McCluskey, Vaquero, and Vallati 2017). In
such cases, an incomplete specification of the initial state or
actions can render the planning task unsolvable.

Providing users a comprehensive explanation about the
absence of solution and how to solve it is an important chal-
lenge for the planning community (Fox, Long, and Mag-
azzeni 2017; Chakraborti, Sreedharan, and Kambhampati
2020). Previous works have considered scenarios where ini-
tial states prevent the achievement of goals (Göbelbecker
et al. 2010; Sreedharan et al. 2019), providing explanations
and alternative initial states that render the task solvable.
However, these works assume the proper specification of
the domain and do not consider modifications to it. Due to
the number of potential changes to the set of actions, re-
pairing faulty domains is not trivial (Lin and Bercher 2021).
Previous works assume guidelines from users, often in the
form of a suggested valid plan (Nguyen, Sreedharan, and
Kambhampati 2017; Lin, Grastien, and Bercher 2023). In

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

contrast, in this work we propose the use of automated plan-
ning to repair planning tasks themselves, without additional
information from the user. We focus on errors in the domain
model that render the planning task unsolvable. Specifically,
we consider missing action effects, which can compromise
the task’s solvability.

We present a tool where users can upload domain and
problem files. If the domain is flawed and no solution ex-
ists, the interface provides suggestions to repair it. This is
achieved by compiling the unsolvable task into a new ex-
tended planning task that includes operators to link pred-
icates as new effects of the actions. The resulting plan
achieves the original goals while also provides information
on how the model was repaired to make the task solvable.

Figure 1: PDDL Domain Repair interface.

Input
The tool receives domain and problem PDDL files. If the
planning task is fully specified and solvable, the ’Get plan’
button returns the solution plan. If the provided domain has
flaws that make the task unsolvable, clicking ’Suggest repa-
rations’ launches the compilation of the task, as explained
below. Let us consider a BLOCKSWORLD planning domain
that has the following missing effects:

• holding effect from the pick-up action
• on effect from the stack action
• holding effect from theunstack action

We will use this example in the remainder of the paper.



Compilation to Classical Planning
To identify modifications that make the task solvable, we
compile the received domain and problem into a new plan-
ning task that includes additional operators to repair any
flawed action in the domain. At the operational level, each
grounded action is now divided into three stages: (1) the ap-
plication of the action, (2) any necessary repairs, and (3) the
closure of the action.

To manage this process, we reformulate the planning task
elements so that action and predicate names become domain
objects. In addition, we introduce new predicates to replace
the original ones. These predicates are designed to access
the elements of the original task and to control the repairing
process. The new set of action schemes is explained below.
Further details about the compilation can be found in the
original paper (Gragera et al. 2023).

ACTIONS FROM ORIGINAL ACTIONS Consists of ac-
tions generated from the original domain actions, but com-
piled to match the new object representation.

FIX ACTIONS We include repair operators to select a
predicate symbol and link it as a new effect of any action.
This operator has an associated cost, which will be used as
a bias to minimize the number of reparations made in the
domain.

After a predicate symbol is linked to an action as a new
effect, we include the following two actions to establish
whether the effect will be positive or negative.

ADD-FIX ACTIONS These operators perform the repara-
tion as a positive effect by matching the predicate symbol
with its parameters, and adding it to the state with the ap-
propriate objects.

DEL-FIX ACTIONS These operators follow a similar ac-
tion scheme as the ADD-FIX operators, but they remove
atoms from the current state. This simulates a negative ef-
fect of the action to which it was linked.

CLOSE ACTION The application of a close action con-
cludes the reparation of an action. It deletes the information
about the current action and the objects used, and updates
the action as already fixed.

PROBLEM INSTANCE The original problem instance is
also compiled to match the new object representation. The
new predicates are instantiated to represent static domain in-
formation about the original predicates and actions.

Output
The solution to this extended planning task consists of a plan
that achieves the original goals by repairing the actions of
the original domain with additional effects. Figure 2 shows
the resulting solution of the extended planning task com-
piled from the BLOCKSWORLD task input, where the repair
actions are highlighted.

To obtain the interface output, we parse the solution plans
to show users only the suggested repairs. We filter the FIX
actions to display the repaired actions and the predicates
used in the repairs. These reparations ensure that the task
is solvable. The interface is illustrated in Figure 3.

