
DLPlan: Description Logics State Features for Planning

Dominik Drexler, Jendrik Seipp
Linköping University, Linköping, Sweden
{dominik.drexler, jendrik.seipp}@liu.se

Abstract

Description logics are a family of knowledge representation
languages that has become increasingly popular in planning.
The main purpose of description logics in planning is to de-
fine abstract state features in a domain-general way for al-
lowing to learn human-interpretable classifiers or regression
models. After a brief review of the literature that uses de-
scription logics features in planning, we present DLPlan, a
C++ and Python library for constructing and evaluating state
features for planning based on description logics.

Introduction

Knowledge derived from a planning instance or a planning
domain can be used to substantially speed up the solving
process or even make instances or domains solvable with-
out any search. We distinguish two types of knowledge:
instance-specific and domain-general knowledge. Instance-
specific knowledge is meaningful for only the single in-
stance for which it was learned, and domain-general knowl-
edge is meaningful for all instances from a domain.

In this paper, we use description logics (Baader et al.
2003) to define domain-general knowledge (Jiménez,
Segovia-Aguas, and Jonsson 2019). Description logics were
used in planning to learn generalized policies (Martı́n
and Geffner 2000, 2004; Fern, Yoon, and Givan 2004;
Yoon, Fern, and Givan 2008; Francès, Bonet, and Geffner
2021; Ståhlberg, Bonet, and Geffner 2022a,b), abstract ac-
tions (Bonet and Geffner 2018), unsolvability heuristics
(Ståhlberg, Francès, and Seipp 2021), progress states for
greedy best-first search (Ferber et al. 2022), generalized
heuristics (Francès et al. 2019; Yoon, Fern, and Givan 2008;
de Graaff, Corrêa, and Pommerening 2021), and policy
sketches (Drexler, Seipp, and Geffner 2022). These works
use description logics to define abstract domain-general state
features. To provide a solid, unified code base for future re-
search in this direction, we present a C++ and Python library
for defining and evaluating state features based on descrip-
tion logics.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background
We describe planning, state spaces, and description log-
ics drawing on the notation from Drexler, Seipp, and
Geffner (2022) and Baader et al. (2003).

Planning
A planning problem or instance, is a pair P = 〈D, I〉 where
D is a first-order domain consisting of a set of predicates F
and a set of action schemas over F , and I is instance-specific
information consisting of a set of objects O , a description of
the initial situation Init and the goal Goal . Instantiating the
predicates in F with objects from O induces the set of atoms
A. A state s is a set of atoms, and we say that an atom a is
true in s iff a ∈ s. The action schemas and atoms A induce
a set of ground actions.

Each planning problem P induces a state space S(P) =
〈S, s0, G, L, T 〉, where S is the set of all states over atoms
A, s0 ∈ S is the initial state describing Init , G is the set
of goal states where Goal is true, L is the set of labels for
ground actions, and T ⊆ S × L × S is a set of transitions,
i.e., 〈s, l, s′〉 ∈ T iff applying the action with label l in s
results in state s′.

Description Logics
Description logics (Baader et al. 2003) are a family of lan-
guages to represent knowledge. This paper uses description
logics to represent knowledge derived from states in plan-
ning problems. In a description logic, there is a set of objects
∆, a set of concepts, and a set of roles.

The concepts and roles are expressions describing unary
and binary relations over ∆, respectively. Both types of ex-
pressions are built recursively, starting from a small set of
primitive concepts and roles, giving rise to composite con-
cepts and roles. Most description logics are more expressive
than propositional logic but less general than two-variable
first-order logic.

The DLPlan Library
The DLPlan library (Drexler, Francès, and Seipp 2022)
implements the basic types for predicates, objects, atoms,
states, and state spaces, as well as commonly used descrip-
tion logics concepts and roles, and additional Boolean and
numerical features. A Boolean feature maps a state into the

Boolean domain, and a numerical feature maps a state into
a natural number N0. From now on, we refer to concepts,
roles, Booleans and numericals features simply as features.
The interpretation of a feature depends on a given state s un-
der the following semantics. Consider nullary predicate p0,
unary predicate p1, binary predicate p2, concepts C,D, and
roles R,S, and either concept or role X .

