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Abstract

In this demonstration we show the mobipick labs environ-
ment, which is a testbed for planning, execution and moni-
toring algorithms in a robotic domain. It provides a physics-
based simulation environment for a mobile robot together
with full integration of the robot and easy-to-use interface
for the robot’s capabilities. This gives users without a strong
robotics background the opportunity to apply their planning-
related work to a robotic domain. Moreover, the framework
includes a simple semantic and numeric environment rep-
resentation, providing real-time knowledge in the form of
“facts” that can be utilized to monitor the execution status.
Finally we also demonstrate one possible solution using task
planning to search and transport certain objects to a target lo-
cation.
Video: https://youtu.be/4-GgOg2nuGE
Code: https://github.com/DFKI-NI/mobipick labs/

Introduction
Mobile robots offer a variety of interesting challenges for
the planning community, such as dynamic and partially ob-
servable environments with multiple actors and stochastic
action outcomes, which results in a high uncertainty about
the actual environment state. Dealing with those properties
requires the use of sophisticated plan execution and moni-
toring algorithms. Despite being such an interesting appli-
cation for planning, it is difficult for researchers to test their
algorithms on real robots, due to the high entry barrier of
learning robotics and ROS.

The mobipick labs environment which we demonstrate
here, is designed to make the entry into robotics easier for
planning researchers by giving easy access to the robots
capabilities via a user-friendly high-level Python API. Ad-
ditionally, it provides a physics-based robot simulator in
Gazebo (Koenig and Howard 2004) in order to test planning
algorithms as well as the execution and monitoring of the
plan. For a detailed description of the mobipick labs system
we refer to (Lima et al. 2023).

Simulation environment
Fig. 1 shows the Mobipick robot in the testing environ-
ment simulated in Gazebo. The environment consists of
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Figure 1: Simulated environment in Gazebo.

three tables with industrial-like objects, such as a multime-
ter, screwdriver, relay, power drill and a blue box (see Fig. 2).
The positions of the objects can be adapted for different
test scenarios. This simulation closely resembles our real-
life robot setup. One example goal task for the robot is to
transport the objects between the tables.

Figure 2: Available objects. (Note: objects are not to scale.)

The mobipick labs environment currently only provides
one specific robot (the Mobipick) and a limited set of ob-
jects in one simulation environment; adding custom robots,
objects and environments requires a certain knowledge of
ROS. We plan to provide multi-robot examples, an easier
way to integrate new objects and algorithms for procedurally
generating new environments in the near future.

Robot capabilities
The Mobipick robot can perform the tasks of autonomous
navigation, 6DoF object detection and pose estimation, arm
trajectory motion planning and execution, pick, place and
insertion of objects including grasp planning, collision de-
tection, and free space place sampling.



The navigation action of the robot allows it to au-
tonomously move to a goal positionwhile automatically
avoiding dynamic obstacles on the path.

Object perception is done via a deep learning approach
on the real Mobipick robot, whereas in simulation a Gazebo
“logical camera” sensor is utilized to emulate object recog-
nition, pose estimation, and object anchoring functionalities.

All robotic manipulation within mobipick labs is based
on MoveIt. Using this framework, the robot is able to grasp
objects, place the held object on a table or to insert objects
into boxes.

In order for the robot to reason about how to solve tasks, it
needs the current state of the environment as symbolic facts.
These facts can be automatically generated by the provided
symbolic fact generator module. The generated facts include
information about the current arm pose of the robot, the cur-
rent position of the robot as well as the location of objects
on tables.

Mobipick Robot API
The functionality described above has been configured, de-
veloped and tested over the course of several years and is
aligned with the state of the art in open source robotics. Us-
ing it directly requires expertise in robotics and the Robot
Operating System (ROS).

To lower the entry barrier, we have developed a high-level
Python API to command the robot with simple instructions,
which allows the user to control all capabilities of the robot
without using ROS. Our hope is to encourage planning re-
searchers to test their planning algorithms in a physics based
simulator that is very close to a real robot. The small exam-
ple in Listing 1, taken from the robot api documentation,
demonstrates its overall idea.

Listing 1: Robot API basic functionality

import robot_api
# Get a Robot object from the ROS namespace
mobipick = robot_api.Robot("mobipick")

# Get the robot's 2D pose from localization
robot_pose = mobipick.base.get_2d_pose()

# Move the robot's arm using MoveIt
mobipick.arm.move("transport")

# Move the robot's base using move_base
mobipick.base.move(21.0, 7.0, 3.141592)

This is achieved by using discovery mechanisms at run-
time on the available ROS topics and services, so the
robot api can make use of existing ROS components of a
system dynamically. Where one would typically set up a
ROS subscriber or ROS service client first to establish the
connection and communicate with other ROS components,
the robot api performs this in the background. It also calls
rospy.init node() on demand, i.e., if there is no ROS
node already running in the current process, a new node will
be initialized the first time it is needed.

Planning and Execution Example

The provided testing environment can be solved with dif-
ferent variants of planning ranging from classical or hierar-
chical task planning to temporal planning up to probabilis-
tic planning. In this demo, we demonstrate how we use one
of the classical planners provided by the Unified Planning
Bridge (Hastam Sathiya Satchi Sadanandam et al. 2023) for
an example task of transporting objects. In this example, we
give the robot the goal that a multimeter shall be in a blue
box on a target table.

We modelled actions for driving to a table, searching on a
table for objects, picking up an object, placing an object and
transporting an object.

Initially, the robot is aware of the poses of the three tables
but it does not know the locations of the objects. Therefore,
the created plan contains actions for searching for a multi-
meter and a box and afterwards to put the multimeter into
the box and transport and place the box onto the target ta-
ble. The resulting plan is handled by a plan executor that
iterates through the plan and sequentially dispatches the ac-
tions. The actions for searching for an object is not executed
directly on the robot but is handled in the execution loop by
creating a sub-planning problem which is again solved by
the task planner. That sub-plan includes driving to the dif-
ferent tables and searching for objects on each of them. This
sub-plan is again executed sequentially in an execution loop
that stops if the object is found. Those sub-plans are created
based on the robot’s current knowledge of the environment.
For example, when searching for the box it takes into ac-
count that it did not see a box on the first two tables when it
was searching for the multimeter. In our example, the robot
successfully places the multimeter in to the box that is found
on the third table and afterwards transports the box to the
target table.

Users of the mobipick labs simulation environment can
swap in their own planners by either integrating them into
the Unified Planning Bridge or by executing the plans using
the high-level Robot API.

Conclusion

The mobipick labs environment serves as a testbed for
researchers interested in planning, acting, and monitoring
problems in robotic domains. It eliminates the need for
expert knowledge in robotics or ROS, enabling researchers
to focus on decision-making and execution aspects. Addi-
tionally, we present one example for using classical task
planning in the domain.

Unlike e.g. ROSPlan(Cashmore et al. 2015), the Mo-
bipick Labs system is not a planning framework, but rather
a realistic robotics use case, which can be used to support
researchers interested in decision making and online execu-
tion, enabling them to easily test their algorithms without
much effort on the robotics side.
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