(unstack b4 b3)

(fix____adding_different holding unstack)

(add-fix_____1par holding unstack b4 t_block)

(completed_fixed unstack)

(put-down b4)

(completed_nofixed put-down)

(unstack b3 b2)

(add-fix_____1par holding unstack b3 t_block)

(completed_fixed unstack)

(stack b3 b4)

(fix____adding_different on stack)

(add-fix_____2par_goal on stack b3 b4 t_block t_block)

(completed_fixed stack)

(pick-up b1)

(fix____adding_different holding pick-up)

(add-fix_____1par holding pick-up b1 t_block)

(completed_fixed pick-up)

(stack b1 b3)

(add-fix_____2par_goal on stack b1 b3 t_block t_block)

(completed_fixed stack)

Figure 2: Solution plan for the BLOCKSWORLD domain.

Figure 3: Suggested reparations as shown in the interface.

Discussion
There are many changes that can be made to a domain to
make the planning task solvable. To avoid trivial or un-
wanted repairs (such as directly adding goals to action ef-
fects), we bias the search by assigning different costs to each
repair action. We define a metric to minimize such costs,
guiding the search towards more desirable plans. However,
the lack of information about the number and location of
flaws, as well as the user’s mental model, can lead to esti-
mated repairs.

One strength of our approach is that it can obtain a fairly
accurate reparation without requiring additional information
from the user, only a domain and a single problem. However,
this may also have the drawback of generating reparations
that are over-fitted to the given problem, compromising the
ability to generalize. We believe that incorporating multiple
problem instances or automatically generating problems to
identify possible flaws in the domain pose interesting chal-
lenges that can motivate future research.



Acknowledgements
This work has been partially funded by PID2021-
127647NB-C21 and PDC2022-133597-C43 projects,
MCIN/AEI/10.13039/501100011033/ and by “ERDF A
way of making Europe”. Also by the Madrid Government
under the Multiannual Agreement with UC3M in the line
of Excellence of University Professors (EPUC3M17) in the
context of the V PRICIT (Regional Programme of Research
and Technological Innovation).

References
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2020.
The Emerging Landscape of Explainable Automated Plan-
ning & Decision Making. In Proceedings of IJCAI 2020,
4803–4811. ijcai.org.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. CoRR, abs/1709.10256.
Göbelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming Up With Good Excuses: What to
do When no Plan Can be Found. In Proceedings of ICAPS
2010, Toronto, Ontario, Canada, May 12-16, 2010, 81–88.
AAAI.
Gragera, A.; Fuentetaja, R.; Garcia-Olaya, A.; and Fernan-
dez, F. 2023. A Planning Approach to Repair Domains with
Incomplete Action Effects. In Proceedings of ICAPS 2023,
Prague, Czech Republic (To Appear).
Kambhampati, S. 2007. Model-lite Planning for the Web
Age Masses: The Challenges of Planning with Incom-
plete and Evolving Domain Models. In Proceedings of
AAAI 2007, July 22-26, 2007, Vancouver, British Columbia,
Canada, 1601–1605. AAAI Press.
Lin, S.; and Bercher, P. 2021. Change the World - How Hard
Can that Be? On the Computational Complexity of Fixing
Planning Models. In Proceedings of IJCAI 2021, Virtual
Event / Montreal, Canada, 19-27 August 2021, 4152–4159.
ijcai.org.
Lin, S.; Grastien, A.; and Bercher, P. 2023. Towards Auto-
mated Modeling Assistance: An Efficient Approach for Re-
pairing Flawed Planning Domains. In Proceedings of AAAI
2023, Washington, USA.
McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. En-
gineering Knowledge for Automated Planning: Towards a
Notion of Quality. In Proceedings of K-CAP 2017, Austin,
TX, USA, December 4-6, 2017, 14:1–14:8. ACM.
Nguyen, T.; Sreedharan, S.; and Kambhampati, S. 2017. Ro-
bust planning with incomplete domain models. Artif. Intell.,
245: 134–161.
Sreedharan, S.; Srivastava, S.; Smith, D. E.; and Kambham-
pati, S. 2019. Why Can’t You Do That HAL? Explaining
Unsolvability of Planning Tasks. In Proceedings of IJCAI
2019, Macao, China, August 10-16, 2019, 1422–1430. ij-
cai.org.