Concepts

• Universe4 with4s = O,

• Primitive p1 with (p1)s = {a ∈ ∆ | p1(a) ∈ s},
• Top > and bottom ⊥ with >s = ∆s, ⊥s = ∅,
• Intersection C uD, union C tD, and negation ¬C with

(CuD)s = Cs∩Ds, (CtD)s = Cs∪Ds, and (¬C)s =
∆ \ Cs,

• Value restriction ∀R.C with
(∀R.C)s = {a | ∀b : (a, b) ∈ Rs → b ∈ Cs},

• Existential quantification ∃R.C with
(∃R.C)s = {a | ∃b : (a, b) ∈ Rs ∧ b ∈ Cs},

• Role-value-map R ⊆ S and R = S with
(R ⊆ S)s = {a | ∀b : (a, b) ∈ Rs → (a, b) ∈ Ss},
(R = S)s = {a | ∀b : (a, b) ∈ Rs ↔ (a, b) ∈ Ss},

• Nominal a with as = {a}.

Roles

• Primitive p2 with (p2)s = {(a, b) | p2(a, b) ∈ s},
• Top > with >s = ∆s ×∆s,

• Intersection R u S, union R t S, and negation ¬R with
(R u S)s = Rs ∩ Ss, (R t S)s = Rs ∪ Ss, (¬R)s =
>s \Rs,

• Inverse R−1 with (R−1)s = {(b, a) | (a, b) ∈ Rs},
• Composition R ◦ S with (R ◦ S)s = {(a, c) | (a, b) ∈
Rs ∧ (b, c) ∈ Ss},

• Identity id(C) with (id(C))s = {(a, a) | a ∈ Cs},
• Transitive (reflexive) closure R+, R∗ with (R+)s =⋃

n≥1(Rs)n, (R∗)s =
⋃

n≥0(Rs)n, (Rs)0 = (id(4))s,
(Rs)n+1 = (Rs)n ◦Rs,

• Restrict R|C with (R|C)s = Rs u (∆× Cs).

Example 1. In the Delivery planning domain, there is a set
of packages distributed over a fully-connected grid. The ob-
jective is to move all packages one-by-one to a single tar-
get location. Consider binary predicates at and at g where
at(p, l) is true iff package p is at location l, and at g(p, l)
is true iff package p has goal location l. The concept f de-
scribing the set of undelivered packages can be defined as
f ≡ (¬(at = at g)) u package .

Booleans

• Empty(X) with Empty(X)s is true iff |Xs| = 0,

• Nullary(p0) with Nullary(p0)s is true iff p0() ∈ s.

Numericals
• Count(X) with Count(X)s ≡ |Xs|,
• Distance(C,R,D) with Distance(C,R,D)s is the

smallest number n ∈ N0 such that there are objects
c1, . . . , cn with c1 ∈ Cs, cn ∈ Ds, and (ci, ci+1) ∈ Rs

for i = 1, . . . , n− 1. If no n exists then the result is∞.
Example 2. Consider Example 1. The numerical f ′ desrib-
ing the number of undelivered packages can be defined as
f ′ ≡ Count((¬(at = at g)) u package).

The DLPlan library provides functionality for parsing fea-
tures from plain text and manually building them incre-
mentally using the feature constructors. The features are
uniquely stored in a forest, in the sense that there are never
two syntactically identical features. The uniqueness allows
for caching feature evaluations for each state to drastically
speeds up the evaluation when (sub-)features are reused.

Use Cases
We now describe the three main use cases of the library.1,2

Generate First-order State Spaces
DLPlan can generate and construct the full state spaces from
a set of input files writting in the planning domain definition
language (PDDL).
state_space = generate_state_space(

"domain.pddl", "problem.pddl")

Evaluate Description Logics Features
DLPlan can construct, parse, and efficiently evaluate
domain-general state features based on description logics.
factory = SyntacticElementFactory()
numerical = factory.parse_numerical("n_count

(r_and(r_primitive(at,0,1),r_not(
r_primitive(at_g,0,1))))")

value = numerical.evaluate(State(...))

