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Abstract

Multi-Agent Path Finding (MAPF) is an important core prob-
lem for many new and emerging industrial applications.
Many works appear on this topic each year, and a large num-
ber of substantial advancements and performance improve-
ments have been reported. Yet measuring overall progress in
MAPF is difficult: there are many potential competitors, and
the computational burden for comprehensive experimentation
is prohibitively large. Moreover, detailed data from past ex-
perimentation is usually unavailable. In this work, we intro-
duce a set of methodological and visualisation tools that can
help the community establish clear indicators for state-of-the-
art MAPF performance and facilitate large-scale comparisons
between MAPF solvers. Our objectives are to lower the bar-
riers of entry for new researchers and to further promote the
study of MAPF.

Introduction

In recent years, the number of publications on the topic of
MAPF has exploded, as industrial interest continues to grow.
Many works now appear, across many different venues, and
there have been substantial performance improvements. To
track progress in the area, the community has developed a
set of standardised MAPF benchmarks (Stern et al. 2019),
which cover a variety of popular application domains and
synthetic/pathological test cases. In total, there are more
than 1.5 million standard instances with up to thousands
of moving agents per instance. Unfortunately, the compu-
tational burden associated with running this benchmark is
large, which means that most researchers attempt to solve
only a limited subset of instances and then only compare
against a limited subset of potential competitors. Conse-
quently, it is not entirely clear where a given MAPF solver
sits on the pareto-frontier that currently defines the state-of-
the-art. Another related problem is the availability of results
data. Although published works include headline results,
such as success rates and total problems solved, they typi-
cally do not mention which specific problems were solved,
which were closed, and where the remaining gaps are. Sup-
plementary data, such as concrete plans and best-known
bounds, which can allow other researchers to verify claims
and build on established results, are seldom available. Thus,
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despite notable advancements, and despite the availability
of benchmark problem sets, we currently do not have a clear
picture of overall progress in MAPF.

In this work, we introduce a new web-based system1 for
the MAPF community to track and validate the results on
standardised benchmarks. We then undertake a large set of
experiments, with several currently leading optimal and sub-
optimal solvers (Shen et al. 2023; Li et al. 2021; Lam et al.
2022; Gange, Harabor, and Stuckey 2019; Li et al. 2022;
Okumura 2023), in an attempt to map the current pareto-
frontier. Finally, We believe that our system can help iden-
tify the main strengths of existing research and the remain-
ing challenges in the area. They can also be used to track
progress on those challenges over time and help to lower the
barrier of entry for new research on the topic of MAPF.

System Demonstration

We introduce our system for tracking progress of different
methods on MAPF benchmarks. In general, there are three
types of algorithms studied by the research community:

(1) Optimal Algorithms focus on finding exact optimal so-
lutions. Such algorithms start from a lower-bound of the
optimal solution, and progressively push the lower-bound
until they find a feasible solution that is provably optimal.

(i) Bounded Suboptimal Algorithms find the suboptimal
solution within theoretical guarantees. These algorithms
explore lower-bounds and feasible solutions simultane-
ously, returning a solution meets certain suboptimality.

(iii) Unbounded Suboptimal Algorithms focus on finding

feasible solutions. These algorithms find the feasible so-
lution fast, and keep improving it given sufficient time.

Our goal is to design a system that tracks different types
of algorithms and their progress together. The critically im-
portant feature for us is the ability to handle all types of al-
gorithms. Therefore, we focus on two important results re-
ported by different MAPF algorithms: (a) best (i.e., largest)
lower-bound value: we track this value to cover the algo-
rithms in (i) and (ii); and (b) best (i.e., smallest SIC) so-
lution: we record this result to cover the algorithms in (ii)

'Our website is accessible at: http://tracker.pathfinding.ai. A
demo video giving an overview of the system is also available at:
https://youtu.be/qtG6-h4FZxU. A full length manuscript is avail-
able at https://arxiv.org/abs/2305.08446.
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Figure 1: Screenshots taken from our website. We show the percentage of instances that were closed (green), solved (yellow),
and unknown (red) for 7 different benchmark domains on the left, and for 33 different benchmark maps on the right.

and (iii). In the remainder of this section, we explain our
strategies for generating insight and systemic analysis from
results data, as well as a list of important things that we are
tracking on different levels of the benchmark.

Instance-level Tracking At the instance level, our sys-
tem records the best lower-bound and solution cost as ex-
plained above. For each reported lower-bound or valid plan
we also keep track of additional metadata, such as the algo-
rithm which produced the result, names of authors, publica-
tion references and links to implementations. We then use
the data to provide additional insights:

Tracking the concrete plan: each instance contains a dif-
ferent number of agents, however, it is not clear how these
agents are distributed w.r.t. the obstacles of map, and how
their solution paths interact on the map. Our system records
a concrete plan for each best known solution cost and pro-
vides a visualiser to better understand those solutions.

Tracking the gap: For each instance, we may have differ-
ent algorithms which contribute lower-bounds and solutions
(upper bounds) separately. Together, we need to analyse how
close these algorithms are in terms of finding and proving
optimal solutions. Therefore, we automatically track and vi-
sualise the suboptimality ratio of each instance defined as
(S — L)/ L where L and S are the best known lower-bound
and solution of the instance, respectively.

Scenario-level Tracking All instances in a scenario are
categorised into three types: (i) closed instance: the instance
has the same best lower-bound and solution cost (indicating
that the solution cannot be further improved); (ii) solved in-
stance: the instance has a feasible solution reported, but the
current best lower-bound is less than the solution cost (i.e.,
improvement may be possible); and (iii) unknown instance:
the instance has no solution reported. For each scenario, our
system tracks the percentage of closed and solved instances
to indicate the progress of all contributed algorithms. For
scenarios of the same map, we also track the following:
Tracking progress on scenarios: For a given map, our
system automatically generates plots which shows the per-
centage of closed, solved and unknown instances for every

scenario. The objective here is to identify the scenarios that
are hard to solve with existing MAPF algorithms, so that
more attention can be paid to these.

Tracking progress on different number of agents:  Each
scenario contains instances with different numbers of
agents. It is important to understand the scalability of
MAPF algorithms across all scenarios (i.e., at what number
of agents we stop making progress). Therefore, our system
includes the percentages of closed, solved and unknown
instances for different number of agents on the same map.

Domain and Map-level Tracking Finally, at the map-
level of the benchmark, our system records the percentages
of closed and solved instances for each map. Similar to the
scenario-level, our system also generates plots to track the
percentages of closed, solved, and unknown instances across
all maps, and summarises the related maps for each domain
to provide domain-level plots. Figure 1 shows an overview
of the progress made on domains and maps based on the re-
sults collected in our system thus far. Researchers can use
this information to focus their efforts on solving those parts
of the benchmark that have shown limited progress, such as
the maze and game domains, as well as specific maps within
these domains, including 0rz900d, den312d and maze maps.

Participation and Comparison Another critical feature
of our system is allowing other researchers to participate by
submitting their algorithms/results and establish the state-
of-the-art together. For all the results we collect, we make
them publicly available and allow other researchers to down-
load the results at each level. In order to make it easy for
researchers to evaluate their own progress against other at-
tempts, we also provide tools to automatically compare algo-
rithms, across every level of the system. Our principal eval-
uation criteria are: # of instances a given algorithm closed;
# of instances that the algorithm solved; # of instances for
which it achieved the best lower-bound; # of instances for
which it reported the best solution. We apply these criteria
to summarise the state-of-the-art for each type of algorithm.
(optimal, bounded- and unbounded-suboptimal).
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