Generate Description Logics Features
For a given set of instances from a planning domain, DLPlan
can generate a pool F of interesting domain-general fea-
tures. To do so, DLPlan generates the state space and auto-
matically derives F consisting of features with complexity
up to k. The complexity of an feature is the number of ap-
plied grammar rules. DLPlan constructs features incremen-
tally by generating all possible syntactic compositions. To
reduce the exponential blowup, it uses a collection of states
to prune redundant features. A feature f is redundant if a
previously generated feature f ′ has the same feature valua-
tion as f for all the given states.
feature_strings = generate_features(factory,

state_space.get_states().values(), k,
...)

Conclusions
We presented a brief overview of use cases for description
logics state features in planning and showed how to address
them with our simple and powerful DLPLan library.

1Link to demonstration video: tinyurl.com/2p96j4hj
2Link to Colab notebook: https://tinyurl.com/2p8x3kdv

References
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press.
Bonet, B.; and Geffner, H. 2018. Features, Projections, and
Representation Change for Generalized Planning. In Lang,
J., ed., Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2018), 4667–4673. IJ-
CAI.
de Graaff, R.; Corrêa, A. B.; and Pommerening, F. 2021.
Concept Languages as Expert Input for Generalized Plan-
ning: Preliminary Results. In ICAPS 2021 Workshop on
Knowledge Engineering for Planning and Scheduling.
Drexler, D.; Francès, G.; and Seipp, J. 2022. Description
Logics State Features for Planning (DLPlan). https://doi.
org/10.5281/zenodo.5826139.
Drexler, D.; Seipp, J.; and Geffner, H. 2022. Learning
Sketches for Decomposing Planning Problems into Sub-
problems of Bounded Width. In (Thiébaux and Yeoh 2022).
Ferber, P.; Cohen, L.; Seipp, J.; and Keller, T. 2022. Learn-
ing and Exploiting Progress States in Greedy Best-First
Search. In De Raedt, L., ed., Proceedings of the 31th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2022). IJCAI.
Fern, A.; Yoon, S. W.; and Givan, R. 2004. Learning
Domain-Specific Control Knowledge from Random Walks.
In Zilberstein, S.; Koehler, J.; and Koenig, S., eds., Pro-
ceedings of the Fourteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2004), 191–198.
AAAI Press.
Francès, G.; Bonet, B.; and Geffner, H. 2021. Learning Gen-
eral Planning Policies from Small Examples Without Super-
vision. In Leyton-Brown, K.; and Mausam, eds., Proceed-
ings of the Thirty-Fifth AAAI Conference on Artificial Intel-
ligence (AAAI 2021), 11801–11808. AAAI Press.
Francès, G.; Corrêa, A. B.; Geissmann, C.; and Pommeren-
ing, F. 2019. Generalized Potential Heuristics for Classical
Planning. In Kraus, S., ed., Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2019), 5554–5561. IJCAI.
Jiménez, S.; Segovia-Aguas, J.; and Jonsson, A. 2019. A re-
view of generalized planning. The Knowledge Engineering
Review, 34: e5.
Martı́n, M.; and Geffner, H. 2000. Learning General-
ized Policies from Planning Examples Using Concept Lan-
guages. In Cohn, A. G.; Giunchiglia, F.; and Selman, B.,
eds., Proceedings of the Sixth International Conference on
Principles of Knowledge Representation and Reasoning (KR
2000), 667–677. Morgan Kaufmann.
Martı́n, M.; and Geffner, H. 2004. Learning General-
ized Policies from Planning Examples Using Concept Lan-
guages. Applied Intelligence, 20(1): 9–19.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In (Thiébaux and
Yeoh 2022).

Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learning
Generalized Policies without Supervision Using GNNs. In
Proceedings of the Nineteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR
2022).
Ståhlberg, S.; Francès, G.; and Seipp, J. 2021. Learning
Generalized Unsolvability Heuristics for Classical Planning.
In Zhou, Z.-H., ed., Proceedings of the 30th International
Joint Conference on Artificial Intelligence (IJCAI 2021),
4175–4181. IJCAI.
Thiébaux, S.; and Yeoh, W., eds. 2022. Proceedings of
the Thirty-Second International Conference on Automated
Planning and Scheduling (ICAPS 2022). AAAI Press.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning Control
Knowledge for Forward Search Planning. Journal of Ma-
chine Learning Research, 9: 683–718